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Abstract 

In crystals, polymeric chain molecules often adopt helical structures. Ne-

glecting small distortions possibly caused by an anisotropic environment 

within the crystal, the symmetry of the single helix can by described by a 

rod group, which has translational symmetry in one dimension. The rod 

groups obtain HermannMauguin symbols similar to space groups, begin-

ning with a script style p followed by a screw axis symbol; the order of the 

screw axis can adopt any value. In a crystal, the rod-site symmetry, the so-

called penetration rod group, must be a common crystallographic rod sub-

group of the molecular rod group and the space group. Instructions are giv-

en for the derivation of the rod subgroups in question for a helical rod 

group of any order. In polymer chemistry, a helix is designated by a (chem-

ical) symbol like 7/2, which means 7 repeating units in two coil turns of 

covalent bonds per translational period. The corresponding Hermann-

Mauguin screw axis symbol is easily derived with a simple formula from 

this chemical symbol; for a 7/2 helix it is 73 or 74, depending on chirality. 

However, it is not possible to deduce the chemical symbol from the Her-

mann-Mauguin symbol, because it depends on where the covalent bonds 

are assumed to exist. Covalent bonds are irrelevant for symmetry consider-

ations; a symmetry symbol does not depend on them. A chemically right-

handed helix can have a left-handed screw axis. The derivation of the 

Hermann-Mauguin symbol of a multiple helix is not that easy, as it de-

pends on the mutual orientation of the interlocked helices; conversion for-

mulas for simpler cases are presented. Instead of covalent bonds, other 

kinds of linking can serve to define the chemical helix, for example, edge- 

or face-sharing coordination polyhedra.  

 
 

https://doi.org/10.1107/S20525206170001901
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1. Introduction1 

When polymeric chain molecules crystallize, 

they adopt a symmetrical conformation. Within 

the crystal, the molecule has a site symmetry 

that must be compatible with the crystal’s space 

group. However, the single (isolated) molecule 

often has a higher symmetry to a good approxi-

mation. For non-polymeric molecules we de-

scribe this ideal symmetry using the Schoenflies 

or Hermann-Mauguin symbol of a point group. 

For example, we say a benzene molecule to have 

the (point) symmetry D6h or 6/mmm, even if, 

strictly speaking, the molecule has only the 

symmetry Ci ( 1 ) required by its site symmetry 

in the space group Pbca in crystalline benzene; 

that is and must be a subgroup of D6h (provided 

there is no misorder). 

When we describe the symmetry of a single 

molecule, we act as if it would be located in an 

isotropic surrounding, although this is never 

really true in the crystalline state. This applies 

even if it is a molecular ion, which is actually 

surrounded by nearby counter ions. From the 

chemical point of view, this inaccuracy may be 

                                                           
1 The original paper is written in German because I 

can express my ideas in a most accurate way only in 

my mother tongue. This is an anticipation of how 

scientific papers are likely to be published in the 

coming future. We already have computer programs 

that can translate a text. For the time being, the quali-

ty of the translations is still deficient, but the quality 

is improving. Up to the 1970s computer scientists 

were convinced that it would be impossible to create 

a computer program capable of playing chess. In the 

same way, it was ‘clearly evident’ that it is technical-

ly unfeasible to produce a mobile telephone, the loca-

tion of which can be spotted anywhere on any conti-

nent within a few seconds. 

It is to be expected that computer programs will be-

come available that produce nearly flawless transla-

tions. Just as a human translator cannot translate a 

crystallographic text unless he or she has knowledge 

in crystallography, the coming translation programs 

will be special, self-learning programs dedicated to 

some specific field(s) of science. Once it requires 

only a click to select this field and in what language 

we want to read or hear a text, hardly any scientist-to-

be will ever again want to take the huge effort to 

learn a foreign language. For many scientists, an 

aversion against learning languages has strongly 

influenced the choice of their profession. Scientists 

will feel unburdened from having to struggle with the 

complicated and often illogical semantics, syntax, 

grammar and spelling of an alleged lingua franca of 

science that is not their native language. 

 

neglected almost always. From experience we 

know that the shape of a molecule in a crystal, as 

a rule, deviates only marginally from that of the 

free molecule. However, significant deviations 

are possible for conformation angles and when 

molecules associate or form ionic structures 

during the crystallization process (for example, 

Al2Cl6(g) → (AlCl3)∞(s) layers or N2O5(g) → 

NO2
+
NO3

–
(s) ). 

The following considerations deal with poly-

meric molecules having translational symmetry 

in only one dimension, based on structures de-

termined by crystallographic methods. We do 

not deal with biomolecules, nano tubes, inclu-

sion compounds, supramolecular structures, 

liquid crystals, framework structures having 

helical components (e.g. quartz), helical magnet-

ic structures or helical spin density waves. 

 
2. Terminology 

Because in the literature some terms are used 

with changing or unclear meanings, in the fol-

lowing we define a few terms such as we mean 

them here. 

Polymer main chain. Strand of atoms, held 

together by a continuous sequence of covalent 

bonds. 

Symmetry. Property of a body, whose build-

ing blocks are mapped exactly onto one another 

by a mathematical prescription. In crystallog-

raphy, this prescription is strictly complied with. 

