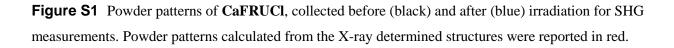


Volume 73 (2017)

Supporting information for article:

Synthesis, structure and NLO properties of a new isostructural β -d-fructopyranose alkaline halide MOFs: a theoretical and experimental study


Domenica Marabello, Paola Antoniotti, Paola Benzi, Carlo Canepa, Leonardo Mortati and Maria Paola Sassi

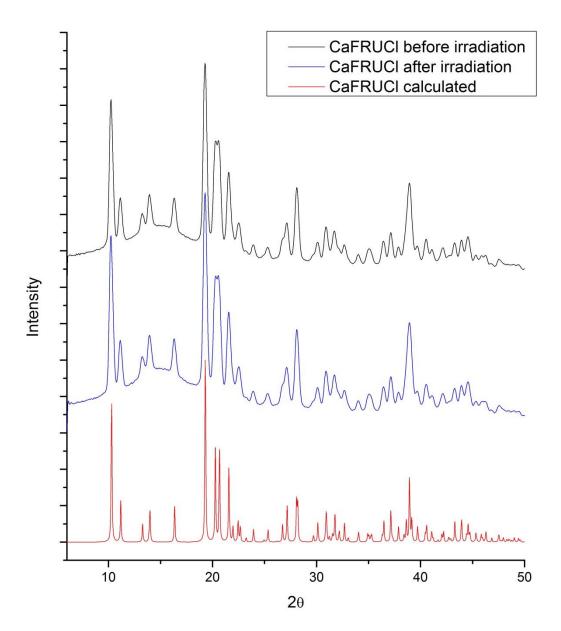
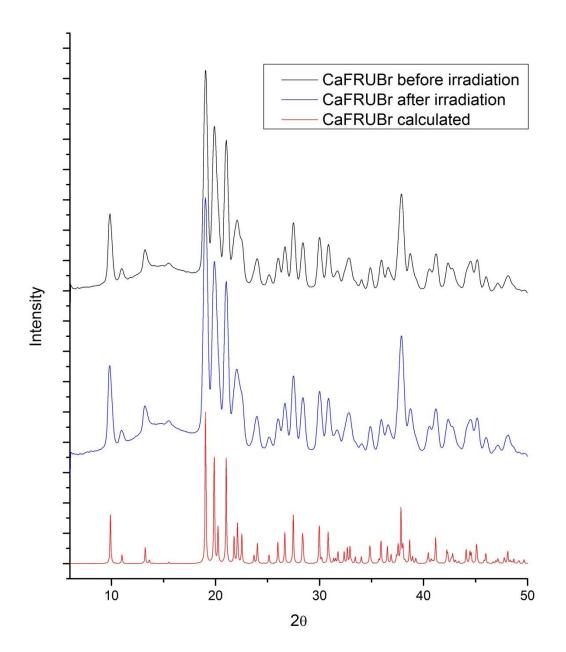
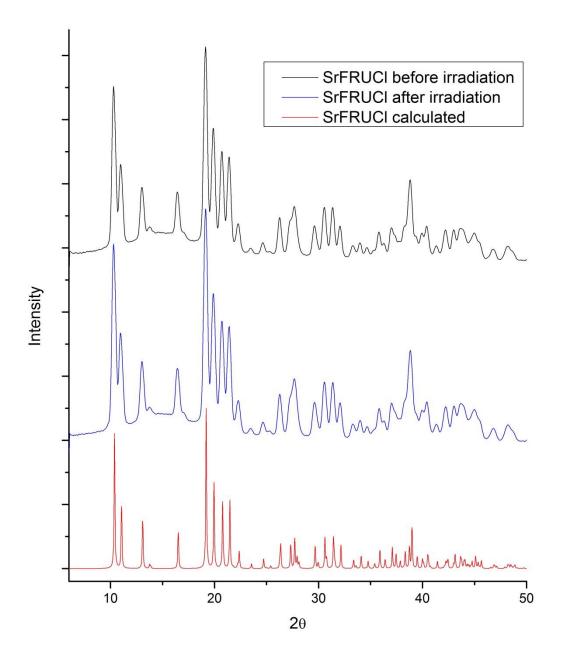
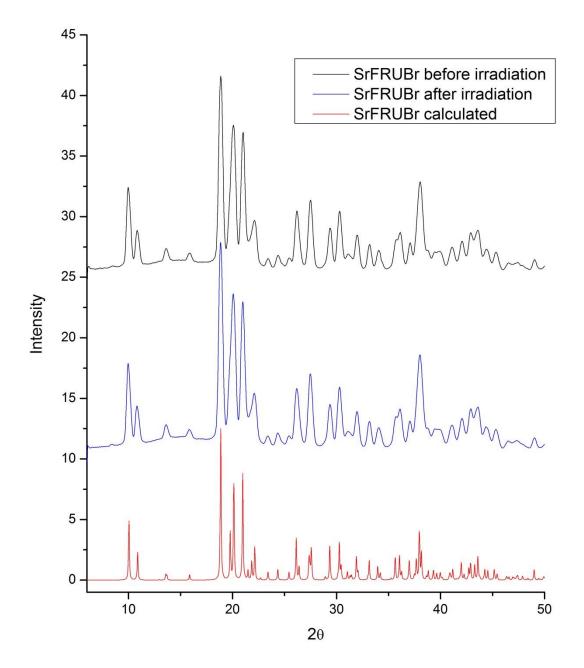

