

Volume 73 (2017)

Supporting information for article:

Taking the halogen bonding-hydrogen bonding competition one step further: Complexes of difluoroiodomethane with trimethylphosphine, dimethyl sulfide and chloromethane

Yannick Geboes, Frank De Proft and Wouter A. Herrebout

	Х	Y	Ζ
CHF ₂ I			
С	0.461801	-1.276126	0.000000
Н	1.552810	-1.382611	0.000000
F	-0.060896	-1.882815	1.101579
F	-0.060896	-1.882815	-1.101579
Ι	-0.060896	0.810001	0.000000

Table S1.1: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of difluoroiodomethane.

Table S1.2: Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of trimethylphosphine.

	Х	Y	Z
TMP			
Р	0.000000	0.000000	0.618978
С	0.000000	1.626598	-0.285498
Н	-0.889964	2.208825	-0.001487
Н	0.889964	2.208825	-0.001487
Н	0.000000	1.481355	-1.378927
С	-1.408675	-0.813299	-0.285498
Н	-1.467917	-1.875144	-0.001487
Н	-2.357881	-0.333681	-0.001487
Н	-1.282891	-0.740678	-1.378927
С	1.408675	-0.813299	-0.285498
Н	2.357881	-0.333681	-0.001487
Н	1.467917	-1.875144	-0.001487
Н	1.282891	-0.740678	-1.378927

Table S1.3: Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of dimethyl sulfide.

	Х	Y	Z
DMS			
S	0.000000	0.674247	0.000000
С	-1.370330	-0.522675	0.000000
Н	-2.309643	0.047454	0.000000
Н	-1.334542	-1.152689	-0.900834
Н	-1.334542	-1.152688	0.900834
С	1.370330	-0.522675	0.000000
Н	1.334542	-1.152689	-0.900834
Н	2.309643	0.047454	0.000000
Н	1.334542	-1.152689	0.900834

Table S1.4: Cartesian coordinates of the M	/IP2/aug-cc-pVDZ optin	nized geometry of chlorid	promethane.
--	------------------------	---------------------------	-------------

CH ₃ Cl	X	Y	Z

CH ₃ Cl			
С	0.000000	0.000000	-1.134242
Н	0.000000	1.040001	-1.477217
Н	-0.900667	-0.520001	-1.477217
Н	0.900667	-0.520001	-1.477217
Cl	0.000000	0.000000	0.661006

Table S2.1: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the hydrogen bonded complex between CHF₂I and trimethylphosphine.

	Х	Y	Z
CHF ₂ I			
С	-1.216105	1.353406	-0.000007
Н	-0.132928	1.531390	-0.000019
F	-1.797300	1.906772	-1.100901
F	-1.797275	1.906778	1.100897
Ι	-1.556091	-0.778530	0.000002
TMP			
Р	2.433219	0.310927	-0.000005
С	2.626429	-0.879781	-1.413081
Н	1.740677	-1.530608	-1.468765
Н	2.700723	-0.323563	-2.360047
Н	3.527461	-1.503794	-1.290861
С	4.140404	1.046128	-0.000009
Н	4.271464	1.679600	-0.890422
Н	4.271460	1.679624	0.890387
Н	4.915127	0.261437	0.000003
С	2.626421	-0.879749	1.413099
Н	2.700709	-0.323510	2.360052
Н	1.740667	-1.530573	1.468791
Н	3.527452	-1.503766	1.290898

Table S2.2: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the halogen bonded complex between CHF₂I and trimethylphosphine.

	Х	Y	Ζ
CHF ₂ I			
С	3.039329	0.000074	-0.120817
Н	3.521408	0.000128	-1.106167
F	3.443285	-1.103496	0.579305
F	3.443117	1.103684	0.579340
Ι	0.894182	-0.000089	-0.330647
TMP			
Р	-2.597960	-0.000069	-0.084146
С	-2.962250	1.415033	1.061597

H-2.9464162.3607420.498785H-3.9465931.2992331.545139C-4.168149-0.000761-1.076796H-4.1975780.889428-1.723114H-4.197437-0.891692-1.722098H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.183240-1.4666321.839308H-2.183240-1.4666321.839308	Н	-2.183466	1.468763	1.837625
H-3.9465931.2992331.545139C-4.168149-0.000761-1.076796H-4.1975780.889428-1.723114H-4.197437-0.891692-1.722098H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308	Н	-2.946416	2.360742	0.498785
C-4.168149-0.000761-1.076796H-4.1975780.889428-1.723114H-4.197437-0.891692-1.722098H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308	Н	-3.946593	1.299233	1.545139
H-4.1975780.889428-1.723114H-4.197437-0.891692-1.722098H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308H-2.0462031.2077311.546612	С	-4.168149	-0.000761	-1.076796
H-4.197437-0.891692-1.722098H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308H-2.0462021.2077211.546612	Н	-4.197578	0.889428	-1.723114
H-5.055548-0.000457-0.422101C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308H-2.0462031.2077311.546612	Н	-4.197437	-0.891692	-1.722098
C-2.962026-1.4139201.063213H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308H-2.0462021.2077211.546612	Н	-5.055548	-0.000457	-0.422101
H-2.946027-2.3602690.501483H-2.183240-1.4666321.839308H-2.0462021.2077211.546612	С	-2.962026	-1.413920	1.063213
H -2.183240 -1.466632 1.839308	Н	-2.946027	-2.360269	0.501483
II 2.046202 1.207721 1.546612	Н	-2.183240	-1.466632	1.839308
H -3.940393 -1.29//31 1.340013	Н	-3.946393	-1.297731	1.546613

	Х	Y	Z
CHF ₂ I			
С	-0.785959	1.258032	-0.381791
Н	0.079193	1.257115	-1.054250
F	-0.488219	1.947842	0.756259
F	-1.860138	1.858460	-0.964421
Ι	-1.281284	-0.778912	0.124298
DMS			
S	2.745384	0.432273	-0.507237
С	2.637149	0.518652	1.308262
Н	2.514127	1.574865	1.584687
Н	1.767347	-0.049505	1.669318
Н	3.559797	0.130779	1.763817
С	2.888789	-1.375358	-0.664189
Н	2.002971	-1.868460	-0.238243
Н	2.953370	-1.612667	-1.735166
Н	3.800441	-1.730811	-0.162384

Table S2.3: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the hydrogen bonded complex between CHF₂I and dimethyl sulfide.

Table S2.4: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the halogen bonded complex between CHF₂I and dimethyl sulfide.

	V	V	7
	Λ	I	L
CHF ₂ I			
С	-2.639583	0.000071	-0.002747
Н	-3.199738	0.000218	-0.945700
F	-2.982435	-1.103272	0.727881
F	-2.982301	1.103281	0.728144
Ι	-0.520886	-0.000012	-0.388345
DMS			
S	2.929895	-0.000077	-0.424875
С	2.967183	1.372335	0.770366
Н	2.930865	2.310712	0.199858
Н	2.094133	1.323466	1.437999
Н	3.896366	1.343011	1.357619
С	2.967139	-1.372225	0.770669
Н	2.094094	-1.323176	1.438295
Н	2.930784	-2.310727	0.200369
Н	3.896326	-1.342805	1.357911

	Х	Y	Ζ
CHF ₂ I			
С	-0.341590	1.277646	-0.128791
Н	0.442884	1.290430	-0.893239
F	-1.301935	2.198920	-0.414227
F	0.193498	1.594957	1.086312
Ι	-1.222580	-0.684963	-0.035059
CH ₃ Cl			
С	2.847452	-0.704367	0.946920
Н	2.382405	0.045316	1.595374
Н	3.855860	-0.952773	1.294024
Н	2.222981	-1.601401	0.880877
Cl	2.990197	-0.003711	-0.704497

Table S2.5: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the hydrogen bonded complex with a secondary $C-H\cdots$ F between CHF_2I and chloromethane.

Table S2.6: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the hydrogen bonded complex with a secondary $C-H\cdots I$ between CHF_2I and chloromethane.

