

Volume 73 (2017)

Supporting information for article:

Conformational and structural diversity of iridium dimethyl sulfoxide complexes

Benjamin M. Ridgway, Ana Foi, Rodrigo S. Corrêa, Damian E. Bikiel, Javier Ellena, Fabio Doctorovich and Florencia Di Salvo

S1. Supplementary Figures and Schemes

Scheme S 1 Heating the trans-containing crystal $1a\beta$ yields a *cis* complex.

Scheme A. Crystals obtained after slow evaporation of the reaction solvent.

Scheme B. Controlled humidity experiments, showing the general setup of samples in desiccators. Each desiccator was equipped with a vial containing DMSO, the iridium complex, and the various humidity-controlling agents, from left to right, calcium chloride heptahydrate, potassium carbonate, ammonium nitrate, potassium chloride, and sodium hydrogen phosphate dodecahydrate, which yield relative humidities of 32, 45, 63, 86, and 95%, relatively.

Figure S1 Crystallization procedures

Figure S2 (a) The OSIr angle, (b) OSIrCl dihedral, and (c) OSSO dihedrals.

Figure S3 DFT (B3LYP/def2-SVP/def2-TZVP(Ir)) calculated structures of (a) IrCl5NO and (b) trans-IrCl5(DMSO) the bond lengths between Ir and the Cl trans to NO or DMSO. The bond lengths are (a) 2.29 and (b) 2.39 Å.

Figure S4 Scatter plot of the orientation of the S=O dihedrals versus the S-M-S angle (180° for *trans* structures and 90° for *cis* structures) extracted from the CSD (23 hits). As shown, no *syn*-rotamers are present in the CSD.

Figure S5 Ellipsoid plots at 50% probability for **2**, *cis*-K[IrCl₄(DMSO)₂], K^+ and water molecules are not shown for clarity.

Figure S6 Hydrogen bonding around the ammonium group in 1b.

Figure S7 Predicted PXRD data for the three crystal structures and the experimentally obtained powder diffraction data.

S2. Supplementary Tables

Table S1 Kitaigorodskii packing indices for $1a\alpha$, $1a\beta$, and 1b, as calculated by PLATON.

	1a α	1aβ	1b
Solvent water	77.3	81.2	68.6
No solvent water	74.2	77.5	66.9

Ir1—S1	2.3063 (16)	C1—H1A	0.96
Ir1—Cl1	2.3514 (14)	C1—H1B	0.96
Ir1—Cl2	2.3627 (13)	C1—H1C	0.96
Ir2—S2	2.3099 (17)	C2—H2A	0.96
Ir2—Cl4	2.3572 (15)	C2—H2B	0.96
Ir2—Cl3	2.3593 (17)	C2—H2C	0.96
Cl1—K1	3.185 (2)	C4—H4A	0.96
Cl4—K1	3.271 (3)	C4—H4B	0.96
S1—O1	1.474 (5)	C4—H4C	0.96
S1—C2	1.766 (7)	O2—K1	2.850 (5)
S1—C1	1.771 (6)	O1W—K1	3.071 (19)
Cl3—K1	3.217 (2)	O1W—H1W	0.82
S2—O2	1.471 (5)	С3—НЗА	0.96
S2—C4	1.767 (7)	С3—Н3В	0.96
S2—C3	1.774 (8)	С3—НЗС	0.96
S1 ¹ —Ir1—S1	180	S1—C2—H2B	109.5
S1—Ir1—Cl1	88.62 (6)	H2A—C2—H2B	109.5
S1 ¹ —Ir1—Cl2	91.61 (6)	S1—C2—H2C	109.5
S1—Ir1—Cl2	88.39 (5)	H2A—C2—H2C	109.5
Cl1—Ir1—Cl2	90.12 (5)	H2B—C2—H2C	109.5
Cl2 ⁱ —Ir1—Cl2	180	S2—C4—H4A	109.5
S2 ⁱⁱ —Ir2—S2	180	S2—C4—H4B	109.5
S2—Ir2—Cl4	85.72 (6)	Н4А—С4—Н4В	109.5
S2—Ir2—Cl3	89.27 (7)	S2—C4—H4C	109.5
Cl4—Ir2—Cl3	89.46 (7)	Н4А—С4—Н4С	109.5
Ir1—Cl1—K1	101.27 (6)	H4B—C4—H4C	109.5

$\label{eq:constraint} \begin{array}{ll} \textbf{Table S2} & Geometric \mbox{ parameters for 1b (Å, °)} \end{array}$

