Supplementary materials

Charge density analysis using a multipolar atoms and a spherical charges model: 2-methyl-1,3-cyclopentanedione, a compound displaying a resonanceassisted-hydrogen-bond.

Ayoub Nassour, Maciej Kubicki, Jonathan Wright, Teresa Borowiak, Grzegorz Dutkiewicz, Claude Lecomte and Christian Jelsch.

Table S1.

Summary of the electron density models and crystallographic refinements. *SCA*, *XYZ*, *UIJ* refer to scale factor, atomic coordinates and thermal displacement parameters respectively. H and Q refer to hydrogen and virtual atoms respectively. Diffraction data are obtained experimentally (EXP) or by theoretical calculations (THEO).

Model name	Refinement	hkl data	Restraints and constraints	
EXP_MUL ^a	SCA XYZ UIJ refined except	EXP	Stereochemical and thermal	
	for H.		constraints on H atoms.	
EXP_VIR ^b	SCA XYZ UIJ refined except	EXP	Stereochemical constraints on H.	
	for H and Q atoms.		Thermal constraints on H and Q.	
THEO_MUL ^c	- Geometry fixed.	THEO	k of H atoms restrained.	
	- $P_{\rm val}$, $P_{\rm lm}$, k , k ' refined			
THEO_VIR ^d	- Geometry fixed	THEO	k of H atoms restrained.	
	- <i>XYZ</i> of Q atoms, P_{val} and			
	k of all atoms refined			

^aMultipolar model vs. experimental structure factors.

^bVirtual spherical charges model vs. experimental structure factors.

^cMultipolar model vs. theoretical structure factors.

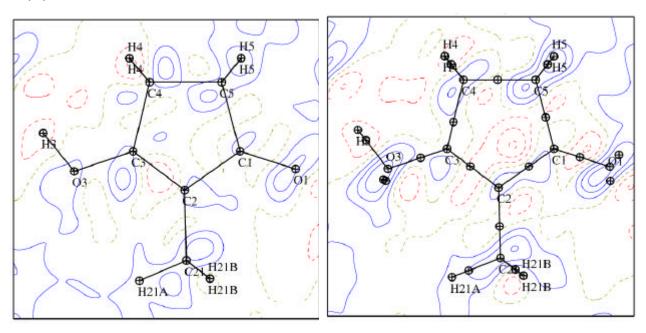
^dVirtual spherical charges model vs. theoretical structure factors.

Table S2. Net atomic charges derived from the AIM analysis Q_{Ω} in the MCPD molecule for the multipolar models. The refined electron populations $P_{\text{val}}/P_{\text{vir}}$ of the models for the virtual atoms models are also given. O1 6.26543

Atom	EXP_MUL	THEO_MUL	EXP_VIR	THEO_VIR
. nom	Q_{Ω}	Q_{Ω}	$P_{\mathrm{val}}/P_{\mathrm{vir}}$	$P_{\rm val}/P_{\rm vir}$
C1	+0.87	+0.86	3.43	2.75
01	-1.09	-1.14	5.81	6.24
C2	+0.10	-0.03	4.63	3.43
C21	-0.23	+0.14	2.97	3.09
C3	+0.67	+0.53	3.10	3.09
03	-1.26	-1.21	6.16	6.43
C4	-0.19	+0.09	4.10	2.74
C5	-0.11	+0.036	3.43	3.04
H3	+0.66	+0.65	0.28	0.31
H4	+0.08	+0.02	0.77	0.44
H5	+0.07	+0.01	0.66	0.44
H21A	+0.10	+0.04	0.64	0.30
H21B	+0.10	-0.018	0.64	0.44
qC1C2	/	/	0.51	0.59
qC2C21			0.22	0.47
qC2C3			0.44	0.62
qC3C4			0.30	0.58
qC4C5			0.22	0.62
qC5C1			0.40	0.56
qC1O1			0.30	0.31
qC3O3			0.16	0.10
qO3H3			0.25	0.30
qCH21A			0.60	0.87
qCH21B			0.62	0.74
qC4H4			0.23	0.80
qC5H5			0.45	0.74
LPO1a			0.18	0.14
LPO1b			0.14	0.13
LPO3			0.06	0.04