As usual in chemistry, we are content with a 

good approximation. However, we do not do this 

as liberally as it is common when describing the 

symmetry of biomolecules; for example, when 

dealing with protein molecules, often only the 

symmetry of the main strand of the peptide 

bonds is considered, irrespective of the differing 

side groups.  

Asymmetric unit. Contiguous smallest build-

ing block that is symmetrically repeated.  

Repeating unit (constitutional repeating 

unit). Smallest repeating chemical building 

block.  

According to the equivalence postulate 

(equivalence principle) of polymer chemistry, 

the repeating unit and the asymmetric unit gen-

erally are considered to be equivalent, even if 

there are differences in the conformations of side 

chains (De Rosa & Auriemma, 2013; Natta & 

Corradini, 1959). However, there do exist cases 
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where the repeating unit and the asymmetric unit 

definitely cannot be considered to be equivalent. 

We do not use the expressions ‘monomer’ or 

‘monomeric unit’. The repeating unit indeed is 

often identical with a monomeric unit; however, 

in a molecule like polyethylene the repeating 

unit is CH2 while the chemical monomer is 

C2H4. In a polyamide consisting of a dicarbonic 

acid and a diamine there are two ‘monomers’, 

and the repeating unit is –NH–CO–(CH2)x–CO–

NH–(CH2)y–. The repeating unit can be a single 

atom. 

Translation period (translational repeating 

distance, translational identity period). Length 

along a straight line, after which the pattern of 

atoms is repeated congruently without a mutual 

rotation.  

Spiral, coil. Continuous, spirally wound line. 

We only use this term for a cylindrical spiral that 

winds at a constant distance around a straight 

spiral axis. 

Helix, helical chain. Polymeric molecule 

whose repeating units are located at symme-

trically equivalent positions on virtual spirals, at 

least to a good approximation. For every atom of 

the asymmetric unit there is one spiral; all spi-

rals have the same translation period. 

Multiple helix. Several symmetry-equivalent 

helices that are interlocked and wind around the 

same spiral axis. We do not use this term for a 

helix whose coil for its part is wound up to a coil 

with a larger diameter.  

Right hand rotation. On rotation about the z 

axis of a right-handed xyz coordinate system we 

move on the shortest path (rotation angle <180°) 

from the x to the y axis. A helix or screw axis is 

right handed if, upon a right hand rotation, we 

advance in the positive direction of the z axis. 

Frequently, right and left are perceived ‘the 

wrong way around’ as compared to a steering 

wheel. We rotate the steering wheel to the left to 

make a left turn. If we draw the x and y axis of a 

coordinate system on a sheet of paper as accus-

tomed in mathematics, such that the z axis points 

at us, the direction defined as a right hand rota-

tion corresponds to what we perceive as a left 

hand rotation of the steering wheel. To be cor-

rect, the z axis must point in the direction of 

motion. 

 
3. Rod groups 

The symmetry of a chain-like molecule which 

has translational symmetry in only one preferen-

tial direction is designated by a rod group. There 

exist no Schoenflies symbols for rod groups. 

The Hermann-Mauguin symbols correspond to 

those of the space groups, but they begin with a 

script style p. Rod groups with rotation axes and 

screw axes of the orders 1, 2, 3, 4 and 6 (crystal-

lographic rod groups) have been compiled in 

International Tables for Crystallography (2010), 

Volume E; they also can be looked up at the 

Bilbao Crystallographic Server, 

www.cryst.ehu.es. In a rod group, the order of a 

symmetry axis in the preferential direction is not 

restricted to the mentioned numbers. Generally, 

the preferential direction is chosen to be c; if a 

or b are chosen, this can be designated by pa or 

pb. A table of the Hermann-Mauguin symbols of 

non-crystallographic rod groups of any order can 

be found in the 6th edition of International Ta-

bles for Crystallography (2016), Volume A, 

Table 3.2.4.1. 

For helices, only rod groups having screw ax-

es along the spiral axis are to be considered: p21, 

p31, p32, p41 etc., or, generally, pNq with q < N 

and N > 1 being an integer. Additionally, two-

fold rotation axes can be present perpendicular 

to the spiral axis; the corresponding symbols are 

p2221,  p312,  p322,  p4122 etc., in general pNq2 

(N odd ≥3) or pNq22 (N even ≥4). If N is odd, 

the symbol usually obtains an additional 1, for 

example p3112 or p3121, to indicate the orienta-

tion of the helix relative to the crystal lattice. 

Instead of p21, usually the complete symbol 

p1121 is stated (21 axis in the direction of c = 

translational direction). p112 has a rotation axis 

in the translational direction c; p211 and p121 

have rotation axes perpendicular to c, but none 

in the direction of c. Many polymers with sym-

metries of this kind are known, for example, p83 

for polyisobutene or p10322 for polymeric sulfur. 