Ir2—Cl4—K1	97.03 (6)	S2—O2—K1	123.0 (3)
O1—S1—C2	108.4 (4)	K1—O1W—H1W	109.6
O1—S1—C1	107.5 (3)	K1—O1W—H2W	119.4
C2—S1—C1	100.8 (4)	H1W—O1W—H2W	97.7
O1—S1—Ir1	116.0 (2)	S2—C3—H3A	109.5
C2—S1—Ir1	111.7 (3)	S2—C3—H3B	109.5
C1—S1—Ir1	111.3 (2)	НЗА—СЗ—НЗВ	109.5
Ir2—Cl3—K1	98.44 (6)	S2—C3—H3C	109.5
O2—S2—C4	107.4 (4)	НЗА—СЗ—НЗС	109.5
O2—S2—C3	106.8 (4)	НЗВ—СЗ—НЗС	109.5
C4—S2—C3	101.7 (4)	O2—K1—O1W	48.8 (3)
O2—S2—Ir2	115.7 (2)	O2—K1—Cl1	73.44 (12)
C4—S2—Ir2	111.9 (3)	O1W—K1—Cl1	76.3 (4)
C3—S2—Ir2	112.3 (3)	O2—K1—Cl3	62.55 (11)
S1—C1—H1A	109.5	O1W—K1—Cl3	94.5 (4)
S1—C1—H1B	109.5	Cl1—K1—Cl3	126.65 (6)
H1A—C1—H1B	109.5	O2—K1—Cl4	70.60 (12)
S1—C1—H1C	109.5	O1W—K1—Cl4	118.3 (3)
H1A—C1—H1C	109.5	Cl1—K1—Cl4	76.91 (6)
H1B—C1—H1C	109.5	Cl3—K1—Cl4	61.54 (5)
S1—C2—H2A	109.5		
Symmetry codes: (i) $-x$, $-y+1$, $-x$	z+1; (ii) -x+1, -y, -z+	1.	

Table S3	Geometric parameters for 1aα (Å,	, °)
----------	---	------

C2—S1	1.776 (5)	C4—H4C	0.96
C2—H2A	0.96	O1—S1	1.472 (3)

C2—H2B	0.96	01—K1	2.995 (4)
C2—H2C	0.96	O2—S2	1.468 (4)
C1—S1	1.773 (5)	O1W—K1	2.765 (5)
C1—H1A	0.96	O1W—H1W	0.85
C1—H1B	0.96	O1W—H2W	0.85
C1—H1C	0.96	S1—Ir1	2.3058 (11)
C3—S2	1.774 (6)	S2—Ir1	2.3167 (11)
С3—НЗА	0.96	Cl1—Ir1	2.3621 (11)
С3—Н3В	0.96	Cl1—K1	3.2658 (18)
С3—Н3С	0.96	Cl2—Ir1	2.3666 (11)
C4—S2	1.767 (5)	Cl2—K1	3.1986 (17)
C4—H4A	0.96	Cl3—Ir1	2.3470 (12)
C4—H4B	0.96	Cl4—Ir1	2.3498 (12)
S1—C2—H2A	109.5	C1—S1—Ir1	111.14 (19)
S1—C2—H2B	109.5	C2—S1—Ir1	111.7 (2)
H2A—C2—H2B	109.5	O2—S2—C4	107.8 (3)
S1—C2—H2C	109.5	O2—S2—C3	107.3 (3)
H2A—C2—H2C	109.5	C4—S2—C3	101.1 (3)
H2B—C2—H2C	109.5	O2—S2—Ir1	115.70 (16)
S1—C1—H1A	109.5	C4—S2—Ir1	111.73 (19)
S1—C1—H1B	109.5	C3—S2—Ir1	112.1 (2)
H1A—C1—H1B	109.5	Ir1—Cl1—K1	96.00 (4)
S1—C1—H1C	109.5	Ir1—Cl2—K1	97.69 (4)
H1A—C1—H1C	109.5	S1—Ir1—S2	178.49 (4)
H1B—C1—H1C	109.5	S1—Ir1—Cl3	89.38 (4)
S2—C3—H3A	109.5	S2—Ir1—Cl3	91.87 (4)
S2—C3—H3B	109.5	S1—Ir1—Cl4	93.01 (4)

НЗА—СЗ—НЗВ	109.5	S2—Ir1—Cl4	87.83 (4)
S2—C3—H3C	109.5	Cl3—Ir1—Cl4	89.79 (5)
НЗА—СЗ—НЗС	109.5	S1—Ir1—Cl1	90.45 (4)
НЗВ—СЗ—НЗС	109.5	S2—Ir1—Cl1	88.29 (4)
S2—C4—H4A	109.5	Cl3—Ir1—Cl1	179.48 (5)
S2—C4—H4B	109.5	Cl4—Ir1—Cl1	90.72 (5)
H4A—C4—H4B	109.5	S1—Ir1—Cl2	86.98 (4)
S2—C4—H4C	109.5	S2—Ir1—Cl2	92.18 (4)
Н4А—С4—Н4С	109.5	Cl3—Ir1—Cl2	90.05 (5)
H4B—C4—H4C	109.5	Cl4—Ir1—Cl2	179.84 (4)
K1—O1W—H1W	110.5	Cl1—Ir1—Cl2	89.45 (5)
K1—O1W—H2W	140.9	01W—K1—01	75.91 (13)
H1W—O1W—H2W	107.7	O1W—K1—Cl2	83.46 (11)
01—S1—C1	107.9 (3)	O1—K1—Cl2	73.78 (7)
01—S1—C2	108.3 (2)	O1W—K1—Cl1	129.75 (11)
C1—S1—C2	100.7 (3)	O1—K1—Cl1	60.72 (8)
O1—S1—Ir1	116.05 (15)	Cl2—K1—Cl1	61.95 (4)

