Supporting information

Table S1 List of diffracted crystals including the chemical name of the enantiopure compound, the sample code of the diffraction data sets and the Chemical Abstracts Service Registry number assigned to each compound.

Compound	Sample code	CAS	Space Group	N of non H atoms in the asymmetric unit
<i>L</i> -Alanine	5001-5002	56-41-7	P212121	6
<i>D</i> -Alanine	5006 and 5008	338-69-2	<i>P</i> 2 ₁ 2 ₁ 2 ₁	6
L-Serine	5101	56-45-1	<i>P</i> 2 ₁ 2 ₁ 2 ₁	7
D-Threonine	5201-5206, 5212-5215	632-20-2	<i>P</i> 2 ₁ 2 ₁ 2 ₁	8
<i>L</i> -Threonine	5210-5211	72-19-5	<i>P</i> 2 ₁ 2 ₁ 2 ₁	8
L-Aspartate	5301	56-84-8	<i>P</i> 2 ₁	9
L-Hydroxyproline	5401 and 5402	51-35-4	<i>P</i> 2 ₁ 2 ₁ 2 ₁	9
L-Glutamine	5501	56-86-0	<i>P</i> 2 ₁ 2 ₁ 2 ₁	10
L-Histidine	5602-5604	71-00-1	<i>P</i> 2 ₁ 2 ₁ 2 ₁	11
L-Valine	5701	72-18-4	<i>P</i> 2 ₁	16
L-Isoluecine	5801	73-32-5	<i>P</i> 2 ₁	18
Methyl-α-L-rhamnopyranoside	6001-6003	14917-55-6	<i>P</i> 2 ₁ 2 ₁ 2 ₁	12
Methyl-α-D-mannopyranoside	6101	617-04-9	<i>P</i> 2 ₁ 2 ₁ 2 ₁	13
Methyl-a-D-glucopyranoside	6201 and 6202	97-30-3	<i>P</i> 2 ₁ 2 ₁ 2 ₁	13
β -D-Galactose pentaacetate	6301	4163-60-4	<i>P</i> 2 ₁ 2 ₁ 2 ₁	27
β -D-Lactose monohydrate (milk sugar)	6401	10039-26-6	<i>P</i> 2 ₁ 2 ₁ 2 ₁	
β -D-Fructofuranosyl- α -D-glucopyranoside (sucrose)	6501-6504 and 6507	57-50-1	<i>P</i> 2 ₁	23
β -D-Maltose octaacetate	6601	22352-19-8	<i>P</i> 2 ₁ 2 ₁ 2 ₁	32
β- <i>D</i> -Allose	6802	2595-97-3	<i>P</i> 2 ₁ 2 ₁ 2 ₁	12
L-Tartaric acid	7001	87-69-4	<i>P</i> 2 ₁	10
C15H26O2	7701	(Carreras <i>et al.</i> , 2014)	P21212	17
C11H14O6	7801	(Nieto <i>et al.</i> , 2005)	P212121	17

Table S2 Measurement strategy

Operation	Distance (mm)	20 (deg)	ω (deg)	φ (deg)	χ (deg)	Time (sec)	Width (deg)	Sweep (deg)
Omega Scan	40	-42.0	-42.0	0.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	45.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	90.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	135.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	180.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	225.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	270.0	54.74	2.0	0.3	104.0
Omega Scan	40	-42.0	-42.0	315.0	54.74	2.0	0.3	104.0
Phi Scan	40	-42.0	-146.0	0.0	54.74	2.0	0.3	360.0
Omega Scan	40	-94.0	-94.0	0.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	45.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	90.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	135.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	180.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	225.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	270.0	54.74	30.0	0.3	104.0
Omega Scan	40	-94.0	-94.0	315.0	54.74	30.0	0.3	104.0

Table S3 Values of the optimized number of degrees of freedom, v, for a *t*-distribution.