 

  

http://www.cryst.ehu.es/
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Table 1 

Maximal crystallographic rod subgroups 

of rod groups pNq, depending on the 

divisors of the number N. Take that 

modulo number with the smallest value 

≥ 0; if the result is zero, a rotation axis is 

meant. 

divisors of N Maximal subgroups 

6, 4 p6q mod 6,  p4q mod 4 

6 p6q mod 6 

4, 3, ≠ 6 p4q mod 4,  p3q mod 3 

4 p4q mod 4 

3, 2, ≠ 6 p3q mod 3,  p2q mod 2 

3, ≠ 6 p3q mod 3 

2, ≠ 4, ≠ 6 p2q mod 2 

≠ 2, ≠ 3  p1 

 

Table 2 

Examples for possible crystallographic rod subgroups of a few 

rod groups. In addition to the listed further subgroups there are 

infinite many isomorphic subgroups (with increased translation 

period). 

rod   

group maximal subgroups further subgroups 

p187 p67 mod 6 → p61 p31; p1121; p1 

p249 p69 mod 6 → p63;  p49 mod 4 → p41 p3; p 1121; p1 

p167 p47 mod 4 → p43 p1121; p1 

p124 p64 mod 6 → p64;  p44 mod 4 → p4 p31; p112; p1 

p952 p35 mod 32 → p322 p32; p211; p1 

p742 p211 p1 

p10322 p2223 mod 2 → p2221 p1121; p211; p121; p1 

p4222 p42 mod 4 → p42;  p222 p112; p211; p121; p1 

 

 

 

 

The rod-site symmetry of a polymeric mole-

cule in a crystal has to be a crystallographic 

subgroup of the rod group of the free molecule. 

The possible subgroups are easy to determine. If 

the rod group of the molecule is pNq and N has 

the divisors 6, 4, 3 or 2, then they are the maxi-

mal crystallographic subgroups that are obtained 

from Table 1, and, in addition, their subgroups. 

The maximal subgroups of the rod groups pNq2 

(N odd) and pNq22 (N even) follow from the 

maximal subgroups listed in Table 1 by append-

ing the two(s) or, in the case of p2q and p1, by 

inserting the two(s) after the p. The additionally 

possible rod subgroups of the rod groups deter-

mined this way can be looked up in Internation-

al Tables for Crystallography (2010), Volume 

E. A few examples are given in Table 2.  

In the crystal, the polymeric molecule adopts 

a rod-site symmetry, which is a rod subgroup of 

the space group. The rod-site symmetries are 

called penetration rod groups in International 

Tables for Crystallography (2010), Volume E, 

where they are a subject of Chapter 5, Scanning 

of space groups. A penetration rod group con-

sists of that subset of the symmetry operations of 

the space group which leave invariant a travers-

ing straight line, which in our case is the spiral 

axis. The penetration rod group depends on the 

direction and the location of the straight line 

relative to the space group; the location is speci-

fied by the coordinates of a point on the straight 

line. Every point in a space group has a site 

symmetry and it is one out of infinite many 

symmetry equivalent points. Accordingly, the 

traversing straight line is one out of infinite 

many symmetry equivalent lines, every one hav-

ing the same symmetry of the penetration rod 

group. 

Penetration rod groups have not been listed in 

International Tables for Crystallography nor, to 

my knowledge, anywhere else. Which rod sub-

groups are to be considered as penetration rod 

groups, however, can be disclosed by comparing 

the images of the symmetry elements of Vol-

umes E and A.  

 
4. Chemical designation for helical polymeric 
molecules  

Polymeric chain molecules often adopt the shape 

of helices in the crystalline state. To be more 

exact: We imagine a spiral that runs through 

symmetry-equivalent atoms of the polymer mol-

ecule. The spiral is a continuous, coiled line 

having the rod group p∞12 or p∞–12, which is not 

really present in the molecule. Of course, chem-

ists place the spiral along the polymer main 

chain. 
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In polymer chemistry, a helical polymer mol-

ecule is designated as a N/r helix. N is the num-

ber of repeating units per translation period and 

r is the number of the corresponding coil turns; 

N and r are positive integer numbers without a 

common divisor. In addition, the letters P (for 

plus; formerly R) or M (minus, formerly S) indi-

cate if the spiral is right or left handed. For ex-

ample, a 7/2-P helix has seven repeating units in 

two right-handed coil turns per translation peri-

od.  

The number of repeating units per coil turn 

can be an irrational number. Every irrational 

number can be approximated by a fractional 

number N/r, the agreement being the better, the 

larger the numbers N and r. Experimentally de-

termined numbers N and r are the less reliable, 

the larger they are, because they rely on decreas-

ing reflection intensities of the X-ray experi-

ment. In this case it is more reasonable to state 

the number N/r as a decimal number, such as it 

is common in protein chemistry. Small distor-

tions of the molecules can render possible small 

numbers N and r (see Section 8). 

Sometimes the symbols obtain additions, for 

example, s(7/2) in order to point out the helical 

structure or s(7/2)2 to indicate the presence of 

twofold rotation axes perpendicular to the spiral 

axis (De Rosa & Auriemma, 2013). The distinc-

tion of chiral pairs of P and M helices in the 

manner 7/2 for P and 7/5 for M (5 = 7 – 2), to be 

found in the literature, is rather unfortunate, 

because a 7/2 helix is something different than a 

7/5 helix (one has two, the other one has five 

coil turns per translation period). The cause of 

the misunderstanding is that a N/r P-helix and a 

N/(N – r) P-helix have mirror-inverted screw 

axes; for example, the screw axis of a 7/2-P 

helix is 74, and that of a 7/5-P helix is 73. An 

unambiguous distinction would consist in using 

a negative r value for the M helix, for example 

7/2 and 7/–2. 