Supporting information

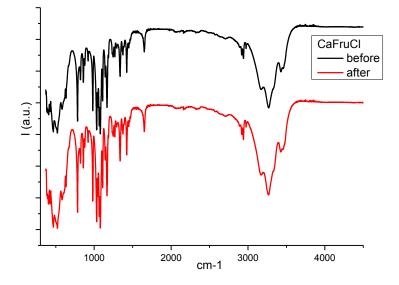
Table S1Hydrogen bond distances for compounds CaFRUCI, CaFRUBr, SrFRUCI and SrFRUBr.X=Cl, Br.

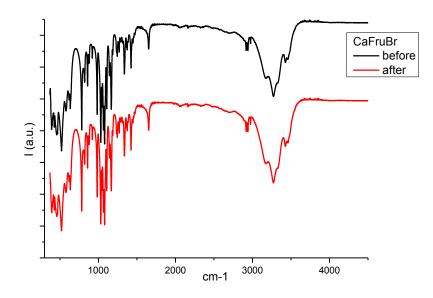

D-H···A (Å)	CaFRUCI	CaFRUBr	SrFRUCI	SrFRUBr
$D \cdots A$ (Å)				
D-H···A (°)				
$H1WB{\cdots}X^i$	2.14	2.40	2.27	2.42
$O1W{\cdots}X^i$	3.0967(3)	3.241(3)	3.114(3)	3.251(4)
$O1W\text{-}H1WB\cdots X^i$	175	179	174	163
Н2…Х	2.30	2.45	2.26	2.46
02…X	3.1336(3)	3.293(4)	3.120(3)	3.277(5)
О2-Н2⋯Х	171	173	154	163
H1WA····O5 ⁱⁱ	1.97	2.03	2.00	2.09
O1W···O5 ⁱⁱ	2.8628(2)	2.880(6)	2.836(5)	2.828(7)
O1W-	160	178	167	156
$H1WA\cdots O5^{ii}$				
H2W···X	2.14	2.38	2.24	2.35
O2W···X	3.0650(3)	3.193(3)	3.052(3)	3.203(3)
O2W-H2W···X	168	163	154	180
H3····O4 ⁱⁱⁱ	1.97	2.00	2.06	2.01
O3····O4 ⁱⁱⁱ	2.7667(2)	2.780(5)	2.756(5)	2.777(7)
O3-H3····O4 ⁱⁱⁱ	161	152	131	152
$H4\cdots X^{iv}$	2.27	2.41	2.70	2.83
$O4\cdots X^{iv}$	3.0774(3)	3.225(3)	3.101(3)	3.243(4)
$O4\text{-}H4\cdots X^{\text{iii}}$	175	170	112	113
H5···O2W ^v	1.88	1.88	2.29	1.88
$O5 \cdots O2W^{v}$	2.6934(2)	2.695(4)	2.714(5)	2.692(5)
$O5-H5\cdots O2W^{v}$	169	172	111	171
Нб⋯Х	2.70	2.89	2.59	2.76
06…X	3.4686(3)	3.673(4)	3.392(4)	3.551(5)
Об-Н6⋯Х	162	161	158	162
Н6…О1	2.29	2.26	2.30	2.27
06…0	2.6942(2)	2.691(5)	2.690(4)	2.697(6)
O6-H6···O1	112	113	108	113
H6B····O4 ^{vi}	2.48	2.48	2.57	2.59
C6···O4 ^{vi}	3.3344(3)	3.314(6)	3.428(7)	3.448(8)
C6-H6B····O4 ^{vi}	148	145	147	147