Sample code	v
5001	99.4
5002	99.4
5006	99.6
5008	99.7
5101	99.9
5201	99.4
5202	62.0
5203	37.8
5204	99.0
5205	100.0
5206	99.6
5210	29.5
5211	28.6
5212	99.7
5213	99.0
5214	99.5
5215	99.4
5301	32.4
5401	99.5
5402	99.8
5501	98.9
5602	99.6
5603	62.3
5604	26.9
5701	49.1
5801	18.9
6001	26.9
6002	99.9
6003	19.0
6101	23.7
6201	34.0
6202	47.3
6301	99.7
6401	99.3
6501	15.8
6502	12.1
6503	15.1
6504	18.9
6507	52.8
6601	99.4
6802	7.1
7001	41.9
7701	99.4
7801	99.6

Table S4 Calculated values of the y and z parameters and their corresponding standard uncertainties after removing different percentages of random reflections for three data sets 5213, 5602 and 6601. *N* is the number of reflections, *Nf* is the number of Friedel pairs, R_1 is the R_1 factor, *Redun* is the redundancy, $Tan^{-1}(Redun)$ is the arctangent of the redundancy, u_y and u_z are the calculated standard uncertainties. In order to show the influence of the number of reflections¹ two more theoretical standard uncertainties were calculated, u_{yn} and u_{zn} without considering *N* and $u_{z(100\%)}$ the standard uncertainties obtained from the refinement with the full data set, as follows:

$u_{yn} = u_{yn}$	$y(100\%)\cdot\frac{R_1}{R_1all}\cdot$	$\frac{\tan^{-1} Red}{\tan^{-1} R}$	lun (all) edun ;	$u_{zy=}u_{y(1)}$	$(00\%) \cdot \sqrt{\frac{N}{N}}$	$\frac{R_1}{Nf} \cdot \frac{R_1}{R_1 all} \cdot \frac{R_1}{R_1}$	n ⁻¹ Redu tan ⁻¹ Red	n (all) dun ;	u _{zn} an	d u _{zn'} a	nalogo	ous to <i>u</i>	u _{yn} and	<i>u_{zn},</i> res
5213	-													
% of N	% of Friedel pairs	N	Nf	R 1	Redun	Tan⁻¹(Redun)	У	u _y	u _{yn}	u _{yn'}	z	u z	Uzn	U _{zn'}
100%	100%	8775	3844	0.0196	5.9	1.40	-0.04	0.05	0.05	0.05	-0.03	0.04	0.04	0.04
96%	94%	8454	3612	0.0201	4.0	1.32	0.00	0.06	0.05	0.06	0.01	0.06	0.04	0.04
93%	88%	8126	3372	0.0206	3.0	1.25	0.03	0.07	0.06	0.06	0.01	0.07	0.05	0.05
84%	73%	7339	2798	0.0216	2.0	1.10	-0.04	0.09	0.07	0.08	-0.03	0.09	0.06	0.07
76%	61%	6693	2341	0.0215	1.5	0.98	-0.07	0.11	0.08	0.10	-0.07	0.10	0.06	0.08
69%	50%	6042	1929	0.0225	1.2	0.87	-0.13	0.12	0.09	0.13	-0.13	0.12	0.07	0.10
5602	-													
% of N	% of Friedel pairs	Ν	Nf	R 1	Redun	Tan⁻¹(Redun)	У	u _y	u _{yn}	u _{yn'}	z	u z	Uzn	U _{zn'}
100%	100%	10624	4658	0.0299	5.1	1.38	-0.03	0.08	0.08	0.08	0.05	0.07	0.07	0.07
25%	94%	10190	4376	0.0300	3.4	1.29	0.11	0.08	0.09	0.09	0.12	0.08	0.08	0.08
24%	86%	9687	4015	0.0302	2.6	1.20	0.16	0.09	0.09	0.10	0.16	0.09	0.08	0.09
76%	71%	8656	3311	0.0303	1.7	1.04	0.10	0.13	0.11	0.13	0.07	0.12	0.09	0.11
66%	57%	7630	2632	0.0299	1.3	0.91	0.07	0.16	0.12	0.16	0.03	0.14	0.11	0.14
59%	48%	6904	2241	0.0305	1.0	0.81	-0.09	0.18	0.14	0.20	-0.16	0.17	0.12	0.18
6601	-													
% of N	% of Friedel pairs	Ν	Nf	R 1	Redun	Tan⁻¹(Redun)	У	u _y	u _{yn}	u _{yn'}	z	u z	Uzn	U _{zn'}
100%	100%	40459	25547	0.0629	4.8	1.37	-0.03	0.08	0.08	0.08	0.05	0.10	0.10	0.10
93%	92%	37536	23593	0.0660	3.2	1.27	0.07	0.13	0.09	0.09	0.10	0.13	0.11	0.12
86%	82%	34921	20829	0.0671	2.4	1.18	0.09	0.16	0.10	0.11	0.13	0.15	0.12	0.14
76%	63%	30552	16068	0.0686	1.6	1.02	-0.20	0.20	0.12	0.15	-0.10	0.20	0.15	0.18
66%	49%	26771	12410	0.0700	1.2	0.88	-0.20	0.20	0.14	0.20	-0.10	0.20	0.17	0.25
50%	30%	23815	0077	0 0712	10	0.77	0 /0	0 30	0.16	0.26	0 / 0	0 30	0.20	032