Generally, protein and nucleic acid molecules 

have no symmetry in the mathematical and crys-

tallographic sense, since the amino acids or the 

nucleotides, as a rule, have no periodic sequence 

(collagen molecules are an exception). In a pro-

tein α-helix the main polypeptide chain 

(-CONH2CH–)x is reasonably rigid by means of 

hydrogen bridge bonds, with 3.6 peptide groups 

per coil turn (3.6 = 18/5). In nucleic acids the 

two strands of the double-strand are complemen-

tary to each other, but they are not symmetry 

equivalent, with 10 to 10.5 ribose phosphate 

units per coil turn. No N/r symbols can be as-

signed to nano tubes, as there is no polymer 

main chain. 

 

5. Experimental restrictions 

Organic polymers often do not crystallize well 

(in the crystallographic sense); the crystals con-

tain numerous faults. As a consequence, the 

X-ray reflections are broad, blurred and partly 

superposed, and the structure determination 

becomes inaccurate and less reliable. The value 

of the lattice parameter c (direction of helix axis) 

sometimes depends on the observability of a few 

weak reflections. For example, it is not sure if 

polyoxymethylene (CH2O)∞ should rather be 

described as a 9/5 or a 29/16 helix. The corre-

sponding lattice parameter is c ≈ 1727.4 pm = 

9  191.9 pm and c ≈ 5571.0 pm = 29  192.1 

pm, respectively, and the numerical values of 

9/5 = 1.80 and 29/16 = 1.8125 repeating units 

per coil turn differ only marginally. In this case, 

a few very weak reflections seem to favour a 

29/16 helix (Tashiro  et al., 2007).  

If the helices have no bulky side groups, their 

surface is more or less ‘smooth’. In that case the 

packing of the helices in the crystal often corre-

sponds to a pseudohexagonal rod packing. A 

common consequence is misorder, especially 

random occurrence of P and M helices and heli-

ces mutually shifted in parallel. In such cases, no 

space groups can be stated. In this regard, inor-

ganic compounds tend to be more ‘orderly’. 

 

6. Polymer nomenclature and Hermann-
Mauguin symbols 

Fig. 1 shows a section of the crystal structure of 

tin iodide phosphide SnIP (Pfister et al., 2016). 

The structure contains helical polyphosphide 

ions (P
–
)∞ . A second helix (SnI

+
)∞, consisting of 

alternating tin and iodine atoms, winds around 

every one of these (P
–
)∞ ions. The (P

–
)∞ as well 

as the (SnI
+
)∞ helix is a 7/2 helix. The number of 

P and M helices in the crystal is equal; the crys-

tal is racemic. Fig. 1 shows a P helix. 

The translation vector c has been included in 

Fig. 1; it marks the direction and the unit length 

of the z axis. The numbers next to the atoms 

refer to the z coordinates (heights) of the atoms.  
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Figure 1 

7/2-P helices in SnIP. Top: side view. Bottom: top 

view against the screw axis. One SnI strand sur-

rounds one polyphoshide strand. Numerical values 

are the heights of the atoms (z coordinates), given as 

fractions of one translation length. Mean bond 

lengths: P–P 220 pm; Sn–P 269 pm; Sn–I 316 pm. 

 

 

 

The (P
–
)∞ strand contains seven phosphorus 

atoms in two coil turns; these are two turns 

amounting to 2  360° = 720°. From one P atom 

to the next the turning angle is 720°/7 ≈ 102.86°. 

Starting from an atom at the height z0 = 0 and 

following the strand of the covalent bonds, we 

reach the next atom at a height of z0 + 1∕7 and 

after seven atoms we approach the height of 

z0 + 7∕7 = 1, which corresponds to one complete 

translation period. The same is valid for the at-

oms in the (SnI
+
)∞ helix. 

Having N = 7 repeating units per translation 

period, the symmetry axis has an order of seven; 

after each turn of 360°/7 there is a symmetry-

equivalent group of atoms. To derive the Her-

mann-Mauguin symbol of a screw axis, we start 

from an atom at the height z0 = 0 and perform a 

right turn by 360°/7 (turning arrow in the lower 

part of Fig. 1); we determine what is the height z 

of the symmetry equivalent atom in this posi-

tion. As can be seen in the figure, this is at z = 4∕7 

in the case of the P helix. The Hermann-

Mauguin symbol of the screw axis then is 74 and 

the rod group is p742 for the single (P
–
)∞ helix, 

for the (SnI
+
)∞ helix and for the ensemble of 

both helices. The 2 in the symbol of the rod 

group marks the presence of twofold rotation 

axes perpendicular to the spiral axis. 

When determining the Hermann-Mauguin 

symbol Nq in the described manner, the follow-

ing rules apply: Starting from an atom at the 

height z0 = 0, we look for the z coordinate (0 < z 

< 1) of the symmetry-equivalent atom at the 

position turned by +360°/N. This z coordinate is 

noted as a fractional number q/N, and its numer-

ator is the subscript number q of the Hermann-

Mauguin symbol. The fraction must not be re-

duced. If N and q have a common divisor, the 

screw axis contains a rotation axis with the order 

of this common divisor. A 62 axis contains a 

twofold rotation axis, a 156 axis contains a three-

fold rotation axis.  

