

STRUCTURAL SCIENCE CRYSTAL ENGINEERING MATERIALS

Volume 72 (2016)
Supporting information for article:

Crystal structure of the orthorhombic pseudopolymorph for tacrine hydrochloride

Jeroen Jacobs, Michele Moris, Tim De Samber, Johannes Vrijdag, Wim De Borggraeve and Luc Van Meervelt

S1. Synthesis and crystallization

Tacrine was synthesized from 2-aminobenzonitrile according to a procedure described by Lee \& Goehring (1992) but using MgSO_{4} as desiccant instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Tacrine (5.369 g) in 6 N hydrochloric acid (45 ml) was stirred while slightly heated and decanted to a clean flask. Ethanol (25 ml) was added and the solution was divided over 60 test tubes. The tubes and flask with some remaining solution were covered with parafilm with a few holes and put in the fridge at $4^{\circ} \mathrm{C}$. After 40 h crystals were harvested from the flask only.

S2. Single crystal X-ray diffraction

Diffraction data were collected at 100 K on an Agilent SuperNova diffractometer using Mo-K radiation from a colourless crystal measuring $0.61 \times 0.14 \times 0.10 \mathrm{~mm}$. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the ShelXS (Sheldrick, 2008) structure solution program using Direct Methods and refined with the ShelXL (Sheldrick, 2015) refinement package using full-matrix least-squares techniques. The 1,2,3,4-tetrahydroacridine ring is disordered over two positions (A and B) by rotation of 180° around the C4-N1 axis (occupancy factors $0.413(9)$ and $0.587(9)$ for A and B, respectively). The C-C distances of the phenyl and cyclohexene rings involved in the rotational disorder and the O-H distances were restrained. A planarity restraint was used for the phenyl ring of part $\mathrm{A}(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 7, \mathrm{C} 8 \mathrm{~A}, \mathrm{C} 9 \mathrm{~A}, \mathrm{C} 10)$ for which the temperature factors were also restrained to have the same U_{ij} components. Rigid body restraints were used for all non- H atoms. The $\mathrm{C}-\mathrm{H}$ hydrogens were placed at calculated positions and refined using in riding mode with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic) and $0.99 \AA$ (methylene). The N-H and O-H hydrogens were located in a difference electron density map. All H atoms were refined with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})$ values assigned as 1.2 times U_{eq} of the parent atoms.

Table S1 Puckering parameters for cyclohexene rings in tacrine hydrochloride dihydrate

Ring atoms	$\mathrm{Q}(\AA)$	$\theta\left({ }^{\circ}\right)$	$\phi\left(^{\circ}\right)$	Ring conformation
C2,C3,C7,C8B,C9B,C10	$0.484(6)$	$128.8(5)$	$31.0(6)$	Half-chair
C5,C6,C12,C13A,C14A,C15	$0.459(11)$	$50.9(9)$	$212.5(11)$	Half-chair

Table S2 Simulated powder diffraction pattern for the orthorhombic pseudopolymorph of tacrine hydrochoride dihydrate ($\mathrm{Cu}-\mathrm{K} \alpha$ radiation, simulated using Mercury, Macrae et al., 2008)

h	k	I	d-spacing (A)	F^{2}	multiplicity
0	0	2	10.3198	4368.55	2
1	0	2	8.93104	17941	4
2	0	0	8.9126	18024.3	2
2	0	2	6.74525	2983.27	4
1	1	0	6.73229	501.698	4
1	1	1	6.4004	387.849	8
1	1	2	5.63854	620.442	8
2	1	1	5.43505	229.44	8
0	0	4	5.1599	641.204	2
3	0	2	5.14923	12251	4
1	0	4	4.95642	2494.28	4
2	1	2	4.94498	342.507	8
1	1	3	4.81177	163.852	8
3	1	0	4.60085	1956.31	4
3	1	1	4.49063	148.52	8
2	0	4	4.46552	12563.8	4
4	0	0	4.4563	804.971	2
2	1	3	4.35887	763.232	8
3	1	2	4.20215	10008.9	8
1	1	4	4.09538	6673.37	8
4	0	2	4.09116	7571.71	4
3	0	4	3.8959	127.913	4
3	1	3	3.82447	394.054	8
2	1	4	3.80516	246.622	8
4	1	1	3.73666	5244.22	8
0	2	0	3.6354	84883.5	2
0	2	1	3.58029	24904.3	4
4	1	2	3.56547	10503.6	8
1	1	5	3.51908	2209.91	8
1	2	1	3.51018	54843.3	8
0	0	6	3.43993	2370.17	2
3	1	4	3.434	6122.26	8
0	2	2	3.42886	105699	4
1	0	6	3.37761	889.971	4
4	0	4	3.37262	3366	4
5	0	2	3.36964	23451.5	4
1	2	2	3.36713	135.317	8

2	2	0	3.36614	1781.49	4
2	1	5	3.32979	3.32596	3860.09
4	1	3	3.32225	9862.67	8
2	2	1	3.21425	6524.65	4
0	2	3	3.2092	5048.62	4
2	0	6	3.20096	1613.44	4
5	1	0	3.2002	3466.84	8
2	2	2	3.16324	1238.54	8
1	2	3	3.16315	1440.3	8
5	1	1	3.07252	13.971	8
3	1	5	3.06322	8033.945	8
3	2	1	3.0595	4772.89	8
1	1	6	3.05727	1247.52	8
4	1	4	3.02363	1426.53	8
5	1	2	2.97701	6405.04	4
2	2	3			8

Figure S1 The two dimensional fingerprint plots of tacrine hydrochloride monohydrate (a) and tacrine hydrochloride dihydrate (b).

Figure S2 Simulated morphology for tacrine hydrochloride dihydrate using Mercury (Macrae et al., 2008).

Figure S3 Simulated powder diffraction pattern for the orthorhombic pseudopolymorph of tacrine hydrochloride dihydrate ($\mathrm{Cu}-\mathrm{K} \alpha$ radiation, simulated using Mercury, Macrae et al., 2008).

References

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

Lee, T.B.K. \& Goehring, K.E. (1992). EP, 0500006 A1.
Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., RodriguezMonge, L., Taylor, R., van de Streek, J. \& Wood, P.A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

