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Supplementary text 
 

 

1. Extended Debye-model analysis of the thermal expansion 

 

The Einstein model formalism described in the main text is not as accurate as the more rigorous 

Debye model, which would be the preferred choice when heat capacity data are available to aid in 

constraining the Debye temperatures. This is a particular problem for these types of molecular 

materials where models invoking two (or more) characteristic Debye temperatures are necessary 

and one is also obliged to determine the relative contributions of these terms to the internal energy. 

A first-order double-Debye model uses six variable parameters (versus four in the Einstein model); 

in practice it is impossible to determine these uniquely from thermal expansion data alone. It is 

nevertheless interesting to attempt a restrained fit of such models to V(T) in order to see what 

information might be obtained. 

For a single-Debye model the temperature dependence of the volume is described as: 
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where Q = (V0 KT / ) and V0, KT and  have the same meaning as previously given. The internal 

energy of the crystal, U(T), is calculated via the Debye approximation for the heat capacity, 



S U P P L E M E N T A R Y  M A T E R I A L  

3 
 

 

   









T

0

3
3

B
1

T
TNk9TU

D

dx
e

x
x

D




 (Eq. S2) 

 

where D is the characteristic Debye temperature, N is the number of atoms per formula unit, kB 

is the Boltzmann constant, and x = ħω/kBT. Note that the vibrational zero-point energy of 9NkBD/8 

is included via the term V0. This model, with three adjustable parameters, V0, Q and D, is fitted to 

the observed V(T) to give the values listed in Supplementary Table S3. 

However, it is clear (as expected) that there is a significant temperature-dependent residual 

when using a single Debye temperature. Consequently, we adopt a model in which there are two 

adjustable Debye temperatures: 
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where U(T)1 and U(T)2 represent two distinct vibrational contributions to the internal energy of 

the crystal with characteristic high-frequency cut-offs defined by two Debye temperatures, θD
1  and 

θD
2 : the magnitude of their relative contributions is given by the mixing parameters x and y. 

Ordinarily, one would fit the molar heat capacity of the material in order to obtain accurate values 

of the Debye temperatures, and particularly of the two mixing parameters, since these are quite 

poorly determined from thermal expansion data. In this instance, we found that it was necessary to 

fix V0 at the observed 9 K value, 175.7872 cm
3
 mol

−1
, and also to fix KT (and thus Q, assuming  = 

1) at the value found in the high-pressure part of this work – see Section 3.4), 19.50 GPa. This 

allows us to obtain tolerably well-determined values of the two Debye temperatures and the mixing 

parameters. It is worth observing that the sum x + y = 0.64, which implies that the heat capacity of 

MS9 does not approach the classical high temperature limit of Dulong and Petit (3NkB), but instead 

tends to 2NkB. This is remarkably similar to the result we obtained from fitting the thermal 

expansion of ammonia dihydrate (Fortes et al., 2003) and, in both cases, probably reflects the fact 

that neither substance can reach its high-temperature limit by virtue either of melting (at 175 K for 

ammonia dihydrate) or transforming to another phase (at 260 K for MS9). 

Figure 6d compares the volume thermal expansion coefficient obtained from the modified 

Einstein and the double-Debye models: these clearly diverge above 220 K so we have fitted the 

Einstein-derived V(T) with the double-Debye model to evaluate the source of the difference. As 
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shown in Supplementary Table S3, the main difference is in a larger contribution from a much 

higher θD
2  and x + y = 0.95, which is now consistent with the high-temperature Dulong-Petit limit (x 

+ y = 1). Indeed these values are quite similar in many respects to those used in analyzing the 

thermal expansion of MS7 (Fortes et al., 2006), which had been derived from fitting the heat 

capacity of ZnSO4·7H2O, where θD
1  = 238 ± 5 K, θD

2  = 1166 ± 6 K, x = 0.26(1) and y = 0.60(1).  

The values of θD
1  and θD

2  given in Supplementary Table S3 are equivalent to vibrational 

frequencies of 244 and 1034 cm
−1

, which almost certainly correspond to the high-frequency cut-offs 

of the translational and rotational librations of water, respectively, so it is not surprising that these 

should be similar in a range of hydrates with interstitial water molecules. 