59% 39% 23845 9972 0.0713 1.0 0.77 0.40 0.30 0.16 0.26 0.40 0.30 0.20 0.32

¹ When removing random reflections from the data set the number of Friedel pairs will decay faster than the number of total reflections.

	6504	6502	6503	6501	6101	6001	6201	6002	6003	5213	5501	6202	6301	6401	5202	5215	5201	5402	5204	5701	5401	5210
η	0.50	0.55	0.56	0.57	0.71	0.72	0.80	0.81	0.84	0.86	0.88	0.91	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.94	0.95	0.98
У																						
1.28	0.04	0.05	-0.01	0.04	-0.06	-0.04	0.02	0.07	0.10	-0.04	0.07	0.02	0.01	-0.01	-0.04	-0.02	0.04	0.05	0.02	0.10	0.03	0.08
1.00	0.04	0.04	0.01	0.06	-0.05	-0.05	0.01	0.04	0.06	-0.01	0.02	0.02	0.04	0.03	-0.05	-0.04	0.04	0.04	0	0.16	0.03	0.08
0.89	0.04	0.02	0.03	0.05	-0.02	-0.06	0.03	0.07	0.08	-0.04	-0.02	0.06	0.03	0.05	-0.05	-0.02	0.05	0.05	-0.01	0.21	0.05	0.07
0.81	0.04	-0.01	0.02	0.03	0.00	-0.06	0.06	0.07	0.11	-0.09	0.03	0.09	0.06	0.06	0.06	-0.02	0.11	0.08	-0.05	0.28	0.04	0.07
0.68	0.02	-0.22	0.03	-0.10	0.11	0.05	0.02	0.12	0.13	0.00	0.12	0.10	0.07	0.06	0.11	-0.03	0.28	0.03	0.01	0.4	-0.03	-0.1
0.60	0.06	-0.25	0.01	-0.19	0.21	-0.02	0.10	0.03	0.01	0.07	0.20	0.00	0.07	0.09	-0.1	0.14	0.18	0.1	0.13	0.3	0.01	-0.11
Uy .																						
1.28	0.02	0.04	0.03	0.04	0.03	0.04	0.03	0.03	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.03	0.05	0.08	0.03	0.03
1.00	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.03	0.05	0.1	0.03	0.03
0.89	0.03	0.05	0.05	0.05	0.04	0.05	0.04	0.05	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.05	0.06	0.04	0.06	0.12	0.04	0.04
0.81	0.04	0.06	0.05	0.05	0.05	0.05	0.05	0.06	0.07	0.07	0.07	0.06	0.06	0.07	0.07	0.06	0.06	0.05	0.07	0.14	0.05	0.04
0.68	0.06	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.12	0.12	0.1	0.09	0.08	0.09	0.12	0.09	0.09	0.07	0.11	0.2	0.07	0.07
0.60	0.08	0.14	0.11	0.10	0.08	0.08	0.08	0.12	0.18	0.16	0.12	0.11	0.09	0.12	0.16	0.13	0.11	0.1	0.15	0.3	0.08	0.11
Z	0.04	0.00	0.00	0.00	0.07	0.04	0.00	0.07	0.00	0.04	0.00	0.00	0.00	0.04	0.00	0.00	0.05	0.00	0.00	0.40	0.00	0.00
1.28	0.04	0.06	-0.02	0.02	-0.07	-0.04	0.02	0.07	0.09	-0.04	0.08	0.00	0.02	0.01	-0.03	-0.02	0.05	0.06	0.02	0.12	0.03	0.08
1.00	0.04	0.06	0.01	0.04	-0.05	-0.05	0.01	0.04	0.07	-0.01	0.03	0.01	0.04	0.06	-0.04	-0.04	0.05	0.05	0.01	0.18	0.04	0.08
0.89	0.04	0.05	0.01	0.04	-0.02	-0.06	0.03	0.07	0.09	-0.04	-0.03	0.06	0.04	0.09	-0.03	-0.02	0.06	0.06	0	0.21	0.07	0.07
0.81	0.04	0.04	0.01	0.01	0.00	-0.06	0.06	0.07	0.12	-0.09	0.03	0.08	0.07	80.0	0.08	-0.02	0.12	0.08	-0.04	0.29	0.05	0.08
0.68	0.01	-0.19	0.03	-0.12	0.12	0.05	0.03	0.11	0.11	0.00	0.11	0.11	0.08	0.08	0.13	-0.05	0.29	0.04	0.01	0.4	-0.02	-0.07
0.60	0.05	-0.22	-0.04	-0.21	0.21	-0.01	0.11	0.01	0.01	0.04	0.18	0.01	0.08	0.12	-0.10	0.11	0.20	0.10	0.10	0.3	0.00	-0.04
1 28	0.02	0.03	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.06	0.06	0.05	0.05	0.05	0.05	0.03	0.06	0.08	0.03	0.02
1.20	0.02	0.03	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.00	0.00	0.05	0.05	0.05	0.05	0.03	0.00	0.00	0.03	0.03
0.80	0.03	0.04	0.04	0.04	0.04	0.05	0.04	0.05	0.05	0.05	0.00	0.00	0.05	0.05	0.00	0.05	0.00	0.04	0.07	0.1	0.04	0.04
0.85	0.03	0.05	0.05	0.05	0.04	0.00	0.04	0.05	0.00	0.07	0.07	0.07	0.00	0.00	0.07	0.00	0.07	0.04	0.00	0.11	0.04	0.05
0.61	0.04	0.05	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.09	0.00	0.00	0.07	0.09	0.07	0.00	0.05	0.09	0.13	0.05	0.05
0.60	0.08	0.13	0.12	0.11	0.09	0.09	0.09	0.13	0.13	0.15	0.15	0.13	0.03	0.12	0.13	0.15	0.12	0.00	0.13	0.2	0.10	0.08