	Х	Y	Z
CHF ₂ I			
С	-0.676612	1.305798	-0.000004
Н	0.402006	1.498825	-0.000030
F	-1.257116	1.857254	-1.101066
F	-1.257061	1.857249	1.101089
Ι	-1.011921	-0.824659	0.000000
CH ₃ Cl			
С	3.096877	-1.100970	0.000022
Н	2.582231	-1.451300	-0.900496
Н	2.582225	-1.451256	0.900554
Н	4.146207	-1.414069	0.000033
Cl	3.060303	0.697955	-0.000023

Table S2.7: Cartesian coordinates of the MP2/aug-cc-pVDZ-PP optimized geometry of the halogen bonded complex between CHF₂I and chloromethane.

	Х	Y	Z
CHF ₂ I			
С	2.439103	-0.010448	-0.000231
Н	2.987805	-0.959635	-0.001505
F	2.782525	0.717958	-1.101619
F	2.782955	0.715250	1.102809
Ι	0.322673	-0.385166	-0.000280
CH ₃ Cl			
С	-3.173743	1.461749	0.000851

Н	-4.185999	1.879482	0.001089
Н	-2.627700	1.761309	-0.899947
Н	-2.627660	1.760383	0.901930
Cl	-3.313505	-0.331435	-0.000066

Table S3A: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in $Å^4$ amu⁻¹, for the hydrogen bonded complex of CHF₂I and trimethylphosphine and both monomers, as well as the complexation shift Δv .

]	Hydrogen bonded complex					
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
$v_1(A')$	3192.4	3.6	94.4	3172.8	-19.6	18.9	210.1
$v_2(A')$	1279.7	99.2	7.5	1280.3	0.6	129.6	31.5
$v_{3}(A')$	1074.1	300.4	3.2	1070.1	-3.9	309.6	3.5
v4 (A')	652.5	81.8	18.4	651.0	-1.5	72.8	10.9
$v_5(A')$	549.4	2.9	1.8	551.0	1.6	5.3	2.0
$v_6(A')$	276.0	0.2	6.6	272.7	-3.3	0.01	6.2
v7 (A")	1346.0	4.1	2.7	1369.5	23.5	8.9	1.0
$v_8(A")$	1096.9	186.9	1.9	1092.7	-4.2	164.9	1.5
v ₉ (A")	277.0	0.0004	1.2	275.5	-1.5	0.002	0.9
TMP							
v ₁ (A ₁)	3148.5	33.6	160.8	3151.3	2.7	28.5	148.6
$v_2(A_1)$	3043.5	29.4	528.4	3045.9	2.3	30.0	526.0
$v_3(A_1)$	1469.0	9.2	1.5	1468.7	-0.3	8.0	0.9
v ₄ (A ₁)	1314.7	5.1	7.3	1315.6	1.0	9.0	5.5
$v_{5}(A_{1})$	957.8	20.1	5.0	959.4	1.5	34.9	4.2
$v_6(A_1)$	660.9	0.5	26.5	662.8	1.9	0.9	28.0
$v_7(A_1)$	287.5	1.0	1.5	287.8	0.3	0.9	1.4
$v_8(A_2)$	3168.1	0.0	0.0	3170.5	2.4	0.2	3.3
$v_{9}(A_{2})$	1440.1	0.0	0.0	1439.3	-0.8	0.2	0.3
$v_{10}(A_2)$	776.6	0.0	0.0	779.5	2.9	0.0001	0.03
$v_{11}(A_2)$	164.1	0.0	0.0	164.5	0.4	0.007	0.01
$v_{12}(E)$	3167.9	11.5	95.9	3170.2	2.3	8.6	78.4
$v_{13}(E)$	3149.3	3.0	18.4	3152.4	3.1	2.6	23.2
$v_{14}(E)$	3046.9	16.7	4.2	3049.3	2.4	14.1	14.8
$v_{15}(E)$	1456.7	8.7	3.0	1456.0	-0.7	6.8	3.9
$v_{16}(E)$	1446.2	3.1	9.5	1445.9	-0.3	2.6	8.4
$v_{17}(E)$	1290.0	2.3	0.7	1290.6	0.7	2.4	0.7
$v_{18}(E)$	946.6	16.5	0.5	948.9	2.3	16.4	0.9
$v_{19}(E)$	831.0	0.2	0.3	833.2	2.2	0.2	0.4
$v_{20}(E)$	718.3	11.6	11.8	722.8	4.5	9.4	13.0

<i>v</i> ₂₁ (E)	249.8	0.2	2.8	248.2	-1.6	0.2	2.3
v ₂₂ (E)	207.4	0.0009	0.6	207.3	-0.1	0.003	0.4

Van der Waals vibrations: 6.3 cm⁻¹, 0.07 km mol⁻¹, 0.1 Å⁴ amu⁻¹, 27.1 cm⁻¹, 0.2 km mol⁻¹, 0.06 Å⁴ amu⁻¹, 33.3 cm⁻¹, 0.2 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 46.7 cm⁻¹, 0.8 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 50.3 cm⁻¹, 0.8 km mol⁻¹, 1, $\frac{1}{2}$

 $0.2 \text{ Å}^4 \text{ amu}^{-1}$, 65.4 cm⁻¹, 0.2 km mol⁻¹, 0.7 Å⁴ amu⁻¹.

	Monomer			Hydrogen bonded complex			
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3172.8	-19.6	17.5	200.9
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1280.6	0.9	129.8	28.9
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1070.2	-3.9	307.3	3.7
<i>v</i> ₄ (A')	652.5	81.8	18.4	651.2	-1.3	74.5	13.3
$v_5(A')$	549.4	2.9	1.8	551.0	1.6	5.3	2.0
$v_6(A')$	276.0	0.2	6.6	272.8	-3.2	0.008	6.5
v ₇ (A")	1346.0	4.1	2.7	1369.5	23.5	8.7	1.0
$v_8(A'')$	1096.9	186.9	1.9	1092.7	-4.2	164.2	1.4
v ₉ (A")	277.0	0.0004	1.2	275.5	-1.5	0.002	0.9
TMP-d ₉							
v_1 (A ₁)	2330.8	15.5	84.8	2333.2	2.4	13.1	87.2
$v_2(\mathbf{A}_1)$	2184.5	10.3	254.0	2186.0	1.5	10.6	250.2
$v_3(A_1)$	1058.7	8.5	0.9	1058.4	-0.4	7.1	0.6
$v_4(A_1)$	1021.8	3.7	15.4	1022.0	0.2	6.6	16.3
$v_5(A_1)$	779.8	14.3	2.3	781.3	1.5	22.5	1.7
$v_6(A_1)$	597.0	0.0	20.0	598.6	1.6	0.2	18.6
$v_7(A_1)$	246.1	0.5	1.1	246.9	0.8	0.4	0.8
$v_8(A_2)$	2344.5	0.0	0.0	2346.4	1.9	0.001	0.2
$v_9(A_2)$	1041.0	0.0	0.0	1040.1	-0.9	0.002	0.2
$v_{10}(A_2)$	582.2	0.0	0.0	584.4	2.3	0.002	0.02
$v_{11}(A_2)$	116.8	0.0	0.0	117.2	0.4	0.003	0.006
$v_{12}(E)$	2345.4	3.7	50.1	2347.3	1.9	2.9	43.6
$v_{13}(E)$	2332.7	1.4	11.4	2335.1	2.4	1.0	12.2
$v_{14}(E)$	2186.9	6.7	0.7	2188.5	1.5	5.5	5.3
$v_{15}(E)$	1052.1	4.8	1.2	1051.3	-0.8	5.4	1.5
$v_{16}(E)$	1044.7	0.2	4.5	1044.4	-0.4	0.2	3.9
$v_{17}(E)$	1009.0	8.5	3.5	1009.7	0.7	8.9	3.5
$v_{18}(E)$	760.6	15.4	1.8	762.9	2.3	15.1	2.7
$v_{19}(E)$	652.0	3.6	6.9	655.9	3.9	1.9	7.7
$v_{20}(E)$	625.1	0.5	0.7	626.6	1.5	0.2	0.8
$v_{21}(E)$	208.8	0.1	2.3	207.9	-0.8	0.09	1.8
$v_{22}(E)$	150.6	0.01	0.1	150.3	-0.2	0.01	0.1

Table S3B: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the hydrogen bonded complex of CHF₂I and trimethylphosphine-d₉ and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 5.9 cm⁻¹, 0.08 km mol⁻¹, 0.1 Å⁴ amu⁻¹, 25.3 cm⁻¹, 0.1 km mol⁻¹, 0.04 Å⁴ amu⁻¹, 32.2 cm⁻¹, 0.2 km mol⁻¹, 0.4 Å⁴ amu⁻¹, 43.5 cm⁻¹, 0.7 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 45.3 cm⁻¹, 0.6 km mol⁻¹, 0.6 km mo

¹, 0.2 Å⁴ amu⁻¹, 63.6 cm⁻¹, 0.2 km mol⁻¹, 0.7 Å⁴ amu⁻¹.