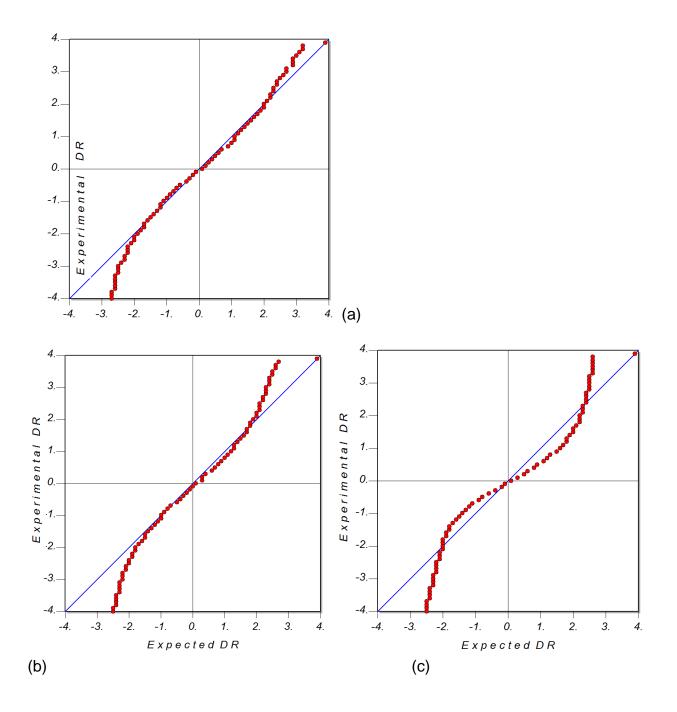
Bond \ model	EXP_MUL	THEO_MUL	EXP_VIR	THEO_VIR
C1-C2	0.95	0.65	0.85	0.70
C2=C3	0.80	0.75	0.75	0.75
C3-C4	0.70	0.55	0.60	0.50
C4-C5	0.55	0.45	0.75	0.45
C5-C1	0.55	0.55	0.55	0.60
C2-C21	0.50	0.45	0.65	0.45

Table S3. Bond peak heights in the deformation electron density maps in the plane of the MCPD pentacycle (Fig. 3) in e. $Å^{-3}$.


Figure S1. Residual electron density map in the plane *y*=0 of the molecule.

(a) experimental multipolar. (b) experimental virtual.

Contour level: $\pm 0.05e \cdot \text{Å}^{-3}$. Positive: solid blue lines; negative: dashed red lines; dashed yellow lines.


(a)

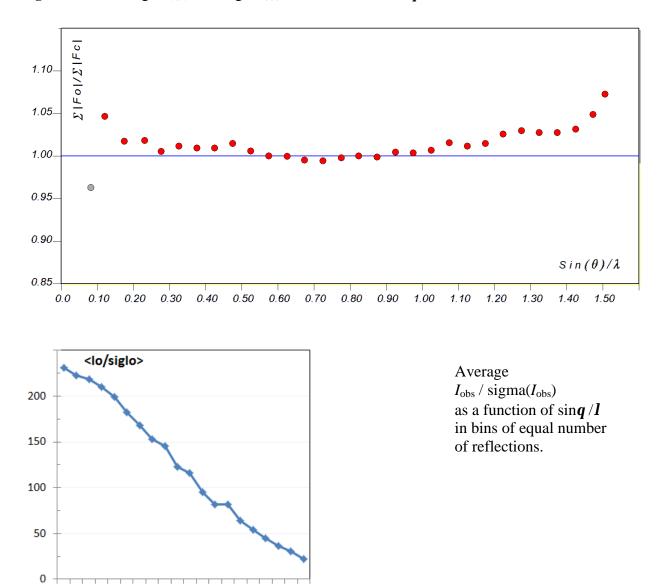
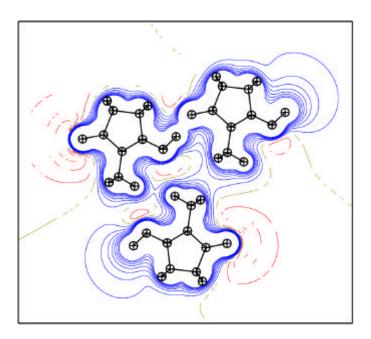
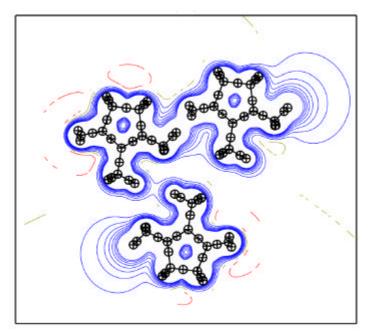