In symmetry, a Nq screw axis is considered to 

be right handed if q < ½N and left handed if q > 

½N. A 74 screw axis is identical with a 7–3 screw 

axis (the atom at z = 4∕7 is translationally equiva-

lent to an atom at z = –3∕7). By convention, only 

positive numbers are used in Hermann-Mauguin 

symbols, with q < N and N, q = positive integers. 

Nq and NN – q are the symbols for a pair of mirror-

inverted (enantiomorphic) screw axes.  

If we refer to a left-handed coordinate system 

when deriving the Hermann-Mauguin-Symbol, 

or, equivalently, if we perform a left turn, we 

arrive at an atom at z = 3∕7 (Fig. 1). That is the 

nearest symmetry-equivalent atom after a rota-

tion by ±360°/7. 

The right handed 7/2 P-helix has the sym-

metry of a left handed screw axis 74. The very 
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same helix is simultaneously right and left hand-

ed? Yes, that is so, and it has to do with the 

point of view. If our helix were a continuous 

spiral, this would not be possible. Our helices, 

however, consist of atoms or discrete points, and 

the spirals exist only in our imagination. We 

have inserted them in two different ways:  

(1) One the one hand, we followed the strand 

of covalent bonds and derived the symbol 

7/2-P. That is the chemical point of view. We 

continue along the yellow spiral in Fig. 2, 

which we call the chemical spiral. 

(2) On the other hand, we looked for the z co-

ordinate of the nearest symmetry-equivalent 

atom after a rotation by 360/7°. It is situated 

after a left turn at z = 3∕7, and the screw axis 

symbol is 74. That is the point of view of 

symmetry. We continue along the dark green 

spiral in Fig. 2, which we call the symmetry 

spiral. 

 

 

 

 

                       
 
Figure 2 

One translation period of the polyphosphide strand in 

SnIP with inserted spirals (same view as in Fig. 1, 

top). Yellow: right-handed spiral which follows the 

covalent bonds of the 7/2-P helix. Green: three inter-

locked symmetry spirals which follow the course of 

the left-handed 74 screw axis. 

 

If c is the translation period, the dark green 

spiral in Fig. 2 has a translation period of 3c. 

Since there is a symmetry equivalent position 

after every translation by c, we have a total of 

three symmetry equivalent green spirals in Fig. 

2. The number of interlocked symmetry spirals 

is always equal to the subscript number q in the 

Hermann-Mauguin symbol Nq. If q < ½ N, these 

are q right-handed symmetry spirals with a 

translation period of qc. If q > ½ N  there are 

either q right-handed symmetry spirals with a 

translation period of qc or N – q left-handed 

symmetry spirals with a translation period of 

(N – q)c. Every single symmetry spiral continues 

along an N1 or NN – 1 screw axis, respectively, 

with the mentioned translation period.  

If q = ½N, there are q left and q right handed 

symmetry spirals, and the screw axis itself is not 

chiral. Nevertheless, the chemical helix is chiral 

(provided there are no mirror or glide planes and 

no points of inversion or rotoinversion) 
We draw covalent bonds as bond lines be-

tween the atoms according to chemical consid-

erations. What is the chemical spiral depends on 

where we draw the covalent bonds. For sym-

metry considerations covalent bonds do not exist 

and are completely irrelevant. The situation is 

similar to drawing a left-handed spiral with a 

thin paintbrush onto the thread of a right-handed 

screw; paint points appear on the ridge of the 

thread where the painted spiral crosses the 

thread; the points simultaneously belong to the 

thread and the painted spiral. 

The N/r symbols of polymer chemistry can 

easily be converted to the corresponding Her-

mann-Mauguin symbols Nq. The conversion 

formula is (Spruiell & Clark, 1980): 

n N ± 1 =  r q 

where n = 0, 1, 2, ... and 0 < q < N. + applies to 

P helices, – to M helices. For a 7/2 helix (N = 7, 

r = 2) this is:  

1  7 + 1 = 2 4  for  P,  → 74 

1  7 – 1 = 2 3  for  M,  → 73 

If r = 1, then q = 1 or q = N – 1. The formula 

is not applicable to multiple helices. In addition, 

it is assumed that all repeating units of the helix 

are symmetry equivalent, i.e. the asymmetric 

unit and the repeating unit are supposed to be 

identical. Results for small values of r are sum-

marized in Table 3. 
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Table 3 

Hermann-Mauguin symbols Nq for N/r helices with 

small values of r. n = arbitrary positive integer; only 

combinations of N and r with no common divisor. 