	5203	5801	5214	5006	5212	6802	6507	7001	5211	6601	7801	5301	5008	5205	5206	5101	7701	5001	5602	5604	5002	5603
η	1.00	1.00	1.02	1.06	1.07	1.08	1.11	1.11	1.24	1.24	1.25	1.27	1.34	1.34	1.36	1.38	1.43	1.44	1.55	1.58	1.60	1.87
y																						
1.28	0.06	-0.05	0.07	-0.02	0.01	-0.08	0.07	0.04	0.06	0.01	-0.02	0.01	-0.01	0.00	0.10	0.06	-0.03	0.05	0.07	0.00	-0.09	0.08
1.00	0.05	0.03	0.10	-0.02	-0.11	-0.05	0.09	0.11	0.03	-0.06	-0.05	-0.06	0.01	-0.02	0.09	0.11	-0.04	-0.01	0.06	-0.01	-0.06	0.10
0.89	-0.03	0.04	0.24	-0.03	-0.07	-0.04	0.12	0.15	0.06	-0.06	-0.06	0.02	0.01	-0.05	0.07	0.12	-0.02	-0.03	0.11	0.06	-0.16	0.10
0.81	-0.05	0.05	0.31	-0.04	-0.09	-0.03	0.13	0.10	0.06	-0.15	-0.09	-0.03	0.01	-0.07	0.06	0.12	0.01	0.00	0.19	0.04	-0.13	0.13
0.68	-0.17	0.2	0.7	0.44	-0.2	-0.04	0.19	0.26	0.25	-0.26	-0.06	0.1	-0.08	-0.02	0.05	0.1	0.06	-0.24	0.25	0.10	-0.2	0.13
0.60	0.16	0.4	0.6	0.7	-0.1	0.07	0.31	-0.3	0.4	-0.31	-0.02	0.0	0.00	0.0	-0.07	0.15	0.02	0.07	0.35	0.20	-0.2	0.2
u _y																						
1.28	0.06	0.05	0.06	0.04	0.09	0.08	0.07	0.07	0.07	0.09	0.08	0.08	0.04	0.09	0.08	0.04	0.10	0.07	0.06	0.06	0.09	0.08
1.00	0.07	0.05	0.08	0.06	0.09	0.08	0.08	0.09	0.08	0.09	0.09	0.09	0.05	0.11	0.08	0.05	0.10	0.08	0.07	0.07	0.12	0.09
0.89	0.07	0.11	0.10	0.07	0.11	0.09	0.08	0.1	0.09	0.1	0.09	0.11	0.05	0.12	0.09	0.06	0.10	0.09	0.08	0.07	0.14	0.10
0.81	0.08	0.12	0.13	0.09	0.12	0.1	0.09	0.12	0.09	0.11	0.10	0.13	0.07	0.13	0.10	0.07	0.11	0.1	0.09	0.09	0.16	0.12
0.68	0.11	0.2	0.2	0.17	0.2	0.13	0.11	0.19	0.14	0.14	0.11	0.2	0.12	0.18	0.12	0.11	0.13	0.13	0.14	0.13	0.2	0.16