	Monomer Halogen bonder					n bonded com	plex
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3180.3	-12.1	8.7	168.9
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1278.5	-1.2	147.4	9.0
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1068.1	-6.0	349.6	4.6
v4 (A')	652.5	81.8	18.4	647.5	-5.0	45.4	95.4
$v_5(A')$	549.4	2.9	1.8	544.7	-4.7	2.7	6.1
$v_6(A')$	276.0	0.2	6.6	272.0	-4.0	4.5	31.1
v ₇ (A")	1346.0	4.1	2.7	1343.7	-2.3	4.2	3.6
v ₈ (A")	1096.9	186.9	1.9	1079.6	-17.2	183.7	1.7
v ₉ (A")	277.0	0.0004	1.2	278.6	1.6	0.04	1.5
TMP							
v_1 (A ₁)	3148.5	33.6	160.8	3151.6	3.1	31.3	188.2
$v_2(A_1)$	3043.5	29.4	528.4	3046.0	2.5	35.6	563.3
$v_3(A_1)$	1469.0	9.2	1.5	1467.7	-1.3	7.4	1.6
$v_4(A_1)$	1314.7	5.1	7.3	1315.4	0.7	3.9	17.1
$v_{5}(A_{1})$	957.8	20.1	5.0	957.6	-0.3	72.2	22.1
$v_6(A_1)$	660.9	0.5	26.5	662.3	1.4	0.9	26.5
$v_7(A_1)$	287.5	1.0	1.5	286.2	-1.4	0.7	2.3
$v_8(A_2)$	3168.1	0.0	0.0	3170.0	1.9	3.9	32.9
$v_{9}(A_{2})$	1440.1	0.0	0.0	1439.0	-1.1	0.01	0.05
$v_{10}(A_2)$	776.6	0.0	0.0	779.1	2.6	0.0	0.01
$v_{11}(A_2)$	164.1	0.0	0.0	163.9	-0.2	0.0008	0.002
$v_{12}(E)$	3167.9	11.5	95.9	3170.9	3.0	6.2	65.4
$v_{13}(E)$	3149.3	3.0	18.4	3152.8	3.5	2.3	29.9
$v_{14}(E)$	3046.9	16.7	4.2	3049.4	2.5	13.4	18.5
$v_{15}(E)$	1456.7	8.7	3.0	1455.5	-1.2	9.2	4.2
$v_{16}(E)$	1446.2	3.1	9.5	1445.0	-1.2	2.2	8.5
$v_{17}(E)$	1290.0	2.3	0.7	1290.9	0.9	4.0	1.2
$v_{18}(E)$	946.6	16.5	0.5	948.9	2.3	16.0	0.8
$v_{19}(E)$	831.0	0.2	0.3	832.1	1.2	0.8	0.6
$v_{20}(E)$	718.3	11.6	11.8	724.7	6.4	8.7	16.0
$v_{21}(E)$	249.8	0.2	2.8	245.3	-4.5	0.2	2.8
$v_{22}(E)$	207.4	0.0009	0.6	207.0	-0.3	0.02	0.4

Table S4A: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the halogen bonded complex of CHF₂I and trimethylphosphine and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 3.7 cm^{-1} , 1.0 km mol^{-1} , $0.009 \text{ Å}^4 \text{ amu}^{-1}$, 12.0 cm^{-1} , 0.7 km mol^{-1} , $0.6 \text{ Å}^4 \text{ amu}^{-1}$, 12.4 cm^{-1} , 1.5 km mol^{-1} , $0.5 \text{ Å}^4 \text{ amu}^{-1}$, 52.0 cm^{-1} , 2.4 km mol^{-1} , $3.7 \text{ Å}^4 \text{ amu}^{-1}$, 52.9 cm^{-1} , 0.004 km^{-1} , 1.5 km^{-1} , 0.004 km^{-1} , 1.5 km^{-1} , 0.5 Å^{-1} , 0.004 km^{-1} ,

mol⁻¹, 0.2 Å⁴ amu⁻¹, 57.7 cm⁻¹, 0.8 km mol⁻¹, 0.4 Å⁴ amu⁻¹.

	Monomer			Halogen bonded complex			
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3180.3	-12.1	8.7	168.6
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1278.6	-1.1	150.6	9.4
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1067.9	-6.1	359.8	3.8
v4 (A')	652.5	81.8	18.4	647.2	-5.4	43.9	100.5
$v_5(A')$	549.4	2.9	1.8	544.7	-4.7	2.7	6.1
$v_6(A')$	276.0	0.2	6.6	272.2	-3.8	4.0	32.0
v ₇ (A")	1346.0	4.1	2.7	1343.7	-2.3	4.2	3.6
$v_8(A'')$	1096.9	186.9	1.9	1079.6	-17.2	184.0	1.7
v9(A")	277.0	0.0004	1.2	278.5	1.6	0.04	1.4
TMP_do							
v_1 (A ₁)	2330.8	15.5	84.8	7333 6	27	12.5	127.0
$v_{2}(A_{1})$	2550.8	10.3	254.0	2355.0	1.6	12.5	263.2
$v_2(\mathbf{A}_1)$	1058 7	8.5	254.0	1057.6	-1.1	0.3	0.7
v_4 (A ₁)	1021.8	3.7	0. <i>3</i> 15 4	1022.1	-1.1	3.5	20.8
$v_5(A_1)$	779.8	14.3	23	780.1	0.2	46 1	10.8
$v_6(A_1)$	597.0	0.0	2.3	598.2	1.2	-0.1	21.2
$v_7(A_1)$	246.1	0.0	1 1	245.7	-0.4	0.0	13
$v_8(A_2)$	2344 5	0.0	0.0	23463	1.8	0.5	6.4
$v_9(A_2)$	1041.0	0.0	0.0	1040.0	-1.0	0.0001	0.04
$v_{10}(A_2)$	582.2	0.0	0.0	584.3	2.1	0.0003	0.008
$v_{11}(A_2)$	116.8	0.0	0.0	116.7	-0.1	0.0004	0.001
$v_{12}(E)$	2345.4	3.7	50.1	2347.7	2.3	2.2	39.4
$v_{13}(E)$	2332.7	1.4	11.4	2335.4	2.8	0.7	14.5
$v_{14}(E)$	2186.9	6.7	0.7	2188.5	1.6	5.1	6.1
$v_{15}(E)$	1052.1	4.8	1.2	1051.0	-1.1	4.5	1.8
$v_{16}(E)$	1044.7	0.2	4.5	1043.7	-1.0	0.2	4.0
$v_{17}(E)$	1009.0	8.5	3.5	1010.1	1.1	8.0	5.0
$v_{18}(E)$	760.6	15.4	1.8	763.7	3.0	13.5	3.3
$v_{19}(E)$	652.0	3.6	6.9	657.7	5.7	3.6	5.7
$v_{20}(E)$	625.1	0.5	0.7	625.6	0.5	0.3	1.6
$v_{21}(E)$	208.8	0.1	2.3	206.0	-2.7	0.1	2.2
$v_{22}(E)$	150.6	0.01	0.1	149.8	-0.8	0.04	0.1

Table S4B: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the halogen bonded complex of CHF₂I and trimethylphosphine-d₉ and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 3.6 cm^{-1} , 1.0 km mol^{-1} , $0.007 \text{ Å}^4 \text{ amu}^{-1}$, 11.0 cm^{-1} , 0.6 km mol^{-1} , $0.6 \text{ Å}^4 \text{ amu}^{-1}$, 11.4 cm^{-1} , 1.2 km mol^{-1} , $0.5 \text{ Å}^4 \text{ amu}^{-1}$, 50.2 cm^{-1} , 2.5 km mol^{-1} , $3.5 \text{ Å}^4 \text{ amu}^{-1}$, 50.8 cm^{-1} , 0.02 km mol^{-1}

- ¹, 0.1 Å⁴ amu⁻¹, 54.9 cm⁻¹, 0.4 km mol⁻¹, 0.3 Å⁴ amu⁻¹.

