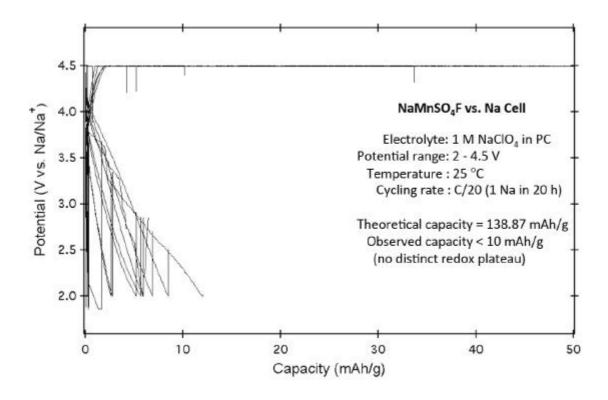

Supplementary Information

Sodium manganese fluorosulphate with a triplite structure


Prabeer Barpanda^{a,b}*, Chris D. Ling^c, Gosuke Oyama^a and Atsuo Yamada^{a,b}

- a. Department of Chemical System Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
 - b. Unit of Element Strategy Initiative for Catalysts & Batteries, ESICB, Kyoto University, Kyoto 615-8510, Japan.
- c. School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

* prabeer@chemsys.t.u-tokyo.ac.jp Phone: +81-3-5841-7295; Fax: +81-3-5841-7488

Figure S1: SEM micrographs of NaMnSO₄F with large micrometric agglomerates (primary particles) made up with nanoscale (50-200 nm) secondary particles.

Figure S2: Galvanostatic charge-discharge cycling profile of triplite NaMnSO₄F tested in sodium half-cell architecture. It is found to be electrochemically inactive.