0.60	0.16	0.2	0.3	0.2	0.2	0.17	0.14	0.3	0.17	0.17	0.13	0.3	0.13	0.2	0.15	0.14	0.14	0.18	0.18	0.16	0.3	0.2
Z	o 07		o o 7			0.04				0.40	0.04		0.04		0.40	o o 						
1.28	0.07	-0.04	0.07	0.02	0.02	-0.04	0.04	0.08	0.06	0.10	-0.04	0.01	-0.01	-0.01	0.10	0.07	-0.04	0.06	0.09	0.00	-0.06	0.08
1.00	0.06	0.03	0.11	-0.02	-0.12	-0.01	0.06	0.14	0.04	0.03	-0.05	-0.05	0.01	-0.04	0.07	0.12	-0.05	0.00	0.08	-0.02	-0.04	0.10
0.89	-0.02	0.06	0.27	0.04	-0.09	0.01	0.10	0.18	0.07	0.03	-0.06	0.04	0.01	-0.07	0.04	0.14	-0.04	-0.02	0.12	0.05	-0.11	0.10
0.81	-0.03	0.08	0.35	0.03	-0.10	0.05	0.10	0.13	0.07	-0.05	-0.09	-0.02	0.01	-0.11	0.03	0.13	0.01	0.02	0.22	0.05	-0.11	0.12
0.68	-0.14	0.2	0.8	0.26	-0.3	0.06	0.17	0.3	0.26	-0.18	-0.06	0.1	-0.07	-0.04	0.02	0.1	0.06	-0.2	0.26	0.09	-0.2	0.03
0.60	0.2	0.4	0.7	0.5	-0.1	0.23	0.34	-0.2	0.2	-0.29	0.0	0.2	-0.03	0	-0.07	0.15	0.02	0.1	0.37	0.18	-0.3	0.1
uz 1 29	0.06	0.00	0.06	0.04	0.00	0.00	0.07	0.00	0.07	0.00	0.07	0.00	0.04	0.10	0.07	0.05	0.10	0.00	0.06	0.07	0.10	0.11
1.20	0.00	0.00	0.00	0.04	0.09	0.00	0.07	0.00	0.07	0.09	0.07	0.00	0.04	0.10	0.07	0.05	0.10	0.00	0.00	0.07	0.10	0.11
0.89	0.07	0.10	0.09	0.00	0.12	0.00	0.00	0.1	0.09	0.10	0.07	0.10	0.05	0.11	0.00	0.00	0.11	0.00	0.07	0.00	0.11	0.12
0.03	0.00	0.11	0.12	0.07	0.15	0.09	0.09	0.12	0.1	0.11	0.07	0.11	0.00	0.11	0.00	0.07	0.12	0.09	0.00	0.09	0.15	0.13
0.68	0.09	0.13	0.10	0.03	0.17	0.03	0.1	0.14	0.12	0.12	0.00	0.13	0.07	0.12	0.03	0.00	0.12	0.1	0.09	0.1	0.13	0.14
0.60	0.14	0.2	0.2	0.17	0.3	0.12	0.12	0.2	0.10	0.10	0.10	0.2	0.11	0.17	0.11	0.12	0.14	0.15	0.13	0.15	0.2	0.10
0.00	0.2	0.2	0.0	0.2	0.5	0.10	0.15	0.5	0.4	0.13	0.12	0.5	0.15	0.2	0.14	0.10	0.15	0.2	0.17	0.13	0.5	0.2