	Monomer			Hydrogen bonded complex			
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3202.1	9.7	3.0	99.6
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1276.8	-2.9	100.4	17.0
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1068.2	-5.9	269.8	3.3
v4 (A')	652.5	81.8	18.4	650.5	-2.0	72.7	14.0
$v_5(A')$	549.4	2.9	1.8	550.1	0.7	4.0	1.5
$v_6(A')$	276.0	0.2	6.6	273.5	-2.5	0.03	5.9
v ₇ (A")	1346.0	4.1	2.7	1344.4	-1.6	6.7	5.2
$v_8(A'')$	1096.9	186.9	1.9	1092.9	-4.0	209.0	3.1
v ₉ (A")	277.0	0.0004	1.2	277.6	0.7	0.09	1.0
DMS							
v_1 (A ₁)	3186.3	9.8	92.1	3187.8	1.4	5.8	74.2
$v_2(A_1)$	3062.2	31.8	338.0	3063.7	1.5	24.5	329.7
$v_3(A_1)$	1473.5	0.3	7.6	1472.7	-0.8	2.1	7.8
$v_{4}(A_{1})$	1352.5	0.8	0.9	1353.1	0.6	1.2	1.0
$v_5(A_1)$	1046.4	8.6	0.4	1047.9	1.5	8.0	0.3
$v_6(A_1)$	713.3	2.8	22.1	710.9	-2.4	2.8	19.3
$v_7(A_1)$	260.8	0.03	3.0	260.6	-0.2	0.05	2.4
$v_8(A_2)$	3168.0	0.0	16.5	3172.0	4.0	0.2	12.1
$v_{9}(A_{2})$	1450.1	0.0	10.3	1448.3	-1.8	0.4	9.3
$v_{10}(A_2)$	945.6	0.0	0.1	948.8	3.2	0.01	0.5
$v_{11}(A_2)$	171.2	0.0	0.1	174.2	3.0	0.04	0.06
$v_{12}(\mathbf{B}_1)$	3159.9	21.3	119.4	3165.0	5.1	17.2	99.4
$v_{13}(\mathbf{B}_1)$	1462.5	12.9	0.02	1460.7	-1.8	10.7	0.5
$v_{14}(B_1)$	982.7	4.1	0.006	985.7	3.0	10.9	0.4
$v_{15}(B_1)$	187.1	0.8	0.09	188.5	1.4	1.1	0.1
$v_{16}(B_2)$	3187.4	3.4	42.0	3190.0	2.6	2.7	43.4
$v_{17}(B_2)$	3066.9	26.3	2.8	3068.0	1.1	20.5	6.1
$v_{18}(B_2)$	1464.2	13.6	0.03	1462.9	-1.2	8.0	0.2
$v_{19}(B_2)$	1326.0	6.5	0.1	1325.9	-0.1	4.2	0.1
$v_{20}(B_2)$	912.7	0.2	0.2	915.2	2.5	0.1	0.1
$v_{21}(\mathbf{B}_2)$	765.1	0.1	8.5	762.7	-2.3	0.4	7.0

Table S5A: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the hydrogen bonded complex of CHF₂I and dimethyl sulfide and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 24.5 cm⁻¹, 0.6 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 31.4 cm⁻¹, 0.3 km mol⁻¹, 0.4 Å⁴ amu⁻¹, 36.8 cm⁻¹, 1.1 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 1.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 1.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 61.8 cm⁻¹, 0.04 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 72.7 cm⁻¹, 0.3 km mol⁻¹, 0.3

¹, 0.5 Å⁴ amu⁻¹, 91.6 cm⁻¹, 7.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹.

	Monomer			Hydrogen bonded complex			
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3202.1	9.7	2.9	99.6
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1277.1	-2.6	101.4	16.0
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1069.4	-4.6	254.4	3.3
v4 (A')	652.5	81.8	18.4	650.4	-2.1	73.4	13.1
$v_5(A')$	549.4	2.9	1.8	550.1	0.7	4.0	1.5
$v_6(A')$	276.0	0.2	6.6	273.5	-2.5	0.03	5.9
v ₇ (A")	1346.0	4.1	2.7	1344.9	-1.1	6.1	4.9
$v_8(A'')$	1096.9	186.9	1.9	1093.5	-3.4	201.8	3.2
v ₉ (A")	277.0	0.0004	1.2	277.6	0.6	0.09	1.1
DMS-d ₆							
v_1 (A ₁)	2361.4	4.6	45.5	2363.7	2.3	2.1	35.0
$v_2(\mathbf{A}_1)$	2194.1	16.7	162.8	2195.0	0.8	12.9	158.2
$v_3(A_1)$	1064.3	0.5	3.0	1063.2	-1.1	13.1	3.4
<i>v</i> ₄ (A ₁)	1037.4	1.2	5.6	1036.0	-1.4	0.3	5.5
$v_5(A_1)$	837.1	3.9	1.7	837.4	0.2	3.0	1.3
$v_6(A_1)$	655.7	2.7	17.4	654.5	-1.2	2.2	16.3
$v_7(A_1)$	223.6	0.0	2.2	223.7	0.1	0.05	1.8
$v_8(A_2)$	2350.5	0.0	8.5	2353.5	3.0	0.08	6.2
$v_{9}(A_{2})$	1046.5	0.0	4.3	1044.4	-2.1	7.6	3.7
$v_{10}(A_2)$	708.3	0.0	0.4	710.6	2.3	0.008	0.7
$v_{11}(A_2)$	122.8	0.0	0.1	126.3	3.5	0.04	0.09
$v_{12}(\mathbf{B}_1)$	2344.4	10.8	63.9	2348.2	3.9	8.6	53.5
$v_{13}(B_1)$	1056.3	7.2	0.0	1054.2	-2.1	17.7	0.4
$v_{14}(B_1)$	751.1	0.9	0.1	753.2	2.1	2.8	0.4
$v_{15}(\mathbf{B}_1)$	136.8	0.8	0.1	139.4	2.6	1.9	0.1
$v_{16}(\mathbf{B}_2)$	2360.9	1.2	22.7	2362.1	1.2	1.6	25.8
$v_{17}(\mathbf{B}_2)$	2197.7	15.2	0.5	2198.2	0.5	11.8	2.4
$v_{18}(B_2)$	1060.2	7.9	0.1	1058.7	-1.5	0.7	0.2
$v_{19}(\mathbf{B}_2)$	1017.4	2.5	0.6	1016.0	-1.4	0.9	0.5
$v_{20}(B_2)$	720.2	0.0	7.3	718.8	-1.3	0.1	6.0
$v_{21}(\mathbf{B}_2)$	686.0	0.0	0.1	687.8	1.8	0.003	0.05