It is reassuring that a model with a bulk modulus matching the experimentally-determined value 

fits the zero-pressure thermal expansion so well.  

 

 

 

 

2. Calculated elastic constants and other derived properties of MS9 

 

The hydrostatic compression calculations described in the main text effectively provide (in the 

form of the elastic strain tensor) various linear sums of elastic compliances, sij; e1 = (s11 + s12 + s13), 

e2 = (s12 + s22 + s23), e3 = (s13 + s23 + s33) and e5 = (s15 + s25 + s35). Hence only nine of the thirteen 

independent 2
nd

-order elastic moduli are ‘sampled’, those excluded being s44, s46, s55 and s66. In the 

absence of single crystals and given the metastability of this phase and the requirement to handle it 

at very low temperatures, the prospect of obtaining experimental data on the individual elastic 

constants seems remote. We have therefore used CASTEP to compute the complete set of thirteen 

elastic stiffness moduli from first principles. 

This was achieved by applying a series of strains of varying amplitudes, the general strain 

matrix taking the form 

 

𝜀 = (

𝜀1 𝜀6 2⁄ 𝜀5 2⁄

𝜀6 2⁄ 𝜀2 𝜀4 2⁄

𝜀5 2⁄ 𝜀4 2⁄ 𝜀3

) 

(Eq. S4) 

 

with the four independent sets of applied strains being (, 0, 0, , 0, 0); (0, 0, , 0, 0, ); (0, , 0, 

0, 0, 0); and (0, 0, 0, 0, , 0). The value of  was varied between ± 0.03 in eight increments; at each 

strain amplitude, the ions were relaxed and a stress tensor computed, resulting in a total of thirty-
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three calculated 3x3 stress tensors. The elastic constants are then simply partial derivatives of the 

stress with respect to the applied strain evaluated at zero strain: 

 

𝑐𝑖𝑗 = (
𝜕𝜎𝑖
𝜕𝑒𝑗

)
0

 
(Eq. S5) 

 

The results of the calculations were fitted with second-order polynomials to obtain cij and their 

uncertainties; the elastic compliances and their propagated uncertainties were then found by matrix 

inversion, sij = cij
−1

. The same method was employed by Arbeck et al. (2010) to obtain accurate (if 

not so precise) elastic constants for the tetragonal polymorph of NiSO4·6H2O (retgersite). 

Supplementary Table S4 lists the calculated cij and sij of MS9 along with elastic constants (cij) 

measured by Alexandrov et al. (1963) for a number of orthorhombic and monoclinic heptahydrates 

of divalent metal sulfates. After the bulk and directional elastic properties for MS9 reported in the 

accompanying paper, these offer the best available experimental data against which to check that 

the DFT elastic constants are accurate. Indeed, with the exception of the larger c33 in MS9, which is 

supported observationally by the largest eigenvalue of the compressibility tensor and the smallest 

eigenvalue of the thermal expansion tensor being closely aligned to the c-axis, there is a high degree 

of similarity between the elastic constants of MS9 and the tabulated heptahydrates. The polyhedral 

units in these materials are substantially stiffer than the bulk crystal: in MS9 the calculated 

polyhedral bulk moduli are (i) 236 ± 5 GPa for the SO4 tetrahedra; (ii) 91 ± 4 GPa for the M1 

octahedral site; and (iii) 60 ± 1 GPa for the M2 octahedral site. This means that the overall elastic 

properties of the material are dominated by the intermolecular hydrogen bonds and the similarities 

in the elastic constants between the 9- and 7-hydrates are thus not surprising. Since both 

MgSO4·11H2O and MgSeO4·9H2O may be grown very easily as large single crystals, it would be 

instructive to measure their elastic constants. 

