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1 Experimental Methods

1.1 General Considerations

All samples were prepared under ambient conditions, using ultra-pure (Milli-Q) wa-

ter. [Ru(bpy)3]Cl2 (bpy = 2,2’-bipyridine) was obtained from commercial sources and used

without further purification.

1.2 Total Scattering Measurements

High energy X-ray scattering measurements were performed at beamline 11-ID-B of

the Advanced Photon Source at Argonne National Laboratory. All measurements were

performed with an unfocused (0.5 × 0.5 mm) incident X-ray beam of energy 58.6 keV (λ

= 0.2115 Å), and an amorphous silicon detector (Perkin Elmer XRD1621). Samples were

loaded into polyimide capillaries (Cole-Parmer; ID = 1.275 mm, OD = 1.367 mm), sealed

with epoxy, and mounted in a plastic sample holder. Images were collected by integrating 0.4

s exposures (well-within the dynamic range) for 5 min before allowing the detector to relax

for an additional 5 min; replicate 5 min integrations were performed until good statistics

were achieved to at least Q ≈ 20 Å−1. All measurements were performed with a nominal

sample-to-detector distance of 180 mm, which was calibrated using a CeO2 reference sample.

After subtraction of dark counts, a flat field correction was applied to each raw image using

the program QXRD. See §4 for further details regarding the reduction of the experimental

data.

In all, we performed duplicate measurements on independently-prepared samples of

aqueous [Ru(bpy)3]Cl2 (ca. 15 mM) and neat water, totaling 50–60 min of total integration

time for each duplicate sample (or, ca. 2 h total time for the solution measurement and the

solvent measurement, after subsequent averaging).
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2 Computational Methods

2.1 Density functional theory calculations

All DFT calculations were performed using Gaussian 16 [1]. Gas-phase geometry opti-

mizations and frequency calculations were carried out with the hybrid meta-GGA exchange

correlation functional TPSSh [2] along with the def2-TZVP basis set on all atoms [3]. Fol-

lowing geometry optimization, molecular electrostatic potential maps were computed at the

same level of theory according to the Merz-Kollman-Singh (MKS) scheme [4, 5], using the

standard MKS atomic radii for main group elements and those given by Rappe, et al. for

transition metals [6].

2.2 Force field parameterization

Force fields for transition metal complexes were parameterized with MCPB.py using

the Seminario method for bonded parameters and the RESP method for charges [7], based

on the DFT calculations described above. Bonded parameters involving ligand atoms not

directly attached to the metal center were parameterized using version 2 of the General

Amber Force Field (GAFF2) distributed with AmberTools21 [8]. The rigid 4-point OPC

force field was used to model solvent water and counterions [9, 10]. All force fields are

provided in the form of OpenMM-compatible *.xml files as supplementary information.

2.3 Molecular dynamics simulations

Molecular dynamics (MD) simulations were performed using OpenMM [11]. All simula-

tion cells were cubic (ca. 48 Å edge length), and treated using periodic boundary conditions

in the minimum image convention. Simulations used a LangevinMiddleIntegrator with

a time step of 2 fs and a friction coefficient of 1/ps. Lennard-Jones forces were smoothly

damped to zero starting at a distance of 12 Å to the long-range cutoff at 15 Å. Long-

range nonbonded interactions were treated with the Particle Mesh Ewald method for both

Coulomb and Lennard-Jones forces using the same cutoff distance of 15 Å. All bonds were

constrained during simulation and water molecules were treated as fully rigid. Simulations

were initialized at 1 K, minimized, and heated linearly to 300 K in 500 ps in an NV T en-

semble. Following heating, simulations were equilibrated at 300 K in an NpT ensemble at 1

atm for an additional 500 ps; pressure coupling was achieved with a MonteCarloBarostat

with a coupling frequency of 25 time steps. Finally, production runs were performed for 20

ns in the NpT ensemble, sampling snapshots every 10 ps, for a total of 2000 frames. In the

case that additional statistics were required, multiple independent 20 ns trajectories were
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computed, and the results of subsequent calculations averaged.

2.4 Simulating total scattering

To simulate the coherent scattering from atomic coordinates given by an MD trajectory,

we follow the approach of Dohn, et al. [12] (c.f. Warren, pp. 135–142 [13]). This method,

which is mathematically equivalent to evaluating the Debye scattering equation, takes ad-

vantage of efficient algorithms to compute radial pair distribution functions (RDFs) from

MD data, and encodes thermal broadening effects in a non-parametric fashion directly from

the simulation dynamics. Moreover, it avoids invocation of the Morningstar-Warren ap-

proximation often used by other RDF-based approaches to calculating coherent scattering

intensities [14].