Table S5B: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the hydrogen bonded complex of CHF₂I and dimethyl sulfided₆ and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 22.5 cm⁻¹, 0.5 km mol⁻¹, 0.4 Å⁴ amu⁻¹, 31.0 cm⁻¹, 0.3 km mol⁻¹, 0.4 Å⁴ amu⁻¹, 36.2 cm⁻¹, 1.0 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 54.5 cm⁻¹, 0.07 km mol⁻¹, 0.9 Å⁴ amu⁻¹, 67.1 cm⁻¹, 0.9 km mol⁻¹, 0.9 km mo

	Monomer			Halogen bonded complex			plex
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF_2I							
$v_1(A')$	3192.4	3.6	94.4	3183.2	-9.3	7.2	148.4
$v_2(A')$	1279.7	99.2	7.5	1279.5	-0.2	135.6	8.0
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1069.0	-5.0	327.5	2.8
v_4 (A')	652.5	81.8	18.4	650.5	-2.0	54.0	58.5
$v_5(A')$	549.4	2.9	1.8	545.6	-3.8	2.6	4.0
$v_6(A')$	276.0	0.2	6.6	274.1	-1.9	3.1	20.1
v7 (A")	1346.0	4.1	2.7	1344.2	-1.8	3.8	3.2
$v_8(A")$	1096.9	186.9	1.9	1082.2	-14.6	181.7	1.7
v9(A")	277.0	0.0004	1.2	279.3	2.3	0.01	1.5
DMS							
$v_1(A_1)$	3186.3	9.8	92.1	3188.3	1.9	6.6	89.9
$v_2(\mathbf{A}_1)$	3062.2	31.8	338.0	3062.3	0.1	24.3	311.5
$v_3(A_1)$	1473.5	0.3	7.6	1471.5	-2.0	2.8	9.7
$v_4(A_1)$	1352.5	0.8	0.9	1352.2	-0.3	0.2	7.5
$v_5(A_1)$	1046.4	8.6	0.4	1047.4	1.1	6.5	0.6
$v_6(A_1)$	713.3	2.8	22.1	710.5	-2.8	3.3	19.0
$v_7(A_1)$	260.8	0.03	3.0	261.1	0.3	0.03	2.5
$v_8(A_2)$	3168.0	0.0	16.5	3170.6	2.6	0.4	14.5
$v_9(A_2)$	1450.1	0.0	10.3	1448.3	-1.8	0.3	8.6
$v_{10}(A_2)$	945.6	0.0	0.1	948.9	3.3	0.003	0.4
$v_{11}(A_2)$	171.2	0.0	0.1	173.6	2.4	0.02	0.09
$v_{12}(\mathbf{B}_1)$	3159.9	21.3	119.4	3163.6	3.7	16.3	113.3
$v_{13}(B_1)$	1462.5	12.9	0.02	1461.2	-1.4	13.6	0.5
$v_{14}(B_1)$	982.7	4.1	0.006	984.9	2.3	13.6	0.7
$v_{15}(B_1)$	187.1	0.8	0.09	188.0	0.9	1.8	0.4
$v_{16}(B_2)$	3187.4	3.4	42.0	3189.3	1.9	1.7	32.6
$v_{17}(\mathbf{B}_2)$	3066.9	26.3	2.8	3066.7	-0.2	18.7	7.5
$v_{18}(B_2)$	1464.2	13.6	0.03	1461.5	-2.6	8.0	0.4
$v_{19}(B_2)$	1326.0	6.5	0.1	1326.0	0.1	3.5	0.09
$v_{20}(B_2)$	912.7	0.2	0.2	914.9	2.2	0.2	0.2
$v_{21}(B_2)$	765.1	0.1	8.5	762.3	-2.8	0.4	7.2

Table S6A: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the halogen bonded complex of CHF₂I and dimethyl sulfide and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 6.3 cm⁻¹, 2.5 km mol⁻¹, 0.05 Å⁴ amu⁻¹, 32.2 cm⁻¹, 0.0002 km mol⁻¹, 1.0 Å⁴ amu⁻¹, 32.5 cm⁻¹, 2.0 km mol⁻¹, 0.6 Å⁴ amu⁻¹, 63.9 cm⁻¹, 1.5 km mol⁻¹, 1.8 Å⁴ amu⁻¹, 67.2 cm⁻¹, 0.007 km mol⁻¹,

 $0.8~{\rm \AA^4}~{\rm amu^{-1}},\,106.5~{\rm cm^{-1}},\,12.3~{\rm km}~{\rm mol^{-1}},\,2.9~{\rm \AA^4}~{\rm amu^{-1}}.$

]	Monomer		Halogen bonded complex			
	Frequency	IR intensity	Raman intensity		_	_	
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3183.2	-9.3	7.2	148.8
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1279.5	-0.2	136.1	7.9
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1069.4	-4.7	311.5	2.1
v4 (A')	652.5	81.8	18.4	650.4	-2.1	52.9	60.6
$v_5(A')$	549.4	2.9	1.8	545.6	-3.8	2.6	4.0
$v_6(A')$	276.0	0.2	6.6	274.0	-1.9	3.1	20.0
v ₇ (A")	1346.0	4.1	2.7	1344.2	-1.8	3.9	3.2
$v_8(A'')$	1096.9	186.9	1.9	1082.2	-14.6	181.4	1.7
v ₉ (A")	277.0	0.0004	1.2	279.3	2.3	0.01	1.5
DMS-d ₆							
v_1 (A ₁)	2361.4	4.6	45.5	2363.2	1.9	2.9	46.5
$v_2(A_1)$	2194.1	16.7	162.8	2194.0	-0.2	13.0	148.8
$v_3(A_1)$	1064.3	0.5	3.0	1062.0	-2.4	20.4	5.5
$v_4(A_1)$	1037.4	1.2	5.6	1036.0	-1.4	0.6	9.2
$v_5(A_1)$	837.1	3.9	1.7	836.9	-0.3	2.6	1.5
$v_6(A_1)$	655.7	2.7	17.4	654.3	-1.4	4.6	13.0
$v_7(A_1)$	223.6	0.0	2.2	224.3	0.7	0.05	1.9
$v_8(A_2)$	2350.5	0.0	8.5	2352.4	1.9	0.2	7.2
$v_{9}(A_{2})$	1046.5	0.0	4.3	1045.1	-1.4	0.2	3.6
$v_{10}(A_2)$	708.3	0.0	0.4	710.9	2.6	0.004	0.8
$v_{11}(A_2)$	122.8	0.0	0.1	126.4	3.6	0.01	0.1
$v_{12}(\mathbf{B}_1)$	2344.4	10.8	63.9	2347.2	2.8	7.8	58.6
$v_{13}(\mathbf{B}_1)$	1056.3	7.2	0.0	1055.1	-1.2	8.8	0.1
$v_{14}(B_1)$	751.1	0.9	0.1	753.1	2.1	2.2	0.9
$v_{15}(\mathbf{B}_1)$	136.8	0.8	0.1	140.3	3.5	4.3	1.1
$v_{16}(B_2)$	2360.9	1.2	22.7	2362.6	1.7	0.6	17.5
$v_{17}(\mathbf{B}_2)$	2197.7	15.2	0.5	2197.3	-0.3	10.9	3.0
$v_{18}(\mathbf{B}_2)$	1060.2	7.9	0.1	1057.9	-2.3	4.7	0.2
$v_{19}(\mathbf{B}_2)$	1017.4	2.5	0.6	1016.1	-1.3	1.7	0.5
$v_{20}(B_2)$	720.2	0.0	7.3	718.5	-1.6	0.1	5.9
$v_{21}(\mathbf{B}_2)$	686.0	0.0	0.1	687.8	1.8	0.0008	0.1

Table S6B: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the halogen bonded complex of CHF₂I and dimethyl sulfide-d₆ and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 6.0 cm⁻¹, 2.2 km mol⁻¹, 0.03 Å⁴ amu⁻¹, 30.2 cm⁻¹, 0.002 km mol⁻¹, 1.0 Å⁴ amu⁻¹, 31.4 cm⁻¹, 1.9 km mol⁻¹, 0.6 Å⁴ amu⁻¹, 61.0 cm⁻¹, 0.009 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 61.3 cm⁻¹, 1.3

km 1.6 Å⁴ amu⁻¹, 94.9 cm⁻¹, 8.4 km mol⁻¹, 2.2 Å⁴ amu⁻¹.