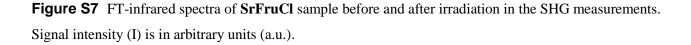
Symmetry operations: i) x,-1+y,z; ii) -0.5+x,-0.5+y,0.5+z; iii) 0.5-x,-0.5+y,0.5-z; iv) -x,y,-z; v) 0.5+x, 0.5+y, 0.5+z; vi) 0.5-x,0.5+y,0.5-z

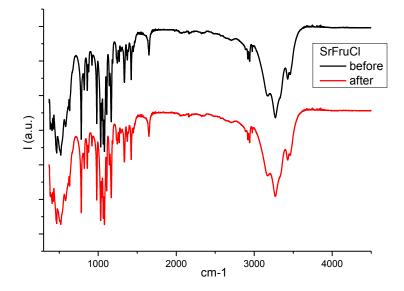


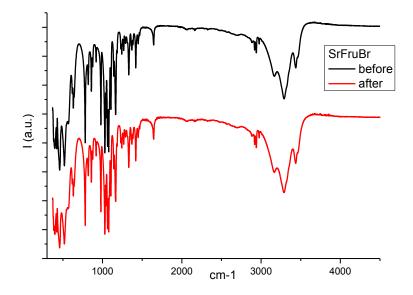

Figure S2 Powder patterns of **CaFRUBr** collected before (black) and after (blue) irradiation for SHG measurements. Powder patterns calculated from the X-ray determined structures were reported in red.

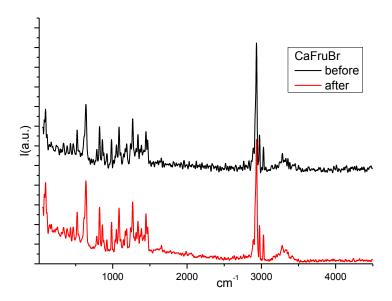

Figure S3 Powder patterns of **SrFRUCI**, collected before (black) and after (blue) irradiation for SHG measurements. Powder patterns calculated from the X-ray determined structures were reported in red.

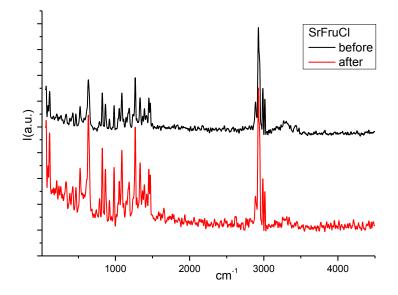

Figure S4 Powder patterns of **SrFRUBr** collected before (black) and after (blue) irradiation for SHG measurements. Powder patterns calculated from the X-ray determined structures were reported in red.




Figure S5 FT-infrared spectra of **CaFruCl** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).


Figure S6 FT-infrared spectra of **CaFruBr** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).


Figure S8 FT-infrared spectra of **SrFruBr** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).


Figure S9 FT-Raman spectra of **CaFruCl** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).

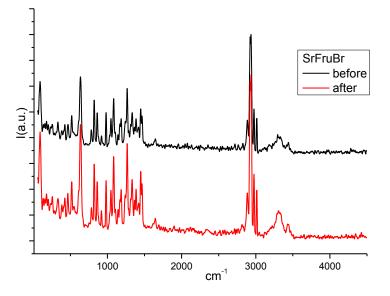

Figure S10FT-Raman spectra of **CaFruBr** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.)

Figure S11FT-Raman spectra of **SrFruCl** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).

Figure S12FT-Raman spectra of **SrFruBr** sample before and after irradiation in the SHG measurements. Signal intensity (I) is in arbitrary units (a.u.).