Table S4Bond angles and distances for $1a\beta$ (Å, °)

Ir1—S1 ⁱ	2.309 (2)	C1—H1A	0.96
Ir1—S1	2.309 (2)	C1—H1B	0.96
Ir1—Cl2 ⁱ	2.358 (2)	C1—H1C	0.96
Ir1—Cl2	2.358 (2)	C2—H2A	0.96
Ir1—Cl1	2.367 (2)	C2—H2B	0.96
Ir1—Cl1 ¹	2.367 (2)	C2—H2C	0.96

Ir2—S2 ⁿ	2.317 (2)	N1—C5	1.465 (12)
Ir2—S2	2.317 (2)	N1—H1D	0.89
Ir2—Cl3	2.3576 (19)	N1—H1E	0.89
Ir2—Cl3 ^{II}	2.3576 (19)	N1—H1F	0.89
Ir2—Cl4 ^{II}	2.360 (2)	С5—С6	1.496 (17)
Ir2—Cl4	2.360 (2)	С5—Н5А	0.97
S2—O2	1.459 (7)	С5—Н5В	0.97
S2—C3	1.762 (10)	C6—C7	1.34 (2)
S2—C4	1.780 (10)	С6—Н6А	0.97
S1—01	1.475 (6)	С6—Н6В	0.97
S1—C1	1.765 (9)	С7—С8	1.525 (19)
S1—C2	1.777 (8)	С7—Н7А	0.97
C4—H4A	0.96	С7—Н7В	0.97
C4—H4B	0.96	С8—Н8А	0.96
С4—Н4С	0.96	C8—H8B	0.96
С3—НЗА	0.96	С8—Н8С	0.96
С3—Н3В	0.96	O1W—H1W	0.8197
С3—НЗС	0.96		
S1 ¹ —Ir1—S1	179.68 (10)	O2—S2—C3	107.8 (6)
S1 ⁱ —Ir1—Cl2 ⁱ	93.10 (7)	O2—S2—C4	108.0 (5)
S1—Ir1—Cl2 ¹	87.13 (7)	C3—S2—C4	99.1 (5)
S1 ¹ —Ir1—Cl2	87.13 (7)	O2—S2—Ir2	117.1 (3)
S1—Ir1—Cl2	93.10 (7)	C3—S2—Ir2	112.0 (4)
Cl2 ¹ —Ir1—Cl2	87.47 (11)	C4—S2—Ir2	111.3 (4)
S1 ¹ —Ir1—Cl1	88.29 (7)	01—S1—C1	108.2 (4)
S1—Ir1—Cl1	91.49 (7)	O1—S1—C2	109.3 (4)
Cl2 ⁱ —Ir1—Cl1	177.31 (7)	C1—S1—C2	99.6 (5)

Cl2—Ir1—Cl1	90.30 (8)	01—S1—Ir1	114.6 (3)		
Sl ⁱ —Ir1—Cl1 ⁱ	91.49 (7)	C1—S1—Ir1	112.1 (3)		
S1—Ir1—Cl1 ¹	88.29 (7)	C2—S1—Ir1	111.9 (3)		
Cl2 ¹ —Ir1—Cl1 ¹	90.30 (8)	N1—C5—C6	111.0 (9)		
Cl2—Ir1—Cl1 ¹	177.31 (8)	N1—C5—H5A	109.4		
Cl1—Ir1—Cl1 ¹	91.96 (11)	С6—С5—Н5А	109.4		
S2 ¹¹ —Ir2—S2	180.00 (14)	N1—C5—H5B	109.4		
S2 ⁿ —Ir2—Cl3	87.74 (8)	C6—C5—H5B	109.4		
S2—Ir2—Cl3	92.26 (8)	H5A—C5—H5B	108		
$S2^{\mu}$ —Ir2—Cl3 ^{μ}	92.26 (8)	C7—C6—C5	121.6 (16)		
S2—Ir2—Cl3 ⁿ	87.74 (8)	С7—С6—Н6А	106.9		
Cl3—Ir2—Cl3 ⁱⁱ	180.00 (13)	С5—С6—Н6А	106.9		
$S2^{n}$ —Ir2—Cl4 ⁿ	91.37 (8)	С7—С6—Н6В	106.9		
S2—Ir2—Cl4 ⁿ	88.63 (8)	С5—С6—Н6В	106.9		
Cl3—Ir2—Cl4 ⁿ	89.29 (8)	Н6А—С6—Н6В	106.7		
$Cl3^{u}$ —Ir2— $Cl4^{u}$	90.71 (8)	C6—C7—C8	121.1 (19)		
S2 ⁿ —Ir2—Cl4	88.63 (8)	С6—С7—Н7А	107		
S2—Ir2—Cl4	91.37 (8)	С8—С7—Н7А	107		
Cl3—Ir2—Cl4	90.71 (8)	С6—С7—Н7В	107		
Cl3 ^u —Ir2—Cl4	89.29 (8)	С8—С7—Н7В	107		
Cl4 ^u —Ir2—Cl4	180.00 (9)	H7A—C7—H7B	106.8		
Symmetry codes: (i) $-x$, y , $-z+1/2$; (ii) $-x+1/2$, $-y+1/2$, $-z$.					