From the calculated elastic moduli we obtain a number of other useful quantities. The bulk 

elastic properties of a randomly oriented aggregate of single crystals may be calculated for two 

cases, one in which all components of the aggregrate are assumed to be experiencing the same 

strain (the Voigt upper bound: Voigt, 1910) and one in which all components are assumed to be 

subject to the same stress (the Reuss lower bound: Reuss, 1929). The bulk modulus (K) and shear 

modulus (G) determined from the Voigt limits (Eq. S6 and S7) and from the Reuss limits (Eq. S8 

and S9) are given in Supplementary Table S5. As determined by Hill (1952) an accurate estimate of 

an anisotropic crystalline aggregrate’s bulk elastic properties is given by the arithmetical mean of 

the Voigt and Reuss bounds, which is the so-called Voigt-Reuss-Hill average (Eq. S10 and S11). 
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Other polycrystalline averages, such as Young’s modulus, E (Eq. S12), Poisson’s ratio,  (Eq. S13) 

and the longitudinal and transverse wave speeds, VP and VS (Eqs. S14 and S15). These last two are 

of particular relevance since they represent quantities that can (and should) be measured 

ultrasonically both under ambient conditions and as a function of pressure and temperature. 

 

KV = [(c11 + c22 + c33) + 2(c12 + c13 + c23)] / 9 (Eq. S6) 

GV = [(c11 + c22 + c33) − (c12 + c13 + c23) + 3(c44 + c55 + c66)] / 15 (Eq. S7) 

KR = [(s11 + s22 + s33) + 2(s12 + s13 + s23)]
−1

 (Eq. S8) 

GR = 15 / [4(s11 + s22 + s33) − 4(s12 + s13 + s23) + 3(s44 + s55 + s66)] (Eq. S9) 

KVRH = (KV + KR) / 2 (Eq. S10) 

GVRH = (GV + GR) / 2 (Eq. S11) 

E = 9KG / (3K + G) (Eq. S12) 

 = (3K – 2G) / (6K + 2G) (Eq. S13) 

VP = √[ (KVRH + (4/3)GVRH) /  ] (Eq. S14) 

VS = √ [ GVRH /  ] (Eq. S15) 

 

The importance and effort involved in calculating these quantities connects directly with the 

discussion in the following section, relating to the possible occurrence of MS9 as a ‘rock-forming’ 

mineral in planetary interiors. The values that cannot be obtained simply by hydrostatic 

compression, those that manifest some aspect of the  material’s resistance to shear, are of high 

importance in modelling the viscoelastic response of planetary lithospheres to various time-

dependent sources of stress. For many icy planetary bodies in the outer solar system, decoupling of 

the lithosphere from the deep interior by a liquid water (or brine) ocean acts to concentrate stress 

due to tidal forcing, de-spinning and shell re-orientation with respect to the interior (Nimmo & 

Schenk, 2006: Nimmo & Matsuyama, 2007: Wahr et al., 2009: Geruo et al., 2014. Another source 

of time-dependent stress where calculation of the viscoelastic strain requires quantities such as the 

shear modulus and the Poisson ratio is the secular cooling and freezing of subsurface oceans, which 

leads to extensional fracturing and normal-faulting on most icy worlds (Nimmo, 2004) or 

compressional orogeny on Titan (Cook-Hallet et al., 2015). 

Finally, the future deployment of seismometers on the surfaces of icy bodies – attached to 

vehicles such as the proposed Laplace-P Ganymede soft-lander or some kind of hardened 

penetrator (Gowan et al., 2011) – will require an accurate database of VP and VS for constituent 

minerals in order to obtain a meaningful interpretation of the internal structure and to also apply 

seismic observations for characterisation of the short-term impact flux (Tsuji & Teanby, 2016). 
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Supplementary figures 

 

Figure S1: 

Neutron powder diffraction data obtained on HRPD at ISIS in 2004 from MgSO4·11D2O revealed 

numerous parasitic peaks in the difference profile (purple, middle). At the time, we were unable to 

match these to any known phase of MgSO4·nD2O (Fortes et al. 2008). It is now clear that these 

Bragg peaks are due to a small quantity of MgSO4·9D2O. The black profile at the bottom shows the 

neutron powder data obtained from MgSO4·9D2O with a single peak from water ice omitted (near 

d-spacing = 2.65 Å); obvious matches between the black profile and unindexed peaks in the purple 

difference curve are highlighted with dashed lines. In places, intense overlapping peaks from 

MgSO4·11D2O make it impossible to identify peaks from MgSO4·9D2O (e.g., around 2.96 Å). 