N r q 

  P helix  M helix 

n 1   1 N – 1 

2n + 1 2  1∕2 (N + 1) 1∕2 (N – 1)  

3n – 1 3  1∕3 (N + 1) 1∕3 (2N – 1)  

3n + 1 3  1∕3 (2N + 1) 1∕3 (N – 1)  

4n – 1 4  1∕4 (N + 1) 1∕4 (3N – 1)  

4n + 1 4  1∕4 (3N + 1) 1∕4 (N – 1)  

5n – 2 5  1∕5 (3N + 1) 1∕5 (2N – 1)  

5n – 1 5  1∕5 (N + 1) 1∕5 (4N – 1)  

5n + 1 5  1∕5 (4N +1 ) 1∕5 (N – 1 )  

5n + 2 5  1∕5 (2N + 1) 1∕5 (3N –1 )  

6n – 1 6  1∕6 (N + 1) 1∕6 (5N – 1)  

6n + 1 6  1∕6 (5N + 1) 1∕6 (N – 1)  

 

 

A unique calculation is not possible in the op-

posite direction, from the Hermann-Mauguin 

symbol Nq to the N/r symbol, because it depends 

on where the covalent bonds are assumed to 

exist. In addition, a 7/9, 7/16 and every other 

7/(2 modulo 7) P-helix as well as every 

7/(5 modulo 7) M-helix has a 74 screw sym-

metry. The situation is similar to the point 

groups: it is possible to deduce the point group 

from the molecular structure, but not contrari-

wise. 

Hermann-Mauguin symbols have been exist-

ing since 1928; the symbols for helices have 

been utilized in polymer chemistry since the 

1960s. There had been no complications with 

the terminology until the International Union for 

Pure and Applied Chemistry published the new 

IUPAC Recommendations 2011: Definitions and 

terms relating to crystalline polymers (Meille et 

al., 2011). Now the recommendation is: “The 

helix symbol MN denotes the integer number of 

helix residues (M) and helical coil windings 

(helical turns), (N), approximated by the se-

quence of bonds along the polymer main chain 

in a chain identity period. A helix with M helix 

residues in N turns can be denoted an MN helix.” 

According to that, a 7/2 helix should now be 

termed a 72 helix. The 72 looks like a Hermann-

Mauguin symbol and is confused with it; how-

ever, the Hermann-Mauguin symbol for a 7/2 

helix actually is 73 or 74, depending on chirality. 

The definition of the Hermann-Mauguin sym-

bols is clearer and unique, but they only specify 

symmetry. The symbols of polymer chemistry 

are more convenient for chemists; they refer to 

the chemical structure, but they depend on how 

we regard the course of a spiral. As a rule, 

chemists will follow the course of the covalent 

bonds of the polymer main chain; therefore, the 

course of the spiral depends on where we draw 

the covalent bonds between the atoms. The 

measure for this are the interatomic distances as 

compared to known bond lengths; the interatom-

ic distances depend on the metrical conditions 

(length of the translation period, distance of an 

atom from the spiral axis and arrangement of the 

polymer chain atoms in the repeating unit). This 

will hardly ever cause doubts when dealing with 

organic polymers, but with regard to inorganic 

solids this is not always clear. Are the Sn–I 

bonding lines in Fig. 1 covalent bonds or not? 

Compared to the sums of the covalent radii 

(Cordero et al., 2008; Pyykkö & Atsumi, 2009), 

the P–P bond length is inconspicuous, the Sn–P 

length is slightly longer (269 instead of 251 pm) 

and Sn–I is substantially longer (316 instead of 

273 pm).  

Other building blocks in lieu of covalent 

bonds can also serve to describe the course of a 

chemical spiral, for example, coordination poly-

hedra. At the example of PPh4[Cu3I4] we will 

rely on joined coordination tetrahedra (see Sec-

tion 8). 

Table 4 presents an arbitrary selection of heli-

cal polymers. More can by found at De Rosa & 

Auriemma (2013). 
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Table 4 

Examples of structures with helical molecules (arbitrary selection).  

Meanings in the column of the chemical helix symbol: R,  racemate; 2, double helix; 3, tripe helix; c, transla-

tion period of the multiple helix; 2c, 3c, ... translation period of the single helix. 

compound repeating chemical rod penetrat. space references 

 unit  helix group rod group group  

isotactic CH2–CHMe 3/1-R p31 + p32 p1 P21/c Hikosata & 

polypropene-α2      Seta (1973) 

polyisobutene CH2–CMe2 8/3-P p83 p1 1 21 P212121 Tanaka et al. (1974),  

      Immirzi et al. (2007)  

isotactic CH2–CHPh 3/1-R p31 + p32 p31 + p32 R3c Natta & Corradini 

polystyrene      (1955, 1960)  

isotactic poly- CH2–CH-o-C6H4Me 4/1-R p41 + p43 p41 + p43 I41cd Corradini & 

o-methylstyrene      Ganis (1960)  

isotactic poly- CH2–CH-m-C6H4Me 11/3-R p114 p1  P 4  Corradini & 

m-methylstyrene   + p117   Ganis (1960)  

isotactic poly-4-  CH2–CHCH2CHMe2 7/2-R p73 + p74 p1 P 4 b2 Kusanagi  

methyl-1-pentene-II      et al. (1978)  

polytetrafluoro- CF2 13/6 † p13112 ? pseudo- Clark (1999)  

ethene-II      hexagonal  

polytetrafluoro- CF2 15/7 p1522 ca. p3221 pseudo- Clark (1999)  

ethene-IV     hexagonal  

polyoxymethylene O–CH2 9/5-M or p97 or p31 P31 Tashiro 

  29/16-M p299 or p1 or P1 et al. (2007)  

isotactic poly-t-  O–CH2–CHCMe3 9/4-R p922 p1 2 1 P 4 n2 Sakakihara 

butylethyleneoxide   + p972    et al. (1973)  