Briefly, if we classify all atoms {ai}i=1,...,N = A into types α, β, . . . such that
∑

αNα = N

(where Nα is the number of atoms of type α), and each type α is composed of a single

element,∗ and we let {fk}k=1,...,M index the snapshots (‘frames’) defining the trajectory,

then the coherent scattering intensity for a given frame of the trajectory can be computed

according to,

Icoh,k(Q) =
∑
α∈A

Nαfα(Q)2+

∑
α∈A

∑
β∈A

fα(Q)fβ(Q)
Nα (Nβ − δαβ)

Vk

∫ ∞

0
4πr2 (gαβ,k(r)− g0,αβ)

sinQr

Qr
dr

(S2.1)

where δαβ is the Kronecker delta function, Vk is the volume of the simulation cell in frame

fk (hence, the prefactor to the integral is simply the product of the atomic number densities

of types α and β), gαβ,k(r) is the pair radial distribution function (RDF) for atom types α

and β computed from frame fk, and g0,αβ is the (theoretical) limit of the RDF as r → ∞
(g0,αβ = 1 for collections of freely-diffusing atoms, while g0,αβ = 0 for collections of atoms

bound in a single molecule). The first term in the sum provides the self-scattering while

the second provides the distinct scattering. Implicit in the double summation above is

that when α = β, only distinct atom pairs are selected in the computation of the RDF.

Note that the distinct scattering term of equation (S2.1) naturally decomposes the total

distinct scattering from the collection of atoms into a set of partial terms, Iαβ(Q), such

that Id(Q) =
∑

α,β Iαβ(Q). If there are Γ atom types, then in general there are Γ2 partials.

However since gαβ(r) = gβα(r) it is sufficient to calculate Γ(Γ−1)
2 of the “cross-terms” when

α ̸= β and multiply them by a factor of 2.

∗There may be distinct atom types of the same element, e.g., an H atom of a water molecule will be
treated as a different atom type than an H atom of the solute
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Orientational averaging, as appropriate for isotropic systems, is achieved by computing

the frame-averaged quantity (equivalent to the ensemble average assuming ergodicity),

Icoh(Q) = ⟨Icoh,k(Q)⟩k =
1

M

M∑
k=1

Icoh,k(Q) (S2.2)

For trajectories computed in the NV T ensemble, Eqn. S2.2 reduces to a form analogous

to Eqn. S2.1 where Vk = V and the frame (ensemble) averaged RDF, gαβ(r) = ⟨gαβ,k(r)⟩k,
replaces gαβ,k(r); in this case, gαβ(r) can be computed directly from the simulation data to

achieve orientational averaging. For NpT trajectories, where V is not conserved, the coher-

ent scattering must be computed frame-wise according to Eqn. (S2.1), and subsequently

averaged via Eqn. (S2.2). It is also important to note that the integral in Eqn. (S2.1) is

truncated at a finite maximum radius R, typically taken as half of the simulation cell side

length. Finite-size effects arising from this truncation have recently been investigated in de-

tail [15]; however, as these typically result in errors at Q < 1 Å, we will not treat this topic

further. We have implemented Eqns. (S2.1) and (S2.2) in Python. Atomic form factors were

taken from the Python package Diffpy [16] (which themselves adopt the Waasmaier–Kirfel

model [17]), while RDFs were computed using the Python package MDTraj [18]. Pending

a full release as a package, a development version of the code used in this work is available

online at: https://github.com/niklasbt/mdxcs dev.