S U P P L E M E N T A R Y  M A T E R I A L  

8 
 

 

Figure S2 

Low-angle region of the X-ray powder diffraction pattern ( = 1.788996 Å) from cation-pure 

MgSO4·9H2O, MgSO4·9D2O and (Mg0.6Ni0.4)SO4·H2O, highlighting intensity differences in some 

low Miller-index Bragg peaks that were interpreted as being due to cation site ordering. Both of the 

cation-pure MS9 samples contain some MS11 and so a suitably scaled powder diffraction pattern of 

MS11 is given underneath the plots to indicate where the strongest peaks from this contaminant 

occur. Tick marks show the locations of reflections from MS9. 
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Figure S3 

Trial structure for MS9 obtained from FOX in space-group Pc with the interstitial water molecules 

omitted. A difference Fourier synthesis phased on this partial structure reveals three ‘blobs’ of 

scattering density per formula unit, which correspond to the three water molecules necessary to 

confirm that this compound is an enneahydrate. 

 



S U P P L E M E N T A R Y  M A T E R I A L  

10 
 

 

 

 

Figure S4 

Illustration of the two water polymer structures in MS9, (a) the linear hexamer chain and (b) the 

small trimer. The cross-linking of sulfate tetrahedra through Ow7 and Ow9, which forms part of the 

hexameric chain, is shown in (c). Symmetry codes are same for each part of the figure: (i) [1−x, 

y−½, ½−z]; (ii) [1−x, −y, −z]; (iii) [1−x, y−1, z]; (iv) [2−x, −y, −z]; 

(v) [−x, ½+y, ½−z]. 
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Figure S5 

(a) Stack-plot of X-ray powder diffraction patterns ( = 1.788996 Å) acquired as a function of time 

at T = 252 K showing the gradual transformation of MS9 to MS11. Grey vertical bars indicate the 

locations of the three strongest Bragg peaks from water ice. 

(b) Refined phase fractions from the data shown in (a). The solid line through the symbols for 

MS11 reports the fit of Eq. 5 to the data. The two dashed lines show the expected phase fractions of 

ice and MS9 concomitant with the observed abundance of MS11 as a function of time. 
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Figure S6 

(a) Stack-plot of neutron powder diffraction patterns acquired as a function of time at T = 260 K 

showing the gradual transformation of MS9 to MS11 (Series 3). 

(b) Refined phase fractions from the data shown in (a). The solid line through the symbols for 

MS11 reports the fit of Eq. 5 to the data. As in Figure S5 the dashed lines show the expected phase 

fractions of ice and MS9 concomitant with the observed abundance of MS11 as a function of time. 
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Figure S7 

X-ray powder diffraction patterns ( = 1.788996 Å) obtained by flash-freezing of liquids with close 

to stoichiometric 9-hydrate compositions. The black curve labelled “MS9, t = 0” corresponds to a 

12 hr measurement at 252 K from an ice-free sample of MS9; small amounts of MS11 are present. 

The red curve labelled “MS9, t = 12 hr” shows a 7.5 hr dataset acquired directly after the first run 

had ended; the signature of MS11 is now absent and is replaced with MS7 (epsomite). The two 

profiles at the bottom show calculated patterns of MS7 and MS11 for visual comparison with the 

accessory phases in the MS9 data. 
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Supplementary tables 

Table S1 

Cell parameters of MS9 as a function of temperature. Uncertainties in T are ~ 0.05 K. 

Series 1 

Temperature (K) a (Å) b (Å) c (Å)  (º) V (Å
3
) 

9 6.7273(2) 11.9040(2) 14.6405(3) 95.199(1) 1167.61(2) 

15 6.7274(2) 11.9035(2) 14.6403(4) 95.198(2) 1167.57(3) 

20 6.7272(2) 11.9042(2) 14.6402(4) 95.199(2) 1167.60(3) 

25 6.7274(2) 11.9039(2) 14.6404(4) 95.197(2) 1167.61(3) 

30 6.7274(2) 11.9043(2) 14.6407(4) 95.197(2) 1167.68(3) 

35 6.7276(2) 11.9045(2) 14.6404(4) 95.196(2) 1167.70(3) 

40 6.7275(2) 11.9048(2) 14.6405(4) 95.196(2) 1167.73(3) 

45 6.7278(2) 11.9052(2) 14.6401(4) 95.194(2) 1167.79(3) 

50 6.7279(2) 11.9056(2) 14.6400(4) 95.194(2) 1167.84(3) 