Table S6 Values of the absolute structure parameters from refinements with inverted h at different high resolution ranges.

	u _x)	(u_{v}			J	/			u _z			z	2		
		Sinθ/λ ((Å ⁻¹)						Sinθ/λ ((Å ⁻¹)						Sinθ/λ (Å ⁻¹)				
Comple code		% of inv 0.6	/erted ref	0.8	0.9	1.0	Full		% of inv 0.6	0 7	lections 0.8	0.9	1.0	Full		% of inv 0.6	erted ref	0.8	0.9	1.0	Full
Sample code		90%	83%	75%	64%	52%	0%		90%	83%	75%	64%	52%	0%		90%	83%	75%	64%	52%	0%
5001 salanin	0.29	0.99	0.68	0.52	0.33	0.23	-0.08	0.08	0.86	0.64	0.46	0.24	0.14	0.05	0.08	0.86	0.64	0.44	0.24	0.13	0.06
5002 Lalanine04	0.29	1.04	0.84	0.61	0.53	0.23	-0.24	0.09	0.93	0.75	0.45	0.24	0.17	-0.09	0.10	0.91	0.73	0.47	0.26	0.21	-0.06
5006 Dalanina	0.23	1.00	0.89	0.71	0.54	0.38	-0.14	0.04	1.03	0.97	0.72	0.51	0.37	-0.02	0.04	1.00	0.97	0.72	0.51	0.40	0.02
5008 Dalanina	0.24	0.88	0.76	0.65	0.57	0.47	0.07	0.05	0.89	0.82	0.64	0.47	0.34	-0.01	0.04	0.88	0.82	0.65	0.49	0.37	-0.01
5101 Lserin	0.28	0.88	0.81	0.77	0.66	0.51	0.07	0.04	0.87	0.79	0.70	0.56	0.45	0.06	0.04	0.86	0.78	0.70	0.57	0.46	0.07
5201 Dthreonin	0.22	0.88	0.90	0.78	0.64	0.45	0.10	0.05	0.90	0.87	0.62	0.44	0.28	0.04	0.05	0.90	0.86	0.62	0.44	0.28	0.05
5202 Dthreonin_0m	0.22	0.93	0.89	0.77	0.58	0.35	-0.03	0.05	0.98	0.94	0.77	0.51	0.27	-0.04	0.05	0.98	0.94	0.75	0.50	0.28	-0.03
5203 Dthreonin0126	0.25	0.88	0.73	0.60	0.50	0.36	0.02	0.05	0.86	0.69	0.51	0.37	0.26	0.06	0.05	0.85	0.67	0.50	0.36	0.25	0.07
5204 Dthreonin0216	0.24	0.90	0.80	0.65	0.51	0.35	0.02	0.05	0.92	0.78	0.59	0.43	0.26	0.02	0.05	0.92	0.78	0.59	0.44	0.28	0.02
5205 Dthreoninbr	0.29	0.83	0.58	0.34	0.24	0.15	0.02	0.09	0.82	0.55	0.12	0.12	0.06	0.00	0.10	0.81	0.53	0.21	0.11	0.05	-0.01
5206 Dthreoninbr	0.32	0.48	0.52	0.34	0.32	0.38	0.29	0.07	0.52	0.48	0.24	0.13	0.13	0.10	0.08	0.51	0.46	0.21	0.11	0.11	0.10
5210 L-Threo100k	0.23	0.80	0.70	0.62	0.54	0.39	0.13	0.03	0.82	0.69	0.56	0.43	0.29	0.08	0.03	0.82	0.68	0.55	0.43	0.29	0.08
5211 L-Threo100kb	0.25	0.96	0.90	0.73	0.54	0.34	0.13	0.07	0.94	0.87	0.58	0.40	0.20	0.06	0.07	0.93	0.87	0.59	0.42	0.22	0.06
5212 Dthreo_1	0.26	0.94	0.81	0.65	0.57	0.30	0.10	0.09	0.93	0.80	0.57	0.45	0.18	0.01	0.09	0.92	0.80	0.58	0.45	0.18	0.02
5213 Threonin_UB	0.19	1.01	0.89	0.73	0.63	0.45	0.05	0.05	0.98	0.89	0.65	0.48	0.32	-0.03	0.04	0.99	0.89	0.64	0.48	0.32	-0.04