For a given collection of atoms, {ai}i=1,...,N , the average incoherent (Compton) scattering

contribution per atom can be expressed,

⟨C(Q)⟩ = Ra

N

N∑
i=1

Ci(Q) (S2.3)

where Ci(Q) is an expression depending only on the atomic structure of atom i, and Ra

is the so-called Breit-Dirac recoil factor (we assume a = 2 [19]). Hence, the incoherent

contribution to the total scattered intensity is given by,

Iinc(Q) = N ⟨C(Q)⟩ (S2.4)

Eqn. (S2.4) was evaluated using Thijsse’s empirical fitting [20] of the calculations of Cromer

and Mann [21].
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3 Numerical Results

3.1 Construction of simulation cells

As described in the main text, we simulated a dilute solution of [Ru(bpy)3]Cl2 by sol-

vating a single solute molecule in a box containing 3535 water molecules. Given the final

average volume of the trajectory (107 nm3), this corresponds to a 15.5 mM solution. To

estimate the ensemble-averaged size of the excluded solvent droplet (NE) for this solute,

we require an estimate for the van der Waals volume, VU , of [Ru(bpy)3]Cl2. To do so, we

must fix a set of atomic van der Waals radii, rvdW; while there is not a unique choice of

rvdW, here we choose perhaps the most “natural” measure for the size of the atoms in our

simulation, i.e.,

rvdW =
σ

25/6
≈ σ

1.78
(S3.5)

where σ is the Lennard-Jones parameter for the atom in our force field. That is, we take rvdW

to be one-half of the internuclear separation which minimizes the Lennard-Jones potential

for the homodimeric system (rmin = 21/6σ).

With this choice of rvdW set, we can estimate VU by enclosing a representative molecular

structure of the solute particle into a three-dimensional box, choosing a particular voxeliza-

tion of the box, and then simply summing the volumes of those voxels (
∑

∆V ) which

intersect with any sphere of radius rvdW centered about any atom of the solute. In the limit

of the voxel dimension passing to the infinitesimal volume element (∆V → dV ), this sum

should approach VU . Concretely, to obviate over-counting voxels, we compute the function

f : {Vi} → {0, 1} that maps the value of a voxel (Vi) to 0 if it does not intersect with any of

the solute atoms, and 1 if it does; the total volume of the particle is then approximated by

Vparticle = ∆V
∑

i f(Vi). We chose a voxelization that reproduces the expected volume for

a single-atom particle with high precision; specifically, ∆V = 1×10−4 Å3 which reproduces

the exact volume for a single chloride ion (43πr
3
vdW = 55.1 Å3 for rvdW = 2.36 Å) within 3%

error (56.8 Å3). This is sufficiently accurate for our purposes, as we are restricted to whole

numbers of atoms in constructing simulations.

In the case of [Ru(bpy)3]Cl2, where we expect dissolution to produce three solvated par-

ticles (i.e., [Ru(bpy)3]
2+ and two Cl− counterions), this procedure needs to be performed on

each particle separately. With VU in hand, we can compute NE = nB ×VU , where nB = 0.1

atoms Å−3 is the experimental atomic number density for water. For [Ru(bpy)3]Cl2, we

find that NE = 65.9, or, rounding to the nearest whole molecule, 22 water molecules. Thus,

we simulated the pure solvent reference system by a cell containing 3557 water molecules.

For solutes with many nearly-degenerate conformers, this procedure should be repeated by
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considering the complete set of thermally-populated conformers. Thermally-equilibrated

simulation cells are provided in the format of OpenMM-compatible *.pdb files as supple-

mentary information.

3.2 Calculating the excluded solvent structure

To compute the excluded solvent structure function, we adopt a strategy similar to

computing the van der Waals volume described above. That is, we consider each frame of

the solvent reference trajectory (B), and place an image of a representative structure of the

solute particle into the center of the pure solvent simulation cell. That is, we superimpose a

representative molecular structure of the solute particle within the frame; here, we use the

DFT-optimized structure of [Ru(bpy)3]
2+, although for less rigid solute particles, it may

prove necessary to consider an ensemble of structures representing the thermal population

of conformers. We then compute the pairwise distances between all solvent atoms and

all atoms of the solute, and label all those which lie within one van der Waals radius of

any solute atom as belonging to the excluded solvent droplet in that given frame. In this

fashion, we partition each atom of the solvent, in each given frame, as belonging to either

the excluded solvent droplet (e ∈ E), or its complement (v⋆ ∈ B \ E). With the atoms

so-partitioned, it is straightforward to evaluate Iee(Q) and Iev⋆(Q) as described above.

