Supplementary Material

Thermodynamic and structural relationships between the two polymorphs of 1,3dimethylurea

Christian Näther, Cindy Döring, Inke Jess, Peter G. Jones and Christina Taouss

Fig. S1	X-ray powder pattern of the batch containing the fibrous needles and of form II and form I calculated from single crystal data.	2
Fig. S2	Microscopic image of the batch containing the fibrous needles.	2
Fig. S3	X-ray powder pattern of polymorph I calculated from single crystal data measured at room temperature and at 180 K.	3
Fig. S4	X-ray powder pattern of polymorph II calculated from single crystal data measured at room temperature and at 180 K.	3
Fig. S5	X-ray powder pattern of the commercially available compound, of the residue isolated at $50^{\circ} \mathrm{C}$ and calculated patterns of polymorph II and polymorph I.	4
Fig. S6	DSC curve of polymorph II at $30^{\circ} \mathrm{C} /$ min.	4
Fig. S7-S9	X-ray powder pattern of the residues obtained in the solvent-mediated conversion experiments.	5
Fig. S10	Powder patterns of the residue obtained by fast removal of the solvent of a saturated solution in diethyl ether and by cooling the melt in liquid nitrogen.	6
Fig. S11	Powder patterns of a mixture of both forms after storage in a refrigerator and at room-temperature, and the calculated patterns for both forms..	7
Tab. S1	Crystal data and structure refinement for I and II at room temperature.	8

Fig. S1. X-ray powder pattern of the batch that contains the fibrous needles (a) and of form II (b) and form I (c) calculated from single crystal data measured at room-temperature.

Fig. S2. Microscopic image of the batch containing the fibrous needles.

Fig. S3. X-ray powder pattern of polymorph I calculated from single crystal data measured at room-temperature (top) and at 180 K (bottom)

Fig. S4: X-ray powder pattern of polymorph II calculated from single crystal data measured at room-temperature (top) and at 100 K (bottom).

Fig. S5: X-ray powder pattern of the commercially available compound (a), of the residue isolated at $50^{\circ} \mathrm{C}$ (b) and calculated pattern of polymorph II (c) and polymorph I (d).

Fig. S6: DSC curve of polymorph II ($\mathrm{T}_{\mathrm{o}}=$ extrapolated onset temperature; $\mathrm{T}_{\mathrm{p}}=$ peak temperature; heating rate $30^{\circ} \mathrm{C} / \mathrm{min}$).

Fig. S7: X-ray powder patterns of the residues formed in the solvent-mediated conversion experiments using water, acetone, ethanol, 1-propanol and 2-propanol, together with that of the pristine material and that calculated for polymorph I and polymorph II.

Fig. S8: X-ray powder patterns of the residues formed in the solvent-mediated conversion experiments using THF, dioxane, DMSO, chloroform and tetrachloromethane together with that of the pristine material and that calculated for polymorph I and polymorph II.

Fig. S9: X-ray powder patterns of the residues formed in the solvent mediated conversion experiments using dichloromethane, tert.-butyl methyl ether, diethyl ether, ethyl acetate and 2-butanone, together with that of the pristine material and that calculated for polymorph I and polymorph II.

Fig. S10: Experimental powder patterns of the residue obtained by fast removal of the solvent of a saturated solution in diethyl ether (a), of the residue obtained by cooling the melt in liquid nitrogen (b) and calculated powder pattern for polymorph I (c).

Fig. S11: Experimental X-ray powder patterns of a mixture of polymorph I and polymorph II (a), of the residue obtained after storing this mixture in a refrigerator at $4^{\circ} \mathrm{C}$ for 3 d in acetone
(b) of the residue obtained after storing this mixture for 3 d at room temperature in acetone (d), with calculated powder patterns for polymorph II (c) and polymorph I (e).

Table S1. Crystal data and structure refinement for I and II at room temperature.

Polymorph	I	II
Empirical formula	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	88.11	88.11
Temperature (K)	293	293
Wavelength (A)	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic
Space group	Fdd2	$P 2{ }_{1} 2_{1} 2$
Unit cell dimensions (A): a	11.4161(18)	10.7542(13)
b	20.178(4)	5.2159(9)
c	4.5709(9)	4.5968(5)
Volume (\AA^{3})	1052.9(3)	257.85(6)
Z	8	2
Density (calculated) ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.112	1.135
$\mu\left(\mathrm{mm}^{-1}\right)$	0.08	0.09
F(000)	384	96
$2 \theta_{\text {max }}$	56.3	56.4
Reflections collected	2176	3835
Independent reflections	$354[R($ int $)=0.048]$	388 [R (int) $=0.092$]
Data / restraints / parameters	354 / 1 / 34	388 / 0 / 34
Goodness-of-fit on F^{2}	1.17	1.27
Final R indices [/>2sigma (1)]	$R 1=0.055, w R 2=0.106$	$R 1=0.047, w R 2=0.134$
R indices (all data)	$R 1=0.104, w R 2=0.122$	$R 1=0.050, w R 2=0.137$
Largest diff. peak / hole (e \AA^{-3})	0.06 / -0.07	0.09 / -0.10