5214 Dthrenin_UB_DUO	0.23	0.88	0.91	0.80	0.64	0.38	-0.12	0.06	0.93	0.95	0.75	0.61	0.39	0.07	0.06	0.94	0.96	0.76	0.62	0.40	0.07
5215 DthreoUBPho	0.21	0.92	0.77	0.66	0.58	0.43	0.09	0.05	0.95	0.77	0.57	0.41	0.24	-0.02	0.04	0.94	0.76	0.55	0.39	0.23	-0.02
5301 Laspat100k	0.22	0.90	0.91	0.80	0.71	0.35	0.05	0.08	0.90	0.82	0.63	0.46	0.25	0.01	0.08	0.91	0.84	0.64	0.46	0.26	0.01
5401 LHrdroxP	0.26	0.87	0.84	0.76	0.61	0.38	-0.07	0.03	0.86	0.78	0.59	0.43	0.25	0.03	0.03	0.86	0.79	0.60	0.44	0.26	0.03
5402 LHrdroxPb	0.26	0.87	0.74	0.64	0.49	0.33	0.07	0.03	0.89	0.79	0.62	0.43	0.25	0.05	0.03	0.87	0.76	0.61	0.42	0.25	0.06
5501 LGlutSa	0.20	0.76	0.69	0.60	0.45	0.39	0.06	0.05	0.84	0.76	0.61	0.40	0.30	0.07	0.05	0.83	0.75	0.60	0.40	0.31	0.08
5602 LHistidinB	0.41	0.77	0.73	0.73	0.54	0.46	0.17	0.06	0.85	0.82	0.65	0.44	0.29	0.07	0.06	0.86	0.81	0.64	0.42	0.29	0.09
5603 LHistidinC	0.45	1.03	0.82	0.70	0.48	0.24	-0.15	0.08	0.79	0.65	0.48	0.30	0.22	0.08	0.11	0.78	0.63	0.44	0.29	0.21	0.08
5604 Lhistidin	0.44	0.83	0.63	0.69	0.57	0.35	0.09	0.07	0.91	0.79	0.60	0.45	0.23	0.00	0.06	0.92	0.79	0.57	0.42	0.20	0.00
5701 LValin	0.19	0.85	0.94	0.84	0.71	0.51	0.14	0.08	0.85	0.90	0.72	0.56	0.45	0.10	0.08	0.80	0.85	0.69	0.53	0.46	0.12
5801 Lisoleucine	0.21	1.02	0.85	0.65	0.45	0.32	-0.23	0.08	0.99	0.96	0.73	0.54	0.41	-0.04	0.08	0.98	0.95	0.73	0.53	0.39	-0.04
6001 Malrpb	0.16	1.02	0.93	0.75	0.55	0.39	-0.08	0.04	0.91	0.83	0.56	0.34	0.18	-0.04	0.04	0.91	0.82	0.55	0.33	0.18	-0.04
6002 Malr100ka	0.15	0.94	0.91	0.68	0.57	0.36	0.03	0.03	0.87	0.79	0.61	0.42	0.27	0.07	0.03	0.87	0.80	0.59	0.42	0.26	0.07
6003 Malr100kc	0.18	0.87	0.8	0.68	0.53	0.30	0.10	0.04	0.85	0.77	0.64	0.45	0.27	0.11	0.03	0.85	0.77	0.61	0.43	0.27	0.11
6101 MaDMan	0.17	1.03	0.94	0.80	0.63	0.33	-0.09	0.03	0.98	0.89	0.61	0.38	0.18	-0.06	0.03	0.98	0.89	0.60	0.37	0.17	-0.07
6201 MaDGlu	0.18	0.83	0.73	0.64	0.53	0.35	0.05	0.03	0.85	0.74	0.55	0.34	0.20	0.02	0.03	0.84	0.74	0.55	0.34	0.19	0.02
6202 aDHeptaL	0.22	0.87	0.79	0.75	0.64	0.44	0.07	0.05	0.81	0.74	0.56	0.37	0.19	0.02	0.05	0.82	0.74	0.56	0.36	0.18	0.00
6301 BDGalP	0.21	0.97	0.82	0.71	0.42	0.26	-0.07	0.05	0.71	0.58	0.38	0.18	0.12	0.01	0.05	0.69	0.58	0.38	0.18	0.11	0.02
6401 BDLactose	0.22	0.94	0.81	0.65	0.42	0.34	-0.02	0.05	0.88	0.76	0.53	0.32	0.22	-0.01	0.05	0.83	0.74	0.52	0.33	0.24	0.01