(b)

Figure S2. Expected vs. Experimental delta(RHO) for: (a) EXP_MUL, (b) EXP_VIR and (c) EXP_IAM spherical refinements.

Zhurov et al., (2008) J. Appl. Cryst. 41, 340-349.

Figure S3. Average F_{calc} Average F_{obs} as a function of $\sin q / l$


0,32 0,76 0,92 1,04 1,14 1,22 1,30 1,36 1,42 1,48 s


Figure S4

Electrostatic potential map of the interacting assemble of three molecules, showing the good shape complementarity.

Top: experimental multipolar. Bottom: experimental virtual.

Contour $\pm 0.05e/\text{Å}$. Positive: solid blue; negative: red dashed lines; zero: yellow dashed lines.

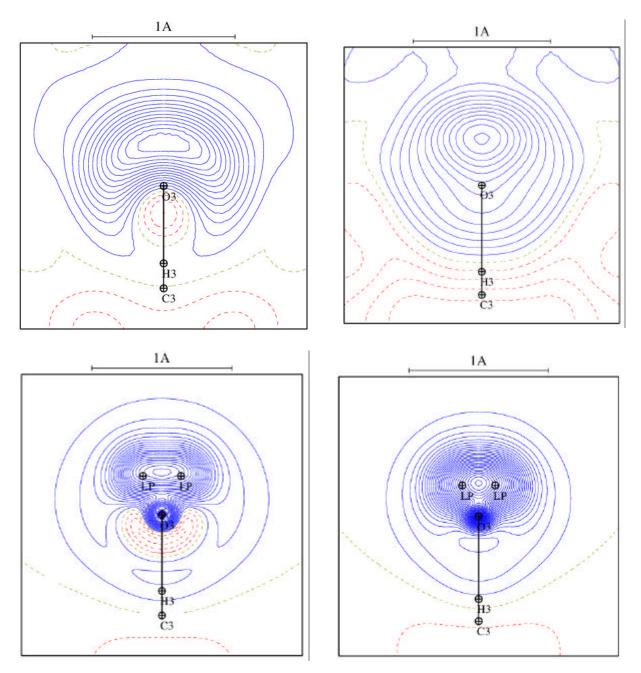
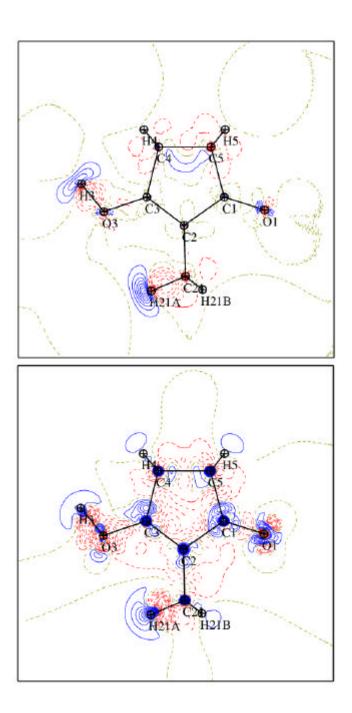


Figure S5

Deformation electron density in the lone pairs plane of the hydroxyl oxygen atom O3. Left : theoretical models, Right: experimental models.


Top: residual density using a spherical atom model. Fourier synthesis truncated at d>0.5Å. Bottom: static electron density of the virtual atom models..

Contour level: $\pm 0.05e \cdot \text{Å}-3$. Positive: solid blue lines; negative: dashed red lines; dashed yellow lines.

Figure S6.

Difference between the B3LYP electron density and that of the THEO_MUL (top) and THEO_VIR (bottom) models. Contours as in Fig. Sup5.