More precisely, we evaluate the distinct scattering term of equation (S2.1), further de-

composing the set of all elemental solvent atom types into sub-classes, according to whether

the atom is labeled e ∈ Ek (the excluded solvent droplet in frame fk) or v⋆ ∈ B \ Ek. We

can then construct,

Iee(Q) =

〈 ∑
α,β∈Ek

Iαβ

〉
k〈 ∑

α,β∈Ek

fα(Q)fβ(Q)
Nα (Nβ − δαβ)

Vk

∫ ∞

0
4πr2 (gαβ,k(r)− g0,αβ)

sinQr

Qr
dr

〉
k

(S3.6)

Iev⋆(Q) =

〈 ∑
α∈Ek,β∈B\Ek

Iαβ

〉
k〈 ∑

α∈Ek,β∈B\Ek

fα(Q)fβ(Q)
Nα (Nβ − δαβ)

Vk

∫ ∞

0
4πr2 (gαβ,k(r)− g0,αβ)

sinQr

Qr
dr

〉
k

(S3.7)

For the case of water as the solvent, there are thus four atom types, in total, i.e., H and

O atoms in Ek, and H⋆ and O⋆ atoms in B \ Ek. In this case, the sum in equation (S3.6)

contains three partials (stemming from H–H, H–O, and O–O pairs within the excluded
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volume droplet), while the sum in equation (S3.7) contains four partials (H–H⋆/H–O⋆ and

O–H⋆/O–O⋆ pairs across the excluded volume interface). By definition, we arrive at our

excluded solvent reduced structure function,

F̃x(Q) =
Q

NU ⟨f(Q)⟩U
[Iee(Q) + Iev⋆(Q)] (S3.8)

keeping in mind that this quantity should be summed over all independent solute particles.

Finally, for completeness, the forward-simulation of the excluded solvent structure func-

tion allows us to compute the solvent restructuring structure function, again by definition,

∆F̃r(Q) = ∆F̃s(Q) + F̃x(Q)

=
Q

NU ⟨f(Q)⟩U

[
IAvv(Q)− IBvv(Q) + Iee(Q) + Iev⋆(Q)

] (S3.9)

Equivalently, we could directly evaluate Iv⋆v⋆(Q) following the scheme above, and compute

∆F̃r(Q) = Q/NU ⟨f(Q)⟩U
[
IAvv(Q)− Iv⋆v⋆(Q)

]
.

3.2.1 Sensitivity of the excluded volume to nanoscopic morphology

Acknowledging that; (i) at high momentum transfers (high angles), the coherent scat-

tering contribution to the total scattering signal is most sensitive to atomic-scale pair corre-

lations; and that (ii), in practice, experimental HEXS studies typically report Qmin ≈ 0.5 to

1 Å−1, and thus include some amount of small-angle information; it is unclear, a priori, how

sensitive F̃x(Q) is to the nanoscopic morphology of the excluded volume particle. That is,

it might be argued that the precise form of F̃x(Q) should only be sensitive to the volume of

the particle (a 1-dimensional quantity), and not its morphology (a 3-dimensional quantity),

given the local character of the measurement. If that were the case, one could simply model

Ix(Q) ≈ νIBd (Q) (S3.10)

where ν is some scaling factor (intuitively, the volume fraction of the solute particle).

Although a complete evaluation of this approximation will relegated to future work, we

have investigated its scope within our model system, viz. [Ru(bpy)3]
2+. We have considered

particles of approximately identical volumes, but distinct morphologies: (i) a simple sphere

of radius r = 5 Å (NE = 53 atoms), (ii) a linear chain of four pseudo-atoms with rvdW = 3.75

Å spaced 2.5 Å apart (NE = 55 atoms), (iii) a cubic array of eight pseudo-atoms with

edge length 2.5 Å and with rvdW = 2.5 Å (NE = 54 atoms), and (iv) [Ru(bpy)3]
2+ itself,

as described above (NE = 54 atoms, without considering the counterions). Using the
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Figure S1 : Comparison of the normalized total scattering reduced structure func-
tion, F (Q), computed for bulk water (thick orange line) with the excluded solvent
structure function computed with different particle morphologies (thin blue line).
The offset gray lines show the residual (light gray) along with a smoothed residual
(Savitzky–Golay filter; dark gray), plotted for clarity to distinguish Fourier trunca-
tion artifacts. From top to bottom, the particle is a simple sphere, a linear chain
of pseudo-atoms, a cubic array of pseudo-atoms, and, finally, [Ru(bpy)3]

2+. The
surface of the van der Waals volume of the corresponding morphology is rendered
to the right of each subplot.