α-poly-L-lactide CH2–CHMe–COO 10/3-P p10722 p1 1 21 P212121 Alemán et al. (2001) 

polyethylene- NH–CH2–CH2 2 5/1-R p10422 p2 2 2 Fddd Chatani 

imine  2c + p10622   et al. (1982) 

polysulfur  S 10/3-R p10322 p1 2 1 P121 Lind & 

   p10722   Geller (1969) 

polysulfur-II; S; Se 4/1-R p4122 p4122 I41/acd Fujihisa 

selenium-II    + p4322 + p4322  et al. (2004) 

selenium;  Se; Te 3/1-P p3121 p3121 P3121 9 determinations, 

tellurium       1924–1993 

SnIP SnI
+
 and P

–
 7/2-R pa732 pa1 2 1 P12/c1 Pfister 

   + pa742   et al. (2016) 

K2P2Se6 P2Se6
2– 3/1-P p3121 p3121 P3121 Chung et al. (2007) 

3-aminomethyl- (AgNC5H4CH2NH2
+
)2 3 2/1-R 3 pb1 211 pb1 211 P121/c1 Sailaja & 

pyridino-silver-  2 repeating units 3c    Rajasekharan 

perchlorate per asymmetric unit     (2000)  

[Ag-5,6-chiragene- AgC46H44N4
+
 2 6/1-P p6222 p6222 P6222 Mamula 

1,5-dimethyl-  2c    et al. (1999) 

naphthyl]PF6       

PtCl3; PtBr3 PtX4, edge-sharing 3/1-R p3121 p31 R 3  v. Schnering 

= [Pt6X12] · 6PtX4 octahedra  + p3221 + p32  et al. (2004)  

PPh4[Cu3I4] Cu0.75I
–
, face-sharing 8/3-R pa8322 pa2122 Ccce Hartl 

 tetrahedra  + pa8522    et al. (1994) 

† incommensurate, 13/6 fulfilled approximately, more exactly 54/25 or 473/219 or 948/439  
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7. Multiple helices 

The chemical helix symbol N/r designates the 

shape of a single helix. When several symmetry-

equivalent helices are interlocked with each 

other, this has to be reported separately in an 

appropriate way. What is the symmetry of the 

ensemble of the helices depends on how many 

single chemical helices are involved and how 

they are mutually rotated.  

No simple formula can be specified to convert 

the chemical helix symbol to the Hermann-

Mauguin symbol of the multiple helix. The for-

mulas of Table 5 can be used for some cases; 

Table 5 does not cover all possibilities. The for-

mulas can be applied repeatedly; two doublings 

yield a quadrupled helix. Chemically insensate, 

colliding or mutually interleaving helices can 

result in some cases with certain numerical 

combinations, depending on the arrangement of 

the atoms in the repeating unit. 

Example: A 9/5-P helix has a 92 screw axis 

according to Table 3 (q = 2). Two (Z = 2) of 

these helices, combined without mutual rotation 

(φ = 0°) and shifted by s = ½c, according to 

formula (1) of Table 5 result in a double helix 

with the screw symmetry 94 and a halved trans-

lation period c = ½c. Two of these double heli-

ces, mutually rotated by 180° and once again 

shifted by ½c, yield a quadruple helix, which, 

according to formula (7), has an 1813 screw axis 

and an unchanged translation period ½c. This 

quadruple helix consists of four 9/5-P helices, 

being mutually rotated by 180° and shifted by 

¼c.  

Figure 3 shows helices with 14-fold sym-

metry. All depicted helices that have the same 

Hermann-Mauguin symbol have exactly the 

same arrangement of their repeating units. The 

only difference between the images consists in 

where bonds have been drawn between the re-

peating units. As can be seen, this can mean 

rather different chemical helices, some being 

interlocked to multiple helices. In each case, the 

bond lines of the first image depicted for a Her-

mann-Mauguin symbol show the corresponding 

symmetry spiral(s). 

The chemical helical structure of a multiple 

helix is not always expressed by its Hermann-

Mauguin symbol. For example, a triple helix 

consisting of three interlocked 3/1 helices, each 

one with p31 symmetry, may have the symmetry 

p3 with a threefold rotation axis. 
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Table 5 

Determination of the Hermann-Mauguin screw axis symbol Nq  of a multiple helix, consisting of Z equidistant, 

symmetry-equivalent chemical single helices N/r, each with a Nq screw axis.  

m, n = arbitrary integer; φ = turning angle from one to the next helix accompanied by a shift of the helix by s 

parallel to c; c = translation vector of the single helix; c′ = translation vector of the multiple helix; d = common 

divisor of Z and N; the value of q′ is to be selected according to  0 ≤ q′ < N′  from the series of the modulo 

numbers; if q′ = 0, a rotation axis is meant.  