55 6.7282(2) 11.9065(2) 14.6406(4) 95.193(2) 1168.04(3) 

60 6.7283(2) 11.9070(2) 14.6408(4) 95.191(2) 1168.13(3) 

65 6.7288(2) 11.9081(2) 14.6404(4) 95.192(2) 1168.28(3) 

70 6.7293(2) 11.9089(2) 14.6404(4) 95.189(2) 1168.45(3) 

75 6.7297(2) 11.9096(2) 14.6417(4) 95.188(2) 1168.70(3) 

80 6.7302(2) 11.9107(2) 14.6418(4) 95.186(2) 1168.90(3) 

85 6.7310(2) 11.9118(2) 14.6416(4) 95.183(2) 1169.14(3) 

90 6.7314(2) 11.9131(2) 14.6426(4) 95.183(2) 1169.41(3) 

95 6.7320(2) 11.9141(2) 14.6432(4) 95.182(2) 1169.68(3) 

100 6.7329(2) 11.9153(2) 14.6434(4) 95.181(2) 1169.96(3) 

105 6.7337(2) 11.9170(2) 14.6435(4) 95.183(2) 1170.27(3) 

110 6.7344(2) 11.9183(2) 14.6443(4) 95.179(2) 1170.60(3) 

115 6.7352(2) 11.9194(2) 14.6462(3) 95.178(1) 1170.99(3) 

120 6.7361(1) 11.9209(2) 14.6466(3) 95.178(1) 1171.32(3) 

125 6.7371(1) 11.9225(2) 14.6470(3) 95.174(1) 1171.69(3) 

130 6.7377(1) 11.9241(2) 14.6487(3) 95.177(1) 1172.10(3) 

135 6.7389(1) 11.9258(2) 14.6495(3) 95.172(1) 1172.53(3) 

140 6.7400(1) 11.9274(2) 14.6499(3) 95.171(1) 1172.93(3) 

145 6.7411(1) 11.9292(2) 14.6510(3) 95.170(1) 1173.39(3) 

150 6.7420(1) 11.9310(2) 14.6522(3) 95.168(1) 1173.83(3) 

155 6.7431(1) 11.9330(2) 14.6536(3) 95.170(1) 1174.32(3) 

160 6.7442(1) 11.9347(2) 14.6539(3) 95.167(1) 1174.70(3) 

165 6.7454(1) 11.9370(2) 14.6559(3) 95.167(1) 1175.29(3) 

170 6.7466(1) 11.9384(2) 14.6570(3) 95.165(1) 1175.72(3) 

175 6.7478(1) 11.9405(2) 14.6583(3) 95.164(1) 1176.24(3) 

180 6.7489(1) 11.9429(2) 14.6594(3) 95.163(1) 1176.77(3) 

185 6.7502(1) 11.9450(2) 14.6611(3) 95.163(1) 1177.33(2) 

190 6.7515(1) 11.9471(2) 14.6624(3) 95.165(1) 1177.88(2) 

195 6.7528(1) 11.9491(2) 14.6635(3) 95.161(1) 1178.40(2) 

200 6.7541(1) 11.9513(2) 14.6651(3) 95.159(1) 1178.97(2) 

205 6.7554(1) 11.9538(2) 14.6665(3) 95.160(1) 1179.57(2) 

210 6.7569(1) 11.9561(2) 14.6680(3) 95.159(1) 1180.17(2) 

215 6.7582(1) 11.9582(2) 14.6695(3) 95.158(1) 1180.74(2) 

220 6.7595(1) 11.9606(2) 14.6709(2) 95.158(1) 1181.31(2) 

225 6.7610(1) 11.9632(2) 14.6721(2) 95.156(1) 1181.93(2) 

230 6.7624(1) 11.9647(1) 14.6741(2) 95.154(1) 1182.49(2) 
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Series 2 

Temperature (K) a (Å) b (Å) c (Å)  (º) V (Å
3
) 

220 6.76019(8) 11.9635(1) 14.6703(2) 95.154(1) 1181.67(2) 

225 6.76170(9) 11.9643(1) 14.6718(2) 95.152(1) 1182.14(2) 