same reference trajectory of neat water, we have computed Ix(Q) for 0.5 ≤ Q ≤ 24 Å−1,

considering excluded solvent volumes defined by these distinct particles, and employing the

methodology described above.
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In Figure S1, we have transformed these to the “standard” reduced structure functions

appropriate for water, which are compared to the (normalized) total scattering reduced

structure function of liquid water, computed considering the trajectory as a whole. Judging

by these results, the excluded solvent structure function is, to a high degree of precision,

identical to the “bulk” structure function for Q ≥ 10 Å−1. However, as expected, this

correspondence begins to deteriorate for 1 < Q < 10 Å−1, and becomes increasingly poor

below Q ≈ 1 Å−1. Nevertheless, in the HEXS regime (Q ≳ 1 Å−1), the absolute deviation is

relatively small, hence, it may indeed be an adequate approximation to model the excluded

solvent by a semi-empirical scaling of the “bulk” structure.

3.3 Evaluating concentration dependence

As mentioned in the main text, we investigated the concentration dependence of our

ansatz by additionally simulating a 0.5 M aqueous solution of [Ru(bpy)3]Cl2. This is not a

stable solution in reality; however, we found no evidence of crystallization in silico, at least

over the course of a 20 ns trajectory. For consistency with respect to finite size errors, we

simulated this solution by including 32 replicas of the solute, replacing 32× 22 = 704 water

molecules from the reference water model.

Figure S2 compares the reduced differential structure functions, and their corresponding

Fourier transforms, computed from the 15 mM simulation and the 0.5 M simulation. The

residuals do not exhibit any discernible structure, at least within the noise level present in

the 15 mM calculation. We conclude that the system behaves as a dilute solution at least

up to 0.5 M concentrations, using these force fields.
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Figure S2 : Comparison of ∆F (Q) (left) and ∆G(r) (right; Fourier transformed
over Q ∈ [0.8, 21.4] Å−1), computed from a aqueous simulation of [Ru(bpy)Cl at 15
mM (thick blue lines) and at 0.5 M (thin orange lines). The differences are plotted
below in grey.
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4 Experimental data reduction

Following correction for dark counts and the detector flat field, each experimental image

was calibrated, masked to exclude the beamstop, corrected for the polarization of the X-rays,

and integrated azimuthally to yield 1-dimensional scattering curves, I
(m)
A (Q)/I

(m)
B (Q) over

the range Qmin = 0.6 and Qmax = 24 Å−1; these steps were performed using GSAS-II [22].

Given the experimental configuration of APS beamline 11-ID-B, we do not have access

to flux-normalized detector counts, so we do not, in general, obtain absolute scattering

intensities, but rather [23],

I(m)
x (Q) = Φx(Q) [Ax(Q)Ix(Q) + bx(Q)] ⇔ Ix(Q) =

I
(m)
x (Q)

Φx(Q)Ax(Q)
− bx(Q)

Ax(Q)
(S4.11)

where x = A,B. Φx(Q) is a normalization term accounting for detector-specific effects (e.g.,

due to the polarization of the X-rays, detector efficiency, etc.), Ax(Q) is the self-attenuation

of the sample, and bx(Q) is an additive contribution due to other scattering processes (by

the experimental apparatus, the container, and any multiple scattering). Having corrected

for detector and geometry-specific effects in the azimuthal-integration, Φx(Q) is reduced to

a constant, ϕx, accounting for any differences in incident flux. We have further corrected

the data to account for the self-attenuation and multiple-scattering due to the bulk solvent

(water), assuming that the dilute solute in sample A does not introduce significant addi-

tional attenuation/multiple scattering. These corrections were performed using the program

PDFGetX2 [24], using the theoretical mass-attenuation coefficient for water calculated from

the sample dimensions and assuming a packing fraction of unity.

Using these corrected data—labeled (m, corr)—we can approximate the scattering dif-

ferential by,

∆I(Q) = IA(Q)− IB(Q) ≈ ϕ−1
A I

(m,corr)
A (Q)− ϕ−1

B I
(m,corr)
B (Q)

= w0I
(m,corr)
A (Q) + w1I

(m,corr)
B (Q)

= I(m)w

(S4.12)

where I(m) :=
[
I
(m,corr)
A , I

(m,corr)
B

]
and w := [w0, w1]

T . Here, we assume that any remaining,

additive, correction terms are identical between the two measurements, and thereby cancel.

