Supporting Information

Competition between hydrogen and halogen bonding in the structures of 5,10-dihydroxy-5,10-dihydroboranthrenes

Krzysztof Durka,^{a*} Sergiusz Luliński,^a Katarzyna Jarzembska^b, Jaromir Smętek,^a
Janusz Serwatowski,^a Krzysztof Woźniak^{b*}

^a Warsaw University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Noakowskiego 3, 00-664, Warszawa, Poland

^b University of Warsaw, Department of Chemistry, Structural Research Laboratory, Pasteura 1, 02-093, Warszawa, Poland

* Corresponding authors: Krzysztof Woźniak (kwozniak@chem.uw.edu.pl)

Krzysztof Durka (kdurka@gmail.com)

Scheme S1. Geometry classification of halogen-halogen interactions. Type I: both θ angles are equal. Type II: θ_1 is close to 180° and θ_2 to 90° .

Figure S1. Diagram representing the distribution of θ_1 (C1–F1...F2) and θ_2 (C1–F1...F2) angles ($\theta_1 \le \theta_2$) from the intermolecular C1–F1...F2–C2 contacts, shorter than the sum of the van der Waals radii ($d_{\text{F...F}} < 2.95 \text{ Å}$) in the Cambridge Structural Database (Allen, 2002).

Figure S2. Difference Fourier density maps for the structure of (III) with disorder (*a*) excluded, (*b*) included in the refinement. Color coding: white (III)-A, blue (III)-B. Maps were produced using the *MAPVIEW* program within *WinGX* (Farrugia, 1999).

Figure S3. Difference Fourier density maps for the structure of (V) showing the disorder within the thiophene ring.

Figure S4. Difference Fourier density maps for the structures of (a) (I), (b) (II) and (c) (IV).

Figure S5. Residual electron density map for (II) after UBDB2011 parameters transfer (0.05 $e \cdot Å^{-3}$ contours; blue solid lines positive, red solid lines negative, yellow dashed lines zero).

Figure S6. Molecular clusters built by molecules (III) – central molecule (a, d) (III)-A, (b, c) (III)-B, surrounding (a, c) (III)-A, (b, d) (III)-B. Each central molecule is surrounded by 14 molecules. H atoms are omitted for clarity.

Figure S7. Unit-cell packing diagram for (V) with 0.0003 au. void surface generated in *CrystalExplorer* (Turner *et al.*, 2011).

Figure S8. Crystal structure views showing the differences in the layered arrangements in two polymorphic forms of (I).

Figure S9. Correlation plot of E_{top} (sum of the interaction energies obtained *via* the Espinosa-Lecomte approach) vs E_D (*PIXEL*-computed dimer interaction energy).

Table S1. Comparison between cohesive energies calculated in *PIXEL* with the X-ray crystal geometries ($E_{\text{coh}}^{\text{X-ray}}$, after X-H bonds standardization) and geometries optimized with *CRYSTAL09* ($E_{\text{coh}}^{\text{opt}}$). The energy values obtained from *CRYSTAL09* are given in parentheses. Lattice energies breakdown into the electrostatic (E_{elstat}), polarization (E_{pol}), dispersion (E_{disp}) and repulsion (E_{rep}) terms is shown for the optimized geometries.

	(I)	(II)	(III)-A	(III)-B	(IV)	(V)
$E_{\rm coh}^{\rm X-ray} / {\rm kJ \cdot mol^{-1}}$	-106.1	-115.2	-101.4	-94.0	-113.9	-122.4
$E_{\rm coh}^{\rm opt}$ / kJ·mol ⁻¹	-129.5	-123.3	-104.9	-101.8	-122.7	-133.4
	(-133.5)	(-120.3)	(-106.0)	(-103.7)	(-118.6)	(-128.8)
$E_{ m elstat}$ / kJ·mol ⁻¹	-119.9	-60.1	-56.2	-62.8	-62.9	-148.0
$E_{ m disp}$ / ${ m kJ \cdot mol^{-1}}$	-152.8	-131.8	-162.0	-162.5	-173.6	-136.6
$E_{ m pol}$ / ${ m kJ \cdot mol^{-1}}$	-44.8	-19.6	-23.1	-20.0	-19.2	-79.7
$E_{\text{rep}} / \text{kJ} \cdot \text{mol}^{-1}$	131.4	91.2	92.7	87.6	97.8	230.8