6501 aDGluBDFru	0.12	0.86	0.71	0.66	0.57	0.43	-0.07	0.04	0.82	0.73	0.64	0.52	0.37	0.04	0.03	0.83	0.74	0.65	0.49	0.35	0.02
6502 aDGlu-BDFruE	0.14	0.81	0.66	0.55	0.42	0.29	0.02	0.04	0.85	0.71	0.59	0.43	0.29	0.05	0.03	0.83	0.70	0.59	0.43	0.30	0.06
6503 azucar	0.12	0.98	0.91	0.79	0.58	0.39	-0.08	0.03	0.93	0.88	0.73	0.51	0.31	-0.01	0.03	0.92	0.87	0.71	0.48	0.29	-0.02
6504 adglubfru-a	0.11	0.93	0.91	0.77	0.65	0.45	0.03	0.02	0.89	0.81	0.63	0.47	0.31	0.04	0.02	0.88	0.80	0.61	0.46	0.30	0.04
6507 adGluBdFru_0m	0.20	1.03	0.73	0.51	0.36	0.28	-0.18	0.07	0.81	0.69	0.54	0.37	0.28	0.07	0.07	0.84	0.71	0.52	0.35	0.26	0.04
7001 Ltartaric	0.20	0.91	0.87	0.78	0.65	0.52	0.04	0.07	0.88	0.82	0.71	0.53	0.39	0.04	0.08	0.86	0.81	0.71	0.55	0.40	0.08
7701 JCP106	0.33	0.63	0.64	0.49	0.29	0.06	-0.07	0.10	0.54	0.44	0.24	0.04	-0.04	-0.02	0.11	0.54	0.44	0.24	0.01	-0.06	-0.04
7801 NN43a2ab	0.31	0.68	0.42	0.13	0.12	0.00	0.09	0.08	0.66	0.42	0.09	0.01	-0.04	-0.02	0.07	0.65	0.41	0.09	0.01	-0.03	-0.04

Figure S1 Plots of the relative difference between Friedel pairs in atomic scattering factor for an oxygen atom due to resonant scattering effects for Cu *Kα* radiation, red line and Mo *Kα* radiation, blue line. The dotted line represents the physical limit of the Cu *Kα* radiation.

Figure S2 Standard uncertainties of the absolute structure parameters *vs Friedif_{stat}* (a), (b) and (c), *vs R*₁ (d), (e), and (f), *vs tan*⁻¹ (g),(h) and (I) and vs 1/VN (j),(k) and (I)

a)

b)

Figure S3. Plots of the standard uncertainties of y, a) and z, b). The red dots represent the values of u_y and u_z with full data sets and blue dots with high resolution data sets, $\sin\theta/\lambda > 0.8$ Å⁻¹.

Figure S4. T analysis for sample 5101, a), 5401, b), 5602, c) and 6001, d).