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S1. Projection from a higher dimension 

 

Before explaining how one can project a 4D object into 3D space, it would be helpful to 

describe the analogous procedure of projecting a 3D object onto a 2D space, i.e. a plane. 

 In figure SI-1a, a hexagon AEBFCD is shown. If an indexing scheme was required for 

it, the choice to index the direction OA as [1,0] and the direction OB as [0,1] would be an 

obvious one. Yet, it would not be a wise choice, because it does not reflect the symmetry of 

the hexagon. Direction OE would be indexed as [1,1], although it is physically 

indistinguishable from directions OA or OB.  

 Another option is to regard the hexagon as the 2D projection of a 3D cube viewed 

along its body diagonal OO’. Such a projection is shown in figure SI-1b. O’, A’, B’ and C’ 

are placed directly above O, A, B and C, respectively. Now, a use of a 3D Cartesian frame is 

possible for the cube. Naturally, O’A’ is indexed as [100], O’B’ as [010] and O’C’ as [001]. 

Since the projection direction O’O is [111], the components of these primitive vectors 

resolved parallel to the plane of the projection can be easily proven to be OA=
1

3
[21̅1̅], 

OB=
1

3
[1̅21̅] and OC=

1

3
[1̅1̅2]. It can also be verified quite easily that the scalar product 

formed between any vectors in the 2D space and the projection direction [111] is zero. 

Because all three indices of the projection direction are the same (i.e. 1), this means that all 

vectors on the plane have indices that must add up to zero.  
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Figure SI-1:  A hexagon in 2D space (a) can be regarded as the projection on the plane 

of a cube. The projection takes place along the body diagonal of the cube (b).   

  

Thus, by exploiting the auxiliary dimension, a much more symmetrical algebraic 

representation was obtained. Using an analogous procedure, a 4D hypercube, with edges 

indexed as [1000], [0100], [0010] and [0001] can be projected along the direction [1110]. 

This results in three unit vectors indexed as 
1

3
[21̅1̅0], 

1

3
[1̅21̅0], 

1

3
[1̅1̅20] and another one, 

being perpendicular to the projection direction, indexed as [0001].  

 The system created by this procedure certainly resembles the Miller-Bravais system; 

three unit vectors describe all directions on a basal plane, whereas the fourth is perpendicular 

to this plane. Yet, for this system to describe a hexagonal unit cell, it is necessary to be 

rescaled in order for its dimensions to correspond to the lattice parameters, a and c, of a real 

hexagonal crystal. 

 If the unit 4-space vectors have magnitude e, it follows that the 
1

3
〈21̅1̅0〉 -type vectors 

will have a magnitude of √
2

3
e, while vector [0001] will still have magnitude e. This can be 

very easily verified by a single trigonometric study of the triangles that are created from 3D 
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and 4D unit vectors. Therefore, the ratio of the magnitude of [0001] to 
1

3
〈21̅1̅0〉 is √

3

2
. By 

increasing the length of 4-vector components parallel to [0001] by the appropriate factor, the 

3D cell exhibits the 
c

a
 ratio required for a particular problem. The required factor is simply 

equal to 
c

e
= √

2

3

c

a
. This was designated Λ by Frank [5].  

 In other words, a hexagonal unit cell is derived from the projection of a 4D cubic one 

only if the ratio of its basis vectors is a specific one: √
3

2
. This means that to be able to treat a 

hexagonal crystal as the projection of a cubic hyper-crystal, one has to rescale it using Λ, to 

obtain this specific ratio. Only then can the crystal be regarded as cubic and be manipulated 

by convenient linear algebra methods of orthogonal matrices.  

 

 

S2. Transformation matrices for cubic-hexagonal Burgers OR 

 

The Burgers OR states that closest packed planes and closest packed directions of two 

structures involved in a transformation are parallel. In the case studied here, the two 

structures involved are h.c.p. and b.c.c.; their relationship is schematically illustrated in figure 

SI-2. As indicated in the figure, when Ti is transformed from hcp to bcc, hexagonal directions 

[0001] , [1̅1̅20]  and [1̅100]  transform into cubic directions [01̅1] , [1̅1̅1̅]  and [2̅11] , 

respectively.  
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Figure SI-2:  Hexagonal-cubic Burgers OR. Hexagonal directions [𝟎𝟎𝟎𝟏], [𝟏̅𝟏̅𝟐𝟎] and 

[𝟏̅𝟏𝟎𝟎] transform into cubic directions [𝟎𝟏̅𝟏], [𝟏̅𝟏̅𝟏̅] and [𝟐̅𝟏𝟏], respectively. 