mol⁻¹,

		Monomer		Hydrogen bonded complex (C-H····Cl + F····H-C)			
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
$v_1(A')$	3192.4	3.6	94.4	3208.2	15.7	0.8	82.7
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1280.8	1.1	101.4	8.9
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1067.8	-6.3	266.0	3.0
<i>v</i> ₄ (A')	652.5	81.8	18.4	650.1	-2.5	75.2	15.9
$v_5(A')$	549.4	2.9	1.8	549.6	0.2	3.4	1.5
$v_6(A')$	276.0	0.2	6.6	275.0	-1.0	0.09	6.0
v ₇ (A")	1346.0	4.1	2.7	1342.8	-3.2	0.7	5.1
<i>v</i> ₈ (A")	1096.9	186.9	1.9	1093.8	-3.1	216.3	2.6
<i>v</i> ₉ (A")	277.0	0.0004	1.2	278.2	1.2	0.07	1.1
CH ₃ Cl							
<i>v</i> ¹ (A)	3109.9	24.4	147.2	3111.6	1.7	17.0	139.7
$v_2(\mathbf{A})$	1369.8	13.2	0.006	1370.0	0.3	11.1	0.1
$v_3(\mathbf{A})$	750.4	25.3	17.9	741.4	-8.9	23.8	14.7
v ₄ (E)	3230.5	3.6	48.9	3235.5	5.0	2.6	40.3
v ₅ (E)	1474.7	5.0	4.0	1472.3	-2.5	9.6	3.7
$v_6(E)$	1031.9	2.1	0.6	1034.2	2.2	3.5	0.6

Table S7: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the hydrogen bonded complex with a secondary C-H···F interaction of CHF₂I and chloromethane and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 22.8 cm⁻¹, 2.2 km mol⁻¹, 0.9 Å⁴ amu⁻¹, 26.6 cm⁻¹, 0.8 km mol⁻¹, 0.5 Å⁴ amu⁻¹, 41.9 cm⁻¹, 1.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 56.6 cm⁻¹, 0.3 km mol⁻¹, 0.2 Å⁴ amu⁻¹, 70.2 cm⁻¹, 0.7 km mol⁻¹,

 $0.3 \text{ Å}^4 \text{ amu}^{-1}, 80.7 \text{ cm}^{-1}, 7.3 \text{ km mol}^{-1}, 1.0 \text{ Å}^4 \text{ amu}^{-1}.$

		Hydrogen bonded complex (C-H \cdots Cl + I \cdots H-C)					
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
$v_1(A')$	3192.4	3.6	94.4	3205.2	12.7	1.6	115.7
<i>v</i> ₂ (A')	1279.7	99.2	7.5	1279.1	-0.6	104.5	13.2
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1073.0	-1.1	309.9	3.3
<i>v</i> ₄ (A')	652.5	81.8	18.4	650.2	-2.3	75.8	15.9
$v_5(A')$	549.4	2.9	1.8	550.8	1.4	4.5	1.8
$v_6(A')$	276.0	0.2	6.6	273.9	-2.1	0.04	6.3
v ₇ (A")	1346.0	4.1	2.7	1354.6	8.7	6.5	1.6
$v_8(A")$	1096.9	186.9	1.9	1097.2	0.4	176.1	1.8
v ₉ (A")	277.0	0.0004	1.2	276.2	-0.8	0.0	1.0
CH ₃ Cl							
<i>v</i> ¹ (A)	3109.9	24.4	147.2	3111.9	2.0	16.4	142.6
$v_2(\mathbf{A})$	1369.8	13.2	0.006	1369.9	0.2	12.0	0.1
$v_3(A)$	750.4	25.3	17.9	741.9	-8.5	24.1	14.5
v ₄ (E)	3230.5	3.6	48.9	3236.0	5.5	3.3	42.6
v ₅ (E)	1474.7	5.0	4.0	1470.6	-4.2	11.1	3.5
$v_6(E)$	1031.9	2.1	0.6	1033.6	1.6	3.1	0.6

Table S8: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the hydrogen bonded complex with a secondary C-H···I interaction of CHF₂I and chloromethane and both monomers, as well as the complexation shift Δv .

Van der Waals vibrations: 5.7 cm⁻¹, 0.6 km mol⁻¹, 0.6 Å⁴ amu⁻¹, 18.5 cm⁻¹, 3.7 km mol⁻¹, 0.1 Å⁴ amu⁻¹, 28.5 cm⁻¹, 0.2 km mol⁻¹, 0.6 Å⁴ amu⁻¹, 57.2 cm⁻¹, 0.04 km mol⁻¹, 0.03 Å⁴ amu⁻¹, 61.1 cm⁻¹, 0.04 km mol⁻¹,

0.4 Å⁴ amu⁻¹, 72.2 cm⁻¹, 6.2 km mol⁻¹, 0.7 Å⁴ amu⁻¹.

]	Halogen bonded complex					
	Frequency	IR intensity	Raman intensity	Frequency	Δν	IR intensity	Raman intensity
CHF ₂ I							
v_1 (A')	3192.4	3.6	94.4	3189.4	-3.0	4.6	113.8
v_2 (A')	1279.7	99.2	7.5	1281.2	1.5	119.1	6.8
<i>v</i> ₃ (A')	1074.1	300.4	3.2	1071.6	-2.5	312.1	2.8
v4 (A')	652.5	81.8	18.4	654.5	2.0	72.8	26.5
$v_5(A')$	549.4	2.9	1.8	548.0	-1.4	2.8	2.1
$v_6(A')$	276.0	0.2	6.6	276.9	1.0	0.8	8.9
v ₇ (A")	1346.0	4.1	2.7	1345.1	-0.9	4.1	2.8
$v_8(A'')$	1096.9	186.9	1.9	1089.6	-7.3	185.1	1.8
<i>v</i> ₉ (A")	277.0	0.0004	1.2	278.7	1.7	0.01	1.4
CH ₃ Cl							
<i>v</i> ₁ (A)	3109.9	24.4	147.2	3109.6	-0.3	17.3	144.7
$v_2(\mathbf{A})$	1369.8	13.2	0.006	1369.3	-0.4	8.2	0.7
$v_3(A)$	750.4	25.3	17.9	743.2	-7.2	23.6	15.4
v ₄ (E)	3230.5	3.6	48.9	3232.7	2.2	3.3	46.1
v ₅ (E)	1474.7	5.0	4.0	1471.7	-3.0	9.2	3.5
$v_6(E)$	1031.9	2.1	0.6	1032.7	0.7	4.1	0.8

Table S9: MP2/aug-cc-pVDZ-PP vibrational frequencies, in cm⁻¹, infrared intensities, in km mol⁻¹, and Raman intensities, in Å⁴ amu⁻¹, for the halogen bonded complex of CHF₂I and chloromethane and both monomers, as well as the complexation shift Δv .

 $0.5 \text{ Å}^4 \text{ amu}^{-1}$, 69.5 cm⁻¹, 7.3 km mol⁻¹, 1.1 Å⁴ amu⁻¹.