Table S5Hydrogen bonds in 1b

Number	Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length	Length-VdW
1	Cl2	H1E	- <i>x</i> , <i>y</i> , <i>1</i> /2- <i>z</i>	<i>x,y,z</i>	2.848	-0.102

2	01	H1E	- <i>x</i> , <i>y</i> , <i>1</i> /2- <i>z</i>	<i>x,y,z</i>	2.081	-0.639
3	Cl1	H1W	<i>x,y,z</i>	- <i>x</i> ,- <i>1</i> + <i>y</i> , <i>1</i> /2- <i>z</i>	2.589	-0.361
4	C13	H1F	1/2-x,1/2-y,-z	1/2+x,-1/2+y,z	2.707	-0.243
5	Cl4	H1F	1/2-x,1/2-y,-z	<i>1/2+x,-1/2+y,z</i>	2.574	-0.376
6	C13	H1W	1/2-x,1/2-y,-z	1/2-x,-1/2+y,1/2-z	2.911	-0.039
7	H1D	O1W	<i>x,y,z</i>	<i>x,y,z</i>	2.035	-0.685

Table S6Hydrogen bonds in $1a\alpha$

		Length/(Å)		Angle/(°)	Symmetry code
D-H…A	D-H	Н…А	D····A	D-H…A	
O1w-H2W…O2	0.85	2.14	2.99	176.5	<i>x</i> , <i>1</i> .5 <i>-y</i> , <i>-1</i> /2+ <i>z</i>

Table S7 Short contacts in $1a\alpha$, excluding hydrogen bonds

Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length
C1	C13	<i>x,y,z</i>	- <i>x</i> ,- <i>1</i> /2+ <i>y</i> , <i>1</i> /2- <i>z</i>	3.54
K1	Cl1	<i>x,y,z</i>	1-x,-1/2+y,1/2-z	4.251
K1	S2	<i>x,y,z</i>	1-x,-1/2+y,1/2-z	3.91
K1	Ir1	<i>x,y,z</i>	1-x,-1/2+y,1/2-z	4.56
K1	C2	<i>x,y,z</i>	1-x,1/2+y,1/2-z	4.28
K1	S 1	<i>x,y,z</i>	1-x,1/2+y,1/2-z	3.966
01	C2	1-x,1/2+y,1/2-z	1-x,1/2+y,1/2-z	2.639
01	C1	1-x,1/2+y,1/2-z	1-x,1/2+y,1/2-z	2.63
01	S1	1-x,1/2+y,1/2-z	1-x,1/2+y,1/2-z	1.472
01	Ir1	1-x,1/2+y,1/2-z	1-x,1/2+y,1/2-z	3.235
02	C3	1-x,-1/2+y,1/2-z	1-x,-1/2+y,1/2-z	2.619

- O2 C4 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 2.619
- O2 S2 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 1.468
- O2 Ir1 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.236
- Cl1 Cl2 *1-x, 1/2+y, 1/2-z 1-x, 1/2+y, 1/2-z* 3.327
- Cl1 C3 *1-x, 1/2+y, 1/2-z 1-x, 1/2+y, 1/2-z* 3.34
- Cl1 S1 *I-x, 1/2+y, 1/2-z I-x, 1/2+y, 1/2-z* 3.314
- Cl1 S2 *1-x, 1/2+y, 1/2-z 1-x, 1/2+y, 1/2-z* 3.259
- Cl1 Cl4 *1-x, 1/2+y, 1/2-z 1-x, 1/2+y, 1/2-z* 3.353
- Cl1 Ir1 *1-x, 1/2+y, 1/2-z 1-x, 1/2+y, 1/2-z* 2.362
- Cl2 Cl *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.315
- Cl2 S1 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.216
- Cl2 S2 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.374
- Cl2 Cl3 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.334
- Cl2 Ir1 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 2.367
- K1 O2 *l-x,-1/2+y,1/2-z x,-1+y,z* 2.724
- K1 Cl2 *1-x,-1/2+y,1/2-z x,-1+y,z* 3.17
- K1 O1 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 2.994
- K1 C1 *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 4.365
- K1 H1C *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.835
- K1 O1W *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 2.765
- K1 H1W *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.164
- K1 H2W *1-x,-1/2+y,1/2-z 1-x,-1/2+y,1/2-z* 3.467
- O2 O1W *x,y,z x,1.5-y,-1/2+z* 2.989
- O2 H2W *x,y,z x,1.5-y,-1/2+z* 2.14
- Cl1 H1W *x,y,z x,1/2-y,-1/2+z* 3.031
- Cl4 H1A *x,y,z x,1/2-y,-1/2+z* 2.865