 

 P and Q are transformation matrices of coefficients. P is defined by (a’, b’, c’) = (a, 

b, c) P, where a, b, and c are the original basis vectors and a’, b’, and c’ are the basis vectors 

after the transformation. Of course, since another, fourth, dimension was added for our study 

in Ti, another basis vector d (and d’, respectively) should be considered, as well. Q is the 

inverse of P [5].  

 The transformation described above is called a covariant transformation. Quantities 

that transform in the same way as the basis vectors are called covariant quantities. For a 

quantity to be transformed covariantly, it has to be post-multiplied by P or Q. Such quantities 

are indices of planes and coordinates of points in reciprocal space. Quantities that are 

transformed by a pre-multiplication by P or Q are called contra-variant quantities.  

 Since P transforms basis vectors of the one frame to basis vectors of the other, to 

determine its value, the information about the transformation given by the Burgers OR has to 

be manipulated so as to refer to basis vectors. To make things simple, the 3D cubic frame will 

be used first, since 3D directions were used in the Burgers OR (see figure SI-2). If the basis 

vectors of the cubic and the hexagonal system are 𝐚𝟏
𝒄 , 𝐚𝟐

𝒄  and 𝐚𝟑
𝒄  (where the superscript c 
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stands for cubic) and 𝐞𝟏, 𝐞𝟐, 𝐞𝟑 and 𝐞𝟒, respectively, the covariant transformation described 

above, is:  

 

11 12 13

21 22 23

1 1 1

31 32 33

41 42 43

1 1 1 1 1 1 1 1
(a ,a ,a ) (e ,e ,e ,e )P (e ,e ,e ,e )

c c c

p p p

p p p

p p p

p p p

 
 
  
 
 
 

  SI.1 

Each column of matrix P is in fact the cubic 〈100〉-type vector, expressed in the hexagonal 

frame; this is the physical meaning of matrix P.  

 The 〈100〉-type directions can be decomposed with respect to the directions involved 

in the Burgers OR according to: 

  
1 1

100 0 011 111 211
3 3

       
     

  SI.2 

  
1 1 1

010 011 111 211
2 3 6
        
     

  SI.3 

  
1 1 1

001 011 111 211
2 3 6
       
     

  SI.4 

If magnitudes are taken into account by equating unit vectors, the three cubic directions and 

the three hexagonal directions involved in the Burgers OR can be related to each other. For 

example, the magnitude of [2̅11] has to equal that of [1̅100], leading to: 

 
1 1

211 1100
6a 2e

c

   
      SI.5 

If the value of Λ is taken into account, to transform e into aℎ, equation SI.5 becomes: 

 

a
211 2 1100

a

c

h

   
      SI.6 

For the other two directions, the expressions analogous to equation SI.6 are: 

  
a

111 1120
3a

c

h

 
 

  SI.7 
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  
a

011 2 0001
c

c

h

  
    SI.8 

Substituting SI.6, SI.7 and SI.8 in equations SI.2, SI.3 and SI.4, the 4 × 4 version of P can be 

obtained: 

 

1 1 2 1 2
2 2

2 23 3 3

1 1 2 1 2
2 2

2 23 3 3

3 2 2 2
2

3 3 3

3 3
0 0

3 3

P

     
            

     
 

                 
         
     
 
 
 

 
 
 

c

h

a

a
  SI.9 

where a𝑐 and aℎ for Ti are 0.332 and 0.295, respectively. Q being the inverse of P is given 

by: 

 

   

   

   
1

6 6 6 6 2 6 0

6 3 6 3 2 6 3 62

12 6 3 6 3 2 6 3 6

6 6 6 0

Q=P
c



   
 
 

      
     

     
 
   
 

h
a

a
  SI.10 