230 6.76317(9) 11.9660(1) 14.6733(2) 95.151(1) 1182.68(2) 

235 6.76478(9) 11.9682(1) 14.6748(2) 95.151(1) 1183.30(2) 

240 6.76651(9) 11.9707(1) 14.6761(2) 95.149(1) 1183.96(2) 

245 6.76821(9) 11.9730(1) 14.6774(2) 95.147(1) 1184.61(2) 

250 6.76995(9) 11.9756(1) 14.6787(2) 95.146(1) 1185.27(2) 

255 6.7718(1) 11.9782(1) 14.6797(2) 95.144(1) 1185.94(2) 

260 6.7735(1) 11.9808(2) 14.6808(2) 95.142(1) 1186.59(2) 

      

Series 3 

Temperature (K) a (Å) b (Å) c (Å)  (º) V (Å
3
) 

260 6.7743(1) 11.9828(2) 14.6827(3) 95.143(1) 1187.06(3) 

250 6.7706(1) 11.9772(2) 14.6779(3) 95.148(1) 1185.47(3) 

220 6.7605(1) 11.9659(2) 14.6692(3) 95.159(1) 1181.86(2) 

210 6.7575(1) 11.9640(2) 14.6659(2) 95.157(1) 1180.89(2) 

200 6.7549(1) 11.9604(2) 14.6627(2) 95.159(1) 1179.83(2) 

190 6.7523(1) 11.9561(2) 14.6601(2) 95.161(1) 1178.73(2) 

180 6.7496(1) 11.9517(2) 14.6573(3) 95.163(1) 1177.60(2) 

170 6.7468(1) 11.9471(2) 14.6550(3) 95.165(1) 1176.47(2) 

160 6.7444(1) 11.9428(2) 14.6523(3) 95.166(1) 1175.41(2) 

150 6.7420(1) 11.9388(2) 14.6504(3) 95.171(1) 1174.43(3) 

140 6.7397(1) 11.9352(2) 14.6484(3) 95.173(1) 1173.51(2) 

130 6.7376(1) 11.9316(2) 14.6464(3) 95.174(1) 1172.64(2) 

120 6.7356(1) 11.9286(2) 14.6450(3) 95.178(1) 1171.87(2) 

110 6.7337(1) 11.9254(2) 14.6437(4) 95.179(1) 1171.12(2) 

100 6.7322(1) 11.9222(2) 14.6423(4) 95.183(1) 1170.43(3) 

90 6.7307(1) 11.9198(2) 14.6407(4) 95.185(1) 1169.81(3) 

80 6.7295(1) 11.9174(2) 14.6401(4) 95.189(1) 1169.30(3) 

70 6.7283(1) 11.9157(2) 14.6399(4) 95.190(1) 1168.91(3) 

60 6.7278(1) 11.9137(2) 14.6386(4) 95.194(1) 1168.51(3) 

50 6.7269(1) 11.9126(2) 14.6398(4) 95.196(1) 1168.33(3) 

40 6.7269(1) 11.9114(2) 14.6387(4) 95.198(1) 1168.13(3) 

30 6.7266(1) 11.9105(2) 14.6392(4) 95.199(1) 1168.02(3) 

20 6.7264(1) 11.9105(2) 14.6395(4) 95.203(1) 1168.01(3) 

9 6.7264(1) 11.9105(2) 14.6397(3) 95.202(1) 1168.03(2) 
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Table S2 

Cell parameters of MS9 as a function of pressure along the 240 K isotherm. Uncertainties in T are ~ 

0.5 K for the first six points and ~ 1 K for the final point. Uncertainties in P are 0.3 % for the first 

six points, measured in a gas-pressure vessel, and 2.25 % for the final point measured in a Paris-

Edinburgh press. 

Series 4 

Pressure (MPa) a (Å) b (Å) c (Å)  (º) V (Å
3
) 

10.0 6.7676(9) 11.967(2) 14.679(2) 95.12(1) 1184.1(2) 

97.3 6.7584(7) 11.943(1) 14.669(2) 95.17(1) 1179.2(1) 

205.3 6.7452(6) 11.911(1) 14.658(2) 95.222(6) 1172.7(1) 

295.5 6.7348(5) 11.885(1) 14.646(1) 95.266(6) 1167.3(1) 

417.6 6.7218(6) 11.851(1) 14.631(2) 95.320(6) 1160.5(1) 

542.5 6.7095(4) 11.820(1) 14.615(1) 95.366(5) 1154.0(1) 

      

1067(24)* 6.667(1) 11.690(2) 14.530(3) 95.50(1) 1127.2(2) 

      

 

*From a separate measurement described in Fortes et al. (submitted paper FX5002). 