Cl4	H1W	<i>x,y,z</i>	<i>x,1/2-y,-1/2+z</i>	2.98
O1W	O1W	<i>x,y,z</i>	1-x,1-y,1-z	2.963

Table S8Short contacts in 1b, excluding hydrogen bonds

Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length
Cl2	H4A	-x,y,1/2-z	<i>x,y,z</i>	2.949
C1	02	-x,y,1/2-z	- <i>x</i> ,- <i>y</i> ,- <i>z</i>	3.183
H1B	02	-x,y,1/2-z	- <i>x</i> ,- <i>y</i> ,- <i>z</i>	2.489
H1C	C13	-x,y,1/2-z	- <i>x</i> ,- <i>y</i> ,- <i>z</i>	2.978
01	N1	-x,y,1/2-z	<i>x,y,z</i>	2.865
Cl1	O1W	<i>x,y,z</i>	<i>x,-1+y,z</i>	3.243
Cl1	H1W	<i>x,y,z</i>	- <i>x</i> ,- <i>1</i> + <i>y</i> , <i>1</i> /2- <i>z</i>	2.589
C13	N1	1/2-x, 1/2-y,-z	1/2+x,-1/2+y,z	3.348
Cl4	N1	1/2-x,1/2-y,-z	1/2+ <i>x</i> ,-1/2+ <i>y</i> , <i>z</i>	3.332
C13	H1W	1/2-x, 1/2-y,-z	1/2-x,-1/2+y,1/2-z	2.911
N1	O1W	<i>x,y,z</i>	<i>x,y,z</i>	2.901
H1D	O1W	<i>x,y,z</i>	<i>x,y,z</i>	2.035

Table S9Short contacts in $1a \beta$, excluding hydrogen bonds

Atom1	Atom2	Symm. op. 1	Symm. op. 2	Length
Ir1	01	<i>x,y,z</i>	- <i>x</i> , <i>l</i> - <i>y</i> , <i>l</i> - <i>z</i>	3.236
Ir2	K1	<i>x,y,z</i>	1-x,-y,1-z	4.259
Ir2	C4	<i>x,y,z</i>	1-x,-y,1-z	3.391
Ir2	02	<i>x,y,z</i>	1-x,-y,1-z	3.231
Ir2	C3	<i>x,y,z</i>	1-x,-y,1-z	3.405
Cl1	C2	<i>x,y,z</i>	-x, 1-y, 1-z	3.225

Cl2	01	<i>x,y,z</i>	- <i>x</i> , <i>l</i> - <i>y</i> , <i>l</i> - <i>z</i>	3.202
Cl4	C4	<i>x,y,z</i>	1-x,-y,1-z	3.246
C13	C3	<i>x,y,z</i>	1-x,-y,1-z	3.321
C11	S 1	-x,-y,1-z	<i>x,-1+y,z</i>	3.333
C11	Cl2	-x,-y,1-z	- <i>x</i> ,- <i>y</i> , <i>1</i> - <i>z</i>	3.337
Cl4	Cl3	-x,-y,1-z	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	3.351
Cl4	S2	-x,-y,1-z	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	3.421
S1	Cl2	-x,-y,1-z	-x,-y,1-z	3.255
C13	S2	-x,-y,1-z	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	3.323
C1	Cl2	- <i>x,-y,1-z</i>	- <i>x</i> ,- <i>y</i> , <i>1</i> - <i>z</i>	3.379
Ir1	K1	<i>x,-1+y,z</i>	<i>x</i> ,- <i>l</i> + <i>y</i> , <i>z</i>	4.313
Ir1	Cl1	<i>x,-1+y,z</i>	<i>x</i> ,- <i>l</i> + <i>y</i> , <i>z</i>	2.351
Ir1	S 1	<i>x,-1+y,z</i>	<i>x</i> ,- <i>l</i> + <i>y</i> , <i>z</i>	2.306
Ir1	Cl2	<i>x,-1+y,z</i>	- <i>x</i> ,- <i>y</i> , <i>1</i> - <i>z</i>	2.363
Ir2	Cl4	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	2.357
Ir2	Cl3	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	2.359
Ir2	S2	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	- <i>1</i> + <i>x</i> , <i>y</i> , <i>z</i>	2.31
Cl1	C1	-x,1-y,1-z	- <i>x</i> , <i>l</i> - <i>y</i> , <i>l</i> - <i>z</i>	3.293
Cl4	K1	1-x,-y,1-z	1-x,-y,1-z	3.271
Cl4	C3	1-x,-y,1-z	1-x,-y,1-z	3.417
S1	C1	-x,1-y,1-z	-x,1-y,1-z	1.771
S1	C2	-x,1-y,1-z	-x,1-y,1-z	1.766
S1	01	-x,1-y,1-z	-x,1-y,1-z	1.474
Cl3	K1	1-x,-y,1-z	1-x,-y,1-z	3.216
Cl3	02	1-x,-y,1-z	1-x,-y,1-z	3.165
S2	K1	1-x,-y,1-z	1-x,-y,1-z	3.854