	Assignment	Vmonomon	Vacuumlay VD	Avera VD	Avala VB	Voommley HD	Avar IID	$\Delta v_{aa1a JJD}$
	rissignment	v monomer	V complex, AB	Дуехр, ль		V complex, HB	⊿ vехр,пв	
		2002.2	2000.03	10.4	10.1	2000.03	10.4	10.6
CHF ₂ I	v_1	3003.3	2989.9ª	-13.4	-12.1	2989.9ª	-13.4	-19.6
	$v_5 + v_7 + v_8$	2993.9			-24.3		10.5	21.0
	$v_3 + v_8$	2171.2	2145.2	-26.0	-23.2	2160.6	-10.6	-8.1
	$2v_3$	2144.1	2129.0	-15.1	-11.9	2133.9	-10.2	-7.9
	v_7	1337.2	1335.5	-1.7	-2.3			23.5
	v_2	1247.6	1244.0	-3.6	-1.2	1247.8	0.8	0.6
	ν_8	1107.6	1087.7	-19.9	-17.2	1101.8	-5.8	-4.2
	V 3	1077.1	1070.7	-6.4	-6.0	1072.5	-4.6	-3.9
	ν_4	633.6	628.5	-5.1	-5.0	663.1	-0.5	-1.5
	ν_5	567.8	563.2	-4.6	-4.7	568.3	0.5	-1.6
	$2v_6$	536.8						
TMP	V12	2971.9	2974.6	2.7	3.0	2974.6	2.7	2.3
	ν_1	2957.7	2961.0	2.3	3.1	2961.0	2.3	2.7
	v_{13}	2957.7	2961.0	2.3	3.5	2961.0	2.3	3.1
	v_2	2897.2	2899.2	2.0	2.5	2899.2	2.0	2.3
	v_{14}	2897.2	2899.2	2.0	2.5	2899.2	2.0	2.4
	V ₃	1436.6	1436.2	-0.4	-1.3	1436.2	-0.4	-0.3
	V15	1426.9	1426.1	-0.8	-1.2	1426.1	-0.8	-0.7
	V16	1418.3	1417.9	-0.4	-1.2	1417.9	-0.4	-0.3
	$\nu_{6+}\nu_{20}$	1359.4	1366.9	7.5	7.8	1366.9	7.5	6.4
	$2v_6$	1310.9	1314.5	3.6	2.7	1314.5	3.6	3.8
	v_4	1295.1	1297.7	2.6	0.7	1297.7	2.6	1.0
	v_{17}	1278.7	1280.8	2.1	0.9	1280.8	2.1	0.7
	v_5	949.0	948.8	-0.2	-0.3	950.5	1.5	1.5
	v_{18}	937.6	939.8	2.2	2.3	939.8	2.2	2.3
	V19	825.3	827.2	1.9	1.2	827.2	1.9	2.2
	V20	708.7	715.0	6.3	6.4	713.1	4.4	4.5
	Ve	654 1	656.0	19	14	656.0	19	19

Table S10: Experimental vibrational frequencies for the monomer and complexes, as well as experimental complexation shifts (Δv_{exp}) and MP2/aug-cc-pVDZ-PP calculated complexation shifts (Δv_{calc}), in cm⁻¹, for the halogen bonded complex (XB) and hydrogen bonded complex (HB) of difluoroiodomethane (CHF₂I) with trimethylphosphine (TMP) dissolved in LKr at 130 K.

^a Shoulder of TMP complex band

Table S11: Experimental vibrational frequencies for the monomer and complexes, as well as experimental complexation shifts (Δv_{exp}) and MP2/aug-cc-pVDZ-PP calculated complexation shifts (Δv_{calc}), in cm⁻¹, for the halogen bonded complex (XB) and hydrogen bonded complex (HB) of difluoroiodomethane (CHF₂I) with dimethyl sulfide (DMS) dissolved in LKr at 130 K.

	Assignment	Vmonomer	Vcomplex,XB	$\Delta v_{exp,XB}$	$\Delta v_{calc,XB}$	$\nu_{complex,HB}$	$\Delta v_{exp,HB}$	$\Delta v_{calc,HB}$
CHF ₂ I	ν_1	3003.3	2994.5	-8.8	-9.3	2994.5	-8.8	9.7
	$\nu_{5+}\nu_{7+}\nu_8$	2993.9			-20.3			-4.9
	$\nu_{3+} \nu_8$	2170.7	2150.9	-19.8	-19.7	2163.0	-7.7	-9.9
	$2v_3$	2143.7	2132.7	-11.0	-10.1	2132.7	-11.0	-11.7
	V 7	1337.3	1336.2	-1.1	-1.8	1336.2	-1.1	-1.6
	v_2	1247.6	1247.9	0.3	-0.2	1247.9	0.3	-2.9
	ν_8	1107.3	1092.7	-14.6	-14.6	1103.6	-3.7	-4.0
	V 3	1077.1	1072.5	-4.6	-5.0	1072.5	-4.6	-5.9
	ν_4	633.6	632.3	-1.3	-2.0	663.3	-1.3	-2.0
	v_5	567.7	564.3	-3.4	-3.8	568.0	0.3	0.7
	$2v_6$	536.3	533.0	-3.3	-3.8	533.0	-3.3	-5.0
DMS	ν_1	2992.0	2994.4	2.4	1.9	2994.4	2.4	1.4
	v_{16}	2992.0	2994.4	2.4	1.9	2994.4	2.4	2.6
	v_{12}	2965.5	2970.3	4.8	3.7	2970.3	4.8	5.1
	v_{17}	2920.4	2921.9	1.5	-0.2	2921.9	1.5	1.1
	v_2	2917.3	2918.9	1.6	0.1	2918.9	1.6	1.5
		2883.8						
		2864.6	2862.4	-2.2		2862.4	-2.2	
		2856.5	2855.3	-1.2		2855.3	-1.2	
	$2v_9$	2838.4	2836.3	-2.1	-3.5	2836.3	-2.1	-3.7
	v_3	1444.4	1442.8	-1.6	-2.0	1444.4	0.0	-0.8
	v_{18}	1438.9	1437.2	-1.7	-2.6	1437.2	-1.7	-1.2
	V 13	1432.8	1432.2	-0.6	-1.4	1432.2	-0.6	-1.8
	v4 (vw)	1331.8			-0.3			0.6
	V19	1310.4	1311.5	1.1	0.1	1311.5	1.1	-0.1
	v_5	1030.8	1032.0	1.2	1.1	1032.0	1.2	1.5
	v_{14}	973.3	975.3	2.0	2.3	975.3	2.0	3.0
	V 20	901.8	904.0	2.2	2.2	904.0	2.2	2.5
	ν_6	696.2	694.0	-2.2	-2.8	696.2	-2.2	-2.4

Table S13: Overview of the different van 't Hoff plots constructed for the halogen bonded complex between CHF₂I and TMP or TMP-d₉ in LKr in the 120-156 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies ΔH° (LKr).

X _{CHF2} I	Х _{ТМР}	Integrated CHF ₂ I	Integrated TMP	Integrated Complex	ΔH° (LKr) ^a
- 2		band (cm ⁻¹)	band (cm ⁻¹)	band (cm ⁻¹)	
$1.1 imes 10^{-4}$	$1.9 imes 10^{-3}$	1128-1093	3000-2930	1095-1080	-15.6(2)
$6.1 imes 10^{-5}$	$9.4 imes 10^{-4}$	646-622	834.4-819.5	1095-1080	-15.6(3)
$1.9 imes 10^{-4}$	$1.9 imes10^{-3}{}^{\mathrm{b}}$	1128-1093	2263-2185	1095-1080	-15.0(1)

^a Values are given with the standard deviation of the linear regression in parentheses.

^b Measurement involving TMP-d₉, rather than TMP.

Table S14: Overview of the different van 't Hoff plots constructed for the hydrogen bonded complex between CHF₂I and TMP or TMP-d₉ in LKr in the 120-156 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies ΔH° (LKr).

X _{CHF₂I}	X _{TMP}	Integrated CHF ₂ I	Integrated TMP	Integrated Complex	ΔH° (LKr) ^a
- 2		band (cm ⁻¹)	band (cm ⁻¹)	band (cm ⁻¹)	
$1.1 imes 10^{-4}$	1.9×10^{-3}	1128-1093	3000-2930	1110-1095	-10.40(5)
$6.1 imes 10^{-5}$	$9.4 imes 10^{-4}$	646-622	834.4-819.5	1109-1095	-10.3(1)
$1.9 imes10^{-4}$	$1.9 imes10^{-3}{}^{\mathrm{b}}$	1128-1093	2263-2185	1110-1095	-10.8(1)

^a Values are given with the standard deviation of the linear regression in parentheses.