 

Table S3 

Debye model fit parameters. 

 
Single-Debye 

model 

Double-Debye 

model 

Double-Debye equivalent of 

Einstein model 

V0 (cm
3
 mol

−1
) 175.806(4) 175.7872* 175.7872* 

V0 (Å
3
) 1167.73(3) 1167.6059* 1167.6059* 

Q (J cm
−3

) 671(6)x10
4
 342.8x10

4
* 342.8x10

4
* 

K0/ (GPa) 38(1) 19.50* 19.50* 

𝜃1
𝐷 (K) 449 ± 7 323 ± 9 351 ± 1 

𝜃2
𝐷 (K) – 904 ± 59 1488 ± 20 

x 1
†
 0.30(2) 0.359(2) 

y – 0.34(1) 0.59(1) 

 

*Parameter fixed during fitting 

†
By definition  
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Table S4 

Elastic stiffnesses, cij, and elastic compliances, sij, of MS9 from DFT calculations (athermal, WC 

GGA) compared with the measured elastic constants of various orthorhombic and monoclinic 

heptahydrates of divalent metal sulfates. 

 

 MS9 (this work) MS7* NiS7* ZnS7* CoS7* FeS7* 

ij cij (GPa) sij (GPa
−1

) cij (GPa) cij (GPa) cij (GPa) cij (GPa) cij (GPa) 

        

11 39.2(8) 0.037(1) 32.5 35.3 33.2 33.5 34.9 

22 36.3(8) 0.037(1) 28.8 31.1 29.3 37.8 37.6 

33 53.6(8) 0.0288(7) 31.5 33.5 32.0 37.1 36.0 

44 14.5(4) 0.071(2) 7.8 9.1 7.8 6.0 6.4 

55 8.4(3) 0.124(5) 15.6 17.2 15.3 5.8 5.6 

66 8.4(2) 0.123(3) 9.0 9.9 8.3 10.1 9.6 

12 15.4(3) −0.0086(6) 17.4 19.8 17.2 20.5 20.8 

13 23.0(7) −0.0131(9) 18.2 20.1 20.0 15.8 17.4 

15 0.72(6) −0.0095(6) ‒ ‒ ‒ 1.6 −2.0 

23 20.3(5) −0.0101(7) 18.2 20.1 19.8 15.8 17.2 

25 −1.09(9) 0.0015(5) ‒ ‒ ‒ −1.8 −1.9 

35 −3.34(2) 0.0112(5) ‒ ‒ ‒ −4.7 −1.4 

46 −1.95(8) 0.016(1) ‒ ‒ ‒ 1.6 0.1 

 

*Alexandrov et al. (1963) 

 

Table S5 

Derived ‘bulk’ elastic properties calculated from the stiffnesses and compliances given in Table S3 

(cf., equations 13 – 22). 

 

 
MS9 

(this work) 

MS7* 

 

NiS7* 

 

ZnS7* 

 

CoS7* 

 

FeS7* 

 

KV (GPa) 27.4 22.3 24.4 23.2 23.6 24.4 

KR (GPa) 25.8 22.2 24.4 23.0 22.9 23.7 

KVRH (GPa) 26.6 22.2 24.4 23.1 23.3 24.1 

       

GV (GPa) 11.0 9.1 9.9 8.8 8.1 7.9 

GR (GPa) 10.1 8.1 8.7 7.8 6.7 7.4 

GVRH (GPa) 10.5 8.6 9.3 8.3 7.4 7.6 

       

E (GPa) 27.9 22.9 24.8 22.2 20.1 20.7 

 0.325 0.328 0.331 0.340 0.356 0.357 

       

VP (m s
−1

) 5024 4479 4347 4162 4126 4247 

VS (m s
−1

) 2556 2264 2187 2050 1951 2006 

       

 

*Alexandrov et al. (1963) 
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