S2	C4	1-x,-y,1-z	1-x,-y,1-z	1.767
S2	02	1-x,-y,1-z	1-x,-y,1-z	1.471
S2	C3	1-x,-y,1-z	1-x,-y,1-z	1.775
K1	Cl1	x,1+y,z	x,1+y,z	3.185
K1	S 1	x,1+y,z	x,1+y,z	4.228
K1	02	x,1+y,z	x,1+y,z	2.85
K1	01	x,1+y,z	x,1+y,z	3.558
K1	C2	x,1+y,z	-x,1-y,1-z	4.461
K1	Cl2	x,1+y,z	-x,2-y,1-z	3.282
Cl4	C1	x,y,z	x,1/2-y,-1/2+z	3.416
Cl4	H1C	x,y,z	x,1/2-y,-1/2+z	2.935
Cl4	O1W	x,y,z	x,1/2-y,-1/2+z	3.187
Cl4	H1W	x,y,z	x,1/2-y,-1/2+z	2.741
K1	C1	x,y,z	x,1/2-y,-1/2+z	4.437
K1	H1A	x,y,z	x,1/2-y,-1/2+z	3.773
C11	C4	-x,-y,1-z	-1+x,-1/2-y,-1/2+z	3.515
C11	H4C	-x,-y,1-z	-1+x,-1/2-y,-1/2+z	2.981
C2	O1W	-x,-y,1-z	x,-1/2-y,-1/2+z	3.031
C2	H2W	-x,-y,1-z	x,-1/2-y,-1/2+z	2.983
H2B	O1W	-x,-y,1-z	x,-1/2-y,-1/2+z	2.783
H2C	O1W	-x,-y,1-z	x,-1/2-y,-1/2+z	2.665
02	Н3С	-x,-y,1-z	-1+x,1/2-y,-1/2+z	2.793
O1W	C3	-x,-y,1-z	-1+x,1/2-y,-1/2+z	3.218
O1W	H3B	-x,-y,1-z	-1+x,1/2-y,-1/2+z	2.767
O1W	H3C	-x,-y,1-z	-1+x,1/2-y,-1/2+z	2.807
H2W	C3	-x,-y,1-z	-1+x,1/2-y,-1/2+z	2.45

H2W H3B -x,-y,1-z -1+x,1/2-y,-1/2+z 2.007 H2W H3C -x,-y,1-z -1+x,1/2-y,-1/2+z 2.142

Table S10 X-ray crystal structure data for structure 2 (Å, °)

	2
Empirical formula	$C_4H_{12}Cl_4IrKO_2S_2$
Formula weight	529.36
Temperature/K	298(2)
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	8.9902(18)
b/Å	15.199(3)
c/Å	10.757(2)
α/°	90
β/°	91.42(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1469.4(5)
Z	4
$\rho_{calc}g/cm^3$	2.393
μ/mm^{-1}	10.357
F(000)	992.0
Crystal size/mm ³	$0.143 \times 0.051 \times 0.051$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	7.022 to 49.42
Index ranges	$-10 \le h \le 10, -17 \le k \le 16, -12 \le l \le 10$
Reflections collected	8725
Independent reflections	2502 [$R_{int} = 0.1312$, $R_{sigma} = 0.1270$]
Data/restraints/parameters	2502/0/132
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0712$, $wR_2 = 0.1538$
Final R indexes [all data]	$R_1 = 0.1103$, $wR_2 = 0.1767$
Largest diff. peak/hole / e Å ⁻³	2.91/-2.28

