## SUPPLEMENTARY DOCUMENT

Electronically driven structural transitions in  $A_{10}(PO_4)_6F_2$  apatites (A=Ca, Sr, Pb, Cd, and Hg)

Prasanna V. Balachandran<sup>1,\*</sup>, Krishna Rajan<sup>2</sup>, and James M. Rondinelli<sup>1</sup>
<sup>1</sup>Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
<sup>2</sup>Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
\*Corresponding author email address: prasven@coe.drexel.edu

#### **S1.0 DENSITY FUNCTIONAL THEORY**

In Table S1, the electronic configurations of the pseudopotentials are given. The input files for the scalar relativistic pseudopotentials were taken from the PSLIBRARY project [1] and the pseudopotentials were generated using the ld1.x routine in the Quantum ESPRESSO package. In our frozen phonon calculations, the atomic displacement amplitudes were set at 0.01Å.

| Element | Valence electron configuration |
|---------|--------------------------------|
| Ca      | $3s^2 3p^6 4s^2$               |
| Sr      | $4s^2 4p^6 5s^2 5p^0$          |
| Pb      | $5d^{10} 6s^2 6p^2$            |
| Cd      | $4d^{9.5} 5s^2 5p^{0.5}$       |
| Hg      | $5d^{10} 6s^2 6p^0$            |
| Zn      | $3d^{10} 4s^2 4p^0$            |
| Р       | $3s^2 3p^3$                    |
| 0       | $2s^2 2p^4$                    |
| F       | $2s^2 2p^5$                    |

 Table S1. Valence electron configurations used in our pseudopotentials.

#### **S2.0 LATTICE DYNAMICAL CALCULATIONS FOR Zn<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>F<sub>2</sub>**

In Figure S1, we show the low-energy zone center phonons for  $Zn_{10}(PO_4)_6F_2$  in the aristotype  $P6_3/m$  structure. Absence of phonons with negative or imaginary frequencies indicates that the aristotype structure is dynamically stable.

### **S3.0 CRYSTAL STRUCTURES**

The ground state and high symmetry structures are attached separately in \*.CIF format.



**Figure S1** Frequencies ( $\omega$ ) of the low energy zone-center phonons for  $Zn_{10}(PO_4)_6F_2$  in the aristotype  $P6_3/m$  structure.

# REFERENCE

S1. http://qe-forge.org/gf/project/pslibrary/ (v. 0.2.5)