^b Measurement involving TMP-d₉, rather than TMP.

Table S15: Overview of the different van 't Hoff plots constructed for the halogen bonded complex between CHF₂I and DMS or DMS-d₆ in LKr in the 120-156 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies ΔH° (LKr).

X _{CHF-I}	X _{DMS}	Integrated CHF ₂ I	Integrated DMS	Integrated Complex	ΔH° (LKr) ^a
- 2		band (cm ⁻¹)	band (cm ⁻¹)	band (cm ⁻¹)	
$3.8 imes 10^{-5}$	1.9×10^{-3}	1263-1234	997-955	CHF ₂ I v ₈ (1092.6)	-12.0(2)
$1.1 imes10^{-4}$	$1.9 imes10^{ ext{-3 b}}$	1263-1232	2275-2195	CHF ₂ I v ₈ (1092.6) ^c	-11.3(3)
$1.9 imes 10^{-4}$	$1.9 imes 10^{-3}$	1262-1238	1322-1302	CHF ₂ I v ₈ (1092.6) ^c	-10.8(2)
$1.9 imes 10^{-4}$	$1.9 imes10^{-3}{}^{\mathrm{b}}$	1262.5-1235	2280-2185	CHF ₂ I v ₈ (1092.6) ^c	-11.1(1)

^a Values are given with the standard deviation of the linear regression in parentheses.

^b Measurement involving DMS-d₆, rather than DMS.

^c Intensity obtained from a band fit analysis.

Table S16: Overview of the different van 't Hoff plots constructed for the hydrogen bonded complex between CHF₂I and DMS or DMS-d₆ in LKr in the 120-156 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies ΔH° (LKr).

X _{CHF₂I}	x _{DMS}	Integrated CHF ₂ I	Integrated DMS	Integrated Complex	ΔH° (LKr) ^a
2	_	band (cm ⁻¹)	band (cm^{-1})	band (cm ⁻¹)	
$3.8 imes 10^{-5}$	1.9×10^{-3}	1263-1234	997-955	1114-1090	-8.0(2)
$1.1 imes 10^{-4}$	$1.9 imes10^{-3}{}^{\mathrm{b}}$	1124-1093	2275-2195	1118-1090	-7.1(3)
$1.9 imes 10^{-4}$	1.9×10^{-3}	1262.1238	1322-1302	1116-1091	-7.4(1)
$1.9 imes 10^{-4}$	$1.9 imes10^{-3}{}^{\mathrm{b}}$	1262.5-1235	2280-2185	1114-1089	-8.3(2)

^a Values are given with the standard deviation of the linear regression in parentheses.

^b Measurement involving DMS-d₆, rather than DMS.

Figure S1: Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue (left) and gradient isosurfaces (s = 0.5 a.u., right) for the hydrogen bonded complex (top) and the halogen bonded complex (bottom) between CHF₂I and trimethylphosphine.

Figure S2: Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue (left) and gradient isosurfaces (s = 0.5 a.u., right) for the hydrogen bonded complex (top) and the halogen bonded complex (bottom) between CHF₂I and dimethyl sulfide.

Figure S3: Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue (left) and gradient isosurfaces (s = 0.5 a.u., right) for the hydrogen bonded complexes with a secondary C-H···F (top) or C-H···I interaction (middle) and the halogen bonded complex (bottom) between CHF₂I and CH₃Cl.

Figure S4: Infrared spectra of selected spectral regions for the mixtures of difluoroiodomethane with trimethylphosphine dissolved in LKr at 130 K. In each panel, trace *a* represents the mixed solution, while traces *b* and *c* show the rescaled spectra of the solutions containing only difluoroiodomethane or trimethylphosphine, respectively. Trace *d* represents the spectrum of the complex which is obtained by subtracting the rescaled traces *b* and *c* from trace *a*. Bands due to the halogen and hydrogen bonded complexes observed in traces *d* are marked with an asterisk (*) or open circle (°), respectively. Estimated mole fractions of the solutions of the mixtures are 5.6×10^{-5} for CHF₂I and 3.8×10^{-3} for TMP in panel A, 9.4×10^{-4} for CHF₂I and 9.4×10^{-4} for TMP in panel B and 5.6×10^{-5} for CHF₂I and 2.4×10^{-3} for TMP-d₉ in panel C.

Figure S5: Infrared spectra of selected spectral regions for the mixtures of difluoroiodomethane with dimethyl sulfide dissolved in LKr at 130 K. In each panel, trace *a* represents the mixed solution, while traces *b* and *c* show the rescaled spectra of the solutions containing only difluoroiodomethane or dimethyl sulfide, respectively. Trace *d* represents the spectrum of the complex which is obtained by subtracting the rescaled traces *b* and *c* from trace *a*. Bands due to the halogen and hydrogen bonded complexes observed in traces *d* are marked with an asterisk (*) or open circle (°), respectively. Estimated mole fractions of the solutions of the mixtures are 5.6×10^{-5} for CHF₂I and 3.8×10^{-3} for DMS in panel A and 9.4×10^{-4} for CHF₂I and 1.9×10^{-3} for DMS in panel B.

Figure S6: Concentration study plots of the CHF₂I·TMP halogen bonded complex at 130 K in LKr. Integrated intensity of the complex is plotted against the product of monomer intensities $(I_{CHF_2I})^m$ (TMP)ⁿ. Top left: m = 1, n = 1, top right: m = 2, n = 1, bottom left m = 1, n = 2 and bottom right m = 2, n = 2. Additionally, residual sum of square values (RSS) have been included.

Figure S7: Concentration study plots of the CHF₂I·TMP hydrogen bonded complex at 130 K in LKr. Integrated intensity of the complex is plotted against the product of monomer intensities $(I_{CHF_2I})^m (TMP)^n$. Top left: m = 1, n = 1, top right: m = 2, n = 1, bottom left m = 1, n = 2 and bottom right m = 2, n = 2. Additionally, residual sum of square values (RSS) have been included.

Figure S8: Concentration study plots of the CHF₂I DMS halogen bonded complex at 130 K in LKr. Integrated intensity of the complex is plotted against the product of monomer intensities $(I_{CHF_2I})^m (DMS)^n$. Top left: m = 1, n = 1, top right: m = 2, n = 1, bottom left m = 1, n = 2 and bottom right m = 2, n = 2. Additionally, residual sum of square values (RSS) have been included.

Figure S9: Concentration study plots of the CHF₂I·DMS hydrogen bonded complex at 130 K in LKr. Integrated intensity of the complex is plotted against the product of monomer intensities $(I_{CHF_2I})^m (DMS)^n$. Top left: m = 1, n = 1, top right: m = 2, n = 1, bottom left m = 1, n = 2 and bottom right m = 2, n = 2. Additionally, residual sum of square values (RSS) have been included.

Figure S10: Typical van 't Hoff plots of the hydrogen bonded complexes (filled) and halogen bonded complexes (hollow) of CHF₂I with dimethyl sulfide (round) and trimethylphosphine (square) in LKr.

Figure S11: Complexation shifts (in cm⁻¹) of the CHF₂I v_1 mode plotted against the C···S distance (in Å) for the partially optimized hydrogen bonded complex with the C-H···S angle (\Box) and C-H···S angle and C-H···S-C dihedral angle (\circ) from the equilibrium geometry.

Figure S12: Distribution of MP2/aug-cc-pVDZ-PP *ab initio* frequencies for the CH stretching mode of the hydrogen bonded complex between CHF₂I and DMS-d₆ at 130 K, obtained from a Monte Carlo sample of the internal coordinates describing the relative orientation of both molecules. Division of the frequencies was made using a bin-width of 1 wavenumber.

Figure S13: Plot of the enthalpy ratio of $\frac{\Delta H^{\circ}_{XB}}{\Delta H^{\circ}_{HB}}$ versus chemical hardness η (in eV), as calculated using the method of Tozer et al. for the complexes formed between difluoroiodomethane and the Lewis bases trimethylamine, dimethyl ether, trimethylphosphine and dimethyl sulfide.