Atom Atom Length/Å			Atom Atom Length/Å			
Ir1	S2	2.237(6)	K1	Cl3	3.515(8)	
Ir1	S 1	2.266(5)	K1	K1 ²	4.316(10)	
Ir1	Cl3	2.337(6)	Cl1	K1 ²	3.429(8)	
Ir1	Cl1	2.344(6)	Cl2	K1 ²	3.246(9)	
Ir1	Cl2	2.376(5)	S2	02	1.462(16)	
Ir1	Cl4	2.377(5)	S2	C4	1.76(3)	
K1	$O1^1$	2.703(16)	S2	C3	1.79(3)	
K1	$O2^1$	2.782(17)	Cl4	K1 ²	3.392(8)	
K1	Cl4	3.161(8)	S 1	01	1.451(14)	
K 1	$Cl2^2$	3.246(9)	S 1	C1	1.77(2)	
K 1	Cl2	3.261(8)	S 1	C2	1.78(2)	
K1	Cl4 ²	3.392(8)	01	K1 ³	2.703(16)	
K 1	$Cl1^2$	3.429(8)	02	K1 ³	2.782(17)	
Ir1	S2	2.237(6)	K1	Cl3	3.515(8)	
Ir1	S 1	2.266(5)	K1	K1 ²	4.316(10)	
Ir1	Cl3	2.337(6)	Cl1	K1 ²	3.429(8)	
Ir1	Cl1	2.344(6)	Cl2	K1 ²	3.246(9)	
Ir1	Cl2	2.376(5)	S2	02	1.462(16)	
Ir1	Cl4	2.377(5)	S2	C4	1.76(3)	
K1	$O1^1$	2.703(16)	S2	C3	1.79(3)	
K1	$O2^1$	2.782(17)	Cl4	K1 ²	3.392(8)	
K1	Cl4	3.161(8)	S 1	01	1.451(14)	
K1	$Cl2^2$	3.246(9)	S 1	C1	1.77(2)	
K1	Cl2	3.261(8)	S 1	C2	1.78(2)	

 $\label{eq:constraint} \begin{array}{c} \textbf{Table S11} & \text{Bond lengths for } \textbf{2} \, (\text{\AA}) \end{array}$

¹1/2-X,-1/2+Y,1/2-Z; ²-X,1-Y,-Z; ³1/2-X,1/2+Y,1/2-Z

Table S12 Bond angles for $2 (^{\circ})$

Atom Atom Angle/°		Atom Atom Angle/°				
S2	Ir1	S 1	92.9(2)	O2 ¹ K1	Cl3	99.8(4)
S2	Ir1	Cl3	95.6(3)	Cl4 K1	Cl3	58.80(16)
S 1	Ir1	Cl3	92.0(2)	Cl2 ² K1	C13	128.5(2)

S2	Ir1	Cl1	89.6(3)	Cl2	K1	C13	57.13(16)
S 1	Ir1	Cl1	89.8(2)	Cl4 ²	K1	C13	123.9(2)
Cl3	Ir1	Cl1	174.4(2)	Cl1 ²	K1	C13	170.6(2)
S2	Ir1	Cl2	88.4(2)	$O1^1$	K1	K1 ²	160.4(4)
S 1	Ir1	Cl2	178.51(19)	$O2^1$	K1	K1 ²	127.7(4)
Cl3	Ir1	Cl2	87.1(2)	Cl4	K1	K1 ²	51.15(16)
Cl1	Ir1	Cl2	91.0(2)	$Cl2^2$	K1	K1 ²	48.60(15)
S2	Ir1	Cl4	173.2(2)	Cl2	K1	K1 ²	48.29(15)
S 1	Ir1	Cl4	92.29(19)	Cl4 ²	K1	K1 ²	46.54(15)
Cl3	Ir1	Cl4	88.6(2)	Cl1 ²	K1	K1 ²	92.18(19)
Cl1	Ir1	Cl4	86.0(3)	Cl3	K1	K1 ²	93.35(18)
Cl2	Ir1	Cl4	86.5(2)	Ir1	Cl1	K1 ²	90.8(2)
O1 ¹	K1	$O2^1$	70.7(4)	Ir1	Cl2	K1 ²	94.9(2)
$O1^1$	K1	Cl4	142.7(4)	Ir1	Cl2	K1	93.4(2)
$O2^1$	K1	Cl4	94.7(4)	K1 ²	Cl2	K1	83.10(19)
$O1^1$	K1	$Cl2^2$	139.1(4)	02	S2	C4	107.7(14)
$O2^1$	K1	$Cl2^2$	85.7(3)	02	S2	C3	105.6(12)
Cl4	K1	$Cl2^2$	69.78(18)	C4	S2	C3	100.0(19)
$O1^1$	K1	Cl2	119.6(4)	02	S2	Ir1	117.8(7)
$O2^1$	K1	Cl2	152.1(4)	C4	S2	Ir1	111.4(9)
Cl4	K1	Cl2	60.92(17)	C3	S2	Ir1	112.7(11)
$Cl2^2$	K1	Cl2	96.90(19)	Ir1	Cl3	K1	87.83(19)
$O1^1$	K1	Cl4 ²	117.2(4)	Ir1	Cl4	K1	95.9(2)
$O2^1$	K1	Cl4 ²	134.6(4)	Ir1	Cl4	K1 ²	91.2(2)
Cl4	K1	Cl4 ²	97.69(19)	K1	Cl4	K1 ²	82.31(19)
$Cl2^2$	K1	Cl4 ²	58.72(17)	01	S 1	C1	106.6(12)
Cl2	K1	Cl4 ²	66.82(17)	01	S 1	C2	106.2(9)
O 1 ¹	K1	Cl1 ²	83.1(4)	C1	S 1	C2	102.7(14)
$O2^1$	K1	Cl1 ²	82.7(4)	01	S 1	Ir1	117.8(6)
Cl4	K1	Cl1 ²	130.3(2)	C1	S 1	Ir1	109.9(8)
$Cl2^2$	K1	$Cl1^2$	60.50(17)	C2	S 1	Ir1	112.4(9)
Cl2	K1	Cl1 ²	122.7(2)	S 1	01	K1 ³	131.2(8)
Cl4 ²	K1	$Cl1^2$	56.35(17)	S2	02	K1 ³	137.1(9)
O1 ¹	K1	Cl3	89.1(4)				

