

Volume 73 (2017)

Supporting information for article:

Insights on spin delocalization and spin polarization mechanisms in crystals of azido copper(II) dinuclear complexes through the electron spin density Source Function

Carlo Gatti, Giovanni Macetti and Leonardo Lo Presti

Insights on spin delocalization and spin polarization mechanisms in crystals of azido Cu (II) dinuclear complexes through the Electron Spin Density Source Function

Authors

Carlo Gatti^{a*}, Giovanni Macetti^b and Leonardo Lo Presti^b

^aCNR-ISTM Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, Milano, I-20133, Italy ^bDepartment of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano, I-20133, Italy

Correspondence email: c.gatti@istm.cnr.it

Funding information Danmarks Grundforskningsfond (award No. DNRF93).

S1. Source Function reconstructed partial densities (End-On complex)

Source Function (SF) reconstructed partial spin densities, $S_s(\Omega_{subset})(\mathbf{r})$ and their magnetic, $S_{s,mag}(\Omega_{subset})(\mathbf{r})$, and relaxation, $S_{s,relax}(\Omega_{subset})(\mathbf{r})$, components are reported in Figures S1-S2 for the End-On (EO) ferromagnetic (FM) complex at both the CASSCF(6,6) and UB3LYP levels.

Figure S1 End-On FM complex: CASSCF(6,6) and UB3LYP contour plots of the partially SF reconstructed spin densities, $S_s(\Omega_{subset})(\mathbf{r})$, and of its magnetic, $S_{s,mag}(\Omega_{subset})(\mathbf{r})$, and relaxation, $S_{s,relax}(\Omega_{subset})(\mathbf{r})$, components in the least squares plane of the four N ligand atoms around each Cu. In the maps, {Cu, N, C} denotes the subset of system's atoms including the two Cu atoms, all N atoms and the C atoms of the pyridine rings, while {Cu, N} denotes the subset obtained by excluding the C atoms from the former. Isocontours: red positive and, dotted blue, negative contour values; contour maps are drawn at interval of $\pm (2,4,8) \cdot 10^n$, $-4 \le n \le 0$ atomic units (au)).

Figure S2 End-On FM complex: CASSCF(6,6) and UB3LYP contour plots of the partially SF reconstructed spin densities, $S_s(\Omega_{subset})(\mathbf{r})$, and of its magnetic, $S_{s,mag}(\Omega_{subset})(\mathbf{r})$, and relaxation, $S_{s,relax}(\Omega_{subset})(\mathbf{r})$, components in the least squares plane of the four N ligand atoms around each Cu. In the maps, $\{Cu\}$, $\{N\}$ and $\{N_{azi}\}$ denote the subsets of system's atoms including the two Cu atoms, all N atoms and only the N atoms of the azido groups, respectively. Same colour codes and isovalue contours as in Figure S1.

S2. Source Function percentage contributions (End-On Complex)

SF percentage contributions to the electron spin density s, along with their magnetic and relaxation components, are reported at selected reference points, *rps*, for the End-On (EO) (Figure S3) complex at both the UB3LYP and CASSCF(6,6) levels.

Figure S3 End-On FM complex: UB3LYP and CASSCF(6,6) SF percentage contributions to the electron spin density s (magnetic and relaxation components in parentheses) at selected reference points, rps (Table 2 of the manuscript). Rps: $CD_{Cu'}(Cu'-N4')$ denotes the Charge Depletion in the Valence Shell Charge Depletion (VSCD) of the Cu atom and lying along Cu'-N4', while $CC_{N4'}(Cu'-N4')$ denotes the Charge Concentration in the Valence Shell Charge Concentration (VSCC) of the N4' atom and lying almost along Cu'-N4'. The s values at rps are in au. Green (red) atomic balls denote an α (β) effect on the density at the reference point. SF percentage contributions are positive or negative whether they concur or oppose to reconstruct the corresponding density value at the rp.

S3. Comparison of spin resolved components vs spin densities (End-End Complex)

Figure S4 End-End (EE) FM complex: CASSCF(6,6) and UB3LYP (first and second row respectively) contour plots of spin resolved, ρ_{α} , $-\rho_{\beta}$ electron densities and of electron spin density s= ρ_{α} - ρ_{β} , in the least square planes of the Cu-O and of the three shorter Cu-N bonds. Same colour codes and isovalue contours as in Figure 1 main text. The calculated and the experimental ρ_{α} and $-\rho_{\beta}$ obtained by Deutsch et al. are showed in the third and fourth rows as a comparison. Contours are drawn at values $0.01 \cdot 2^n$ e Å-3, n=0-12 (adapted from Deutsch et al., 2014, reproduced with permission of the International Union of Crystallography).