Z N φ s c' N' q'                                        formula Nr. 

m †  n 0° 
Z

1
c 

Z

1
c N (Zq) mod N' (1)  

2m + 1 Z 180° 
Z2

1
c 

Z

1
c 2N N (2) 

m † n 
ZN

360 °
 (

Z

1
+

ZN

q
)c c ZN N + q, only  q < ½N (3a) 

   
(

Z

1
–

ZN

qN
)c c  ZN (Z – 2)N + q, only  q > ½N (3b)  

m † n –
ZN

360 °
 (

Z

1
–

ZN

q
)c c ZN (Z – 1)N + q, only  q < ½N (4a) 

   
(

Z

1
+

ZN

qN
)c c ZN q, only  q >½ N (4b) 

2 2n 180° 0 1∕2 c N (2q) mod N' (5) 

2 2n + 1 180° 0 c 2N [(N + 1)q] mod N' (6) 

2 ‡ 2n + 1 180° 1∕2 c c 2N [(N + 1)q – N] mod N' (7) 

3 3n – 1 120° 0 c 3N [(N + 1)q] mod N' (8) 

3 3n 120° 0 1∕3 c N (3q) mod N' (9) 

3 3n + 1 120° 0 c 3N [(2N + 1)q] mod N' (10) 

4 4n – 1 90° 0 c 4N [(N + 1)q] mod N' (11)  

4 2n 90° 0 1∕d c 4N/d [(N + d)q] mod N' (12)  

4 4n + 1 90° 0 c 4N [(3N + 1)q] mod N' (13)  

5 5n – 2 72° 0 c 5N [(3N + 1)q] mod N' (14)  

5 5n – 1 72° 0 c 5N [(N + 1)q] mod N' (15)  

5 5n 72° 0 1∕5 c N (5q) mod N' (16)  

5 5n + 1 72° 0 c 5N [(4N + 1)q] mod N' (17)  

5 5n + 2 72° 0 c 5N [(2N + 1)q] mod N' (18)  

6 6n – 2 60° 0 1∕2 c 3N [(N + 2)q] mod N' (19)  

6  6n – 1 60° 0 c 6N [(N + 1)q] mod N' (20)  

6 3n 60° 0 1∕d c 6N/d [(N + d)q] mod N' (21)  

6 6n + 1 60° 0 c 6N [(5N + 1)q] mod N' (22)  

6 6n + 2 60° 0 1∕2 c  3N [(2N + 2)q] mod N' (23) 

† m and r without common divisor  

‡ r = 2m.  
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Figure 3 

Helices with 14-fold screw axes. Each sphere represents one repeating unit that may consist of an asymmetric 

arrangement of atoms. Spheres and bonding lines of the same color belong to one chemical helix. The only 

difference between helices of the same Hermann-Mauguin symbol is where bonding lines have been drawn.  
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8. Coordination polyhedra as repeating units 

Inorganic structures are often being described 

with the aid of joined coordination polyhedra. 

For example, tetrahalides often form chains of 

edge-sharing octahedra. The chains are helical 

for certain configurations (Müller, 1981). Chains 

of this kind occur as 3/1 helices in PtCl3, which 

is a mixed-valence compound, consisting of 

Pt6Cl12 clusters and (PtCl4)∞ helices (von 

Schnering et al., 2004). 

A helical structure does not necessarily have 

translational symmetry. In that case, it does not 

have a Hermann-Mauguin symbol nor a transla-

tion period. For example, the Boerdijk-Coxeter 

helix (also called tetrahelix) is a mathematically 

constructed helix consisting of regular, face-

sharing tetrahedra. The calculated turn angle 

from one tetrahedron to the next is arc cos (–⅔) 

≈ 131.81° (Boerdijk, 1985; Buckminster-Fuller, 

1975; Coxeter, 1985). That is an irrational num-

ber, which means that the translation period of 

the helix is infinite. This irrational number can 

be approximated by fractional numbers of the 

kind r  360°/N (r = number of coil turns, N = 

number of tetrahedra), for example, 3  360°/8 = 

135.0° or 26  360°/71 = 131.83°. With a corre-

sponding size of the unit cell such a strand of 

tetrahedra can be fitted into a crystal within the 

limits of experimental accuracy. In addition, 

chemical structures are sufficiently flexible to 

adapt themselves to the crystallographic re-

straints.  

In fact, the Boerdijk-Coxeter helix has been 

observed in crystalline PPh4[Cu3I4], with slight 

distortions of the tetrahedra (Hartl & Mahdjour-

Hassan-Abadi, 1994). The crystals are racemic 

and contain 8/3 helices, consisting of 8 coordi-

nation tetrahedra in 3 coil turns per translation 

period, with a mean turning angle of 135.0° 

from tetrahedron to tetrahedron (Fig. 4). The 

corresponding rod groups are (approximately) 

p8322 and p8522. The helices run along of 21 

screw axes in the space group Ccce and fulfil the 

crystallographic rod-site symmetry pa2122, 

which is a subgroup of p8322 and p8522. It is not 

possible to draw covalent Cu–I bonds, because 

the copper atoms are mobile within the strand of 

the tetrahedra, amounting to three copper atoms 

per four tetrahedra. 

 

                       
 
Figure 4 
Section of a strand of face-sharing coordination tetra-

hedra in PPh4[Cu3I4]. The copper atoms are not 

shown; they are mobile in between the tetrahedra, 

with three Cu atoms per four tetrahedra. Every tetra-

hedron has two faces alternately drawn in blue and 

green, which are shared with two neighbouring tetra-

hedra.  
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