S2	Ir1	S1	92.9(2)	$O2^1$	K1	Cl3	99.8(4)
S2	Ir1	C13	95.6(3)	Cl4	K1	C13	58.80(16)
S 1	Ir1	Cl3	92.0(2)	$Cl2^2$	K1	Cl3	128.5(2)
S2	Ir1	Cl1	89.6(3)	Cl2	K1	Cl3	57.13(16)
S 1	Ir1	Cl1	89.8(2)	Cl4 ²	K1	Cl3	123.9(2)
Cl3	Ir1	Cl1	174.4(2)	$Cl1^2$	K1	C13	170.6(2)
S2	Ir1	C12	88.4(2)	$O1^1$	K1	K1 ²	160.4(4)
S 1	Ir1	Cl2	178.51(19)	O2 ¹	K1	K1 ²	127.7(4)
Cl3	Ir1	Cl2	87.1(2)	Cl4	K1	K1 ²	51.15(16)
Cl1	Ir1	Cl2	91.0(2)	$Cl2^2$	K1	K1 ²	48.60(15)
S2	Ir1	Cl4	173.2(2)	Cl2	K1	K1 ²	48.29(15)
S 1	Ir1	Cl4	92.29(19)	Cl4 ²	K1	K1 ²	46.54(15)
Cl3	Ir1	Cl4	88.6(2)	Cl1 ²	K1	K1 ²	92.18(19)
Cl1	Ir1	Cl4	86.0(3)	Cl3	K1	K1 ²	93.35(18)
Cl2	Ir1	Cl4	86.5(2)	Ir1	Cl1	K1 ²	90.8(2)
$O1^1$	K1	$O2^1$	70.7(4)	Ir1	Cl2	K1 ²	94.9(2)
$O1^1$	K1	Cl4	142.7(4)	Ir1	Cl2	K1	93.4(2)
$O2^1$	K1	Cl4	94.7(4)	K1 ²	Cl2	K1	83.10(19)
$O1^1$	K1	$Cl2^2$	139.1(4)	02	S2	C4	107.7(14)
$O2^1$	K1	$Cl2^2$	85.7(3)	02	S2	C3	105.6(12)
Cl4	K1	$Cl2^2$	69.78(18)	C4	S2	C3	100.0(19)
$O1^1$	K1	Cl2	119.6(4)	02	S2	Ir1	117.8(7)
$O2^1$	K1	Cl2	152.1(4)	C4	S2	Ir1	111.4(9)
Cl4	K1	Cl2	60.92(17)	C3	S2	Ir1	112.7(11)
$Cl2^2$	K1	Cl2	96.90(19)	Ir1	Cl3	K1	87.83(19)
$O1^1$	K1	Cl4 ²	117.2(4)	Ir1	Cl4	K1	95.9(2)
$O2^1$	K1	Cl4 ²	134.6(4)	Ir1	Cl4	K1 ²	91.2(2)
Cl4	K1	Cl4 ²	97.69(19)	K1	Cl4	K1 ²	82.31(19)
$Cl2^2$	K1	Cl4 ²	58.72(17)	01	S 1	C1	106.6(12)
Cl2	K1	Cl4 ²	66.82(17)	01	S 1	C2	106.2(9)
O 1 ¹	K1	Cl1 ²	83.1(4)	C1	S 1	C2	102.7(14)
$O2^1$	K1	Cl1 ²	82.7(4)	01	S 1	Ir1	117.8(6)
Cl4	K1	Cl1 ²	130.3(2)	C1	S 1	Ir1	109.9(8)
$Cl2^2$	K1	Cl1 ²	60.50(17)	C2	S 1	Ir1	112.4(9)

Cl2 K1	Cl1 ²	122.7(2)	S 1	01	K1 ³	131.2(8)
Cl4 ² K1	Cl1 ²	56.35(17)	S2	02	K1 ³	137.1(9)

¹1/2-X,-1/2+Y,1/2-Z; ²-X,1-Y,-Z; ³1/2-X,1/2+Y,1/2-Z

Table S13 Torsion angles for 2 (°)

A B C D	Angle/°	A B C D	Angle/°
C1 S1 O1 K1 ¹	-162.9(13)	C4 S2 O2 K1 ¹	-175.1(17)
C2 S1 O1 K1 ¹	-53.9(14)	C3 S2 O2 K1 ¹	-69.0(19)
Ir1 S1 O1 K1 ¹	73.1(11)	$Ir1S2O2K1^{1}$	58.0(17)

¹1/2-X,1/2+Y,1/2-Z