To take the proper difference, then, we need a method to estimate the unknown weights,

w0 := ϕ−1
A and w1 := −ϕ−1

B . To do so, we cast the differential calculation as an optimization

problem.

Recall that we can partition all of the atoms in the liquid unit cell of sample A (A, of
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which there are NA), into the set of solute atoms, U (of which there are NU ), and the rest.

Thus, the total scattering intensity from measurement A, in electron units, can be written,

IA(Q) = IAcoh(Q) + IAinc(Q)

=
[
NA ⟨f(Q)2⟩A + IAd (Q)

]
+NA ⟨C(Q)⟩A

=

NU∑
i∈U

f∗
i (Q)fi(Q) +

NA−NU∑
i∈A\U

f∗
i (Q)fi(Q)

+ IAd (Q) +

NU∑
i∈U

Ci(Q) +

NA−NU∑
i∈A\U

Ci(Q)


= IAd (Q) +NU

[
⟨f(Q)2⟩U + ⟨C(Q)⟩U

]
+

NA−NU∑
i∈A\U

f∗
i (Q)fi(Q) +

NA−NU∑
i∈A\U

Ci(Q)


(S4.13)

and similarly for IB(Q), replacing the label U with the label E (i.e., identifying the excluded

solvent droplet in place of the solute). In the limit of an ideal solution (i.e., infinitely dilute),

we haveNB → (NA−NU )+NE . Hence, upon taking the differential ∆I(Q) = IA(Q)−IB(Q),

the terms in the parentheses of Eqn. (S4.13) identically cancel. We are left, after some

rearrangement,

∆Id(Q) = ∆I(Q)−
(
NU

[
⟨f(Q)2⟩U + ⟨C(Q)⟩U

]
−NE

[
⟨f(Q)2⟩E + ⟨C(Q)⟩E

])
(S4.14)

That is, the differential distinct scattering is obtained after subtracting the “differential

self-scattering” (∆Iself(Q) := NU ⟨f(Q)2⟩U − NE ⟨f(Q)2⟩E) and the “differential Compton

scattering” (∆Iinc(Q) := NU ⟨C(Q)⟩U −NE ⟨C(Q)⟩E). Note, however, that—given we have

a reasonable estimate for NE—both ∆Iself(Q) and ∆Iinc(Q) are calculable, depending on,

as they do, composition and not structure.

Now, consider the asymptotic properties of the left hand side of Eqn. (S4.14). The

differential distinct scattering is a function which exhibits damped oscillations about zero

as Q → ∞. It is, therefore, a function that “eventually” becomes small:

∀ ε > 0, ∃ Qε s.t. ∥∆Id(Q)∥ℓ2
∣∣∣∞
Qε

< ε (S4.15)

Hence, combining Eqns. (S4.12) and (S4.14), we arrive at the convex program,

min
w∈R2

∥∥∥I(m)w − [∆Iself(Q) + ∆Iinc(Q)]
∥∥∥
ℓ2

∣∣∣Qmax

Qε

(S4.16)

which, for a suitably large choice of Qε, should return a reasonable estimate for the correct

coefficients—provided the data are of high-quality, properly corrected, and that the solution
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behaves approximately ideally.
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Figure S3 : a, Ratio of the optimal scale factors (ϕA/ϕB) as a function (Qε, Qmax),
at three fixed values of NE , as indicated. The circle on the NE = 66 sur-
face indicates the final values used in further data reduction. b, Examples of
∆I(Q) resulting from program (S4.16) with, from left-to-right, (NE , Qε, Qmax) =
(36, 5, 20), (66, 5, 20), (96, 5, 20). The solid black lines depict the sum of the calcu-
lated ∆Iself(Q) and ∆Iinc(Q). c, Final reduced data produced from the differentials
given above.

We explore the hyperparameter sensitivity of program (S4.16) in Figure S3a. We find

that, for a given value of NE , the ratio of the optimized coefficients (ϕA/ϕB) is insensitive

to the particular choice of (Qε, Qmax) above a critical threshold Qε ≳ 3 Å−1 (Fig. 3a,

dashed red lines); this roughly coincides with the falling edge of the total scattering arising

from neat water (c.f. Fig. S4a), the region where the differential scattering should most

significantly deviate from zero (in absolute terms). The exact value for this ratio depends

on the particular choice of NE , with typical values 1.003 for NE = 36 (significantly smaller

than our calculated estimate); 1.005 for NE = 66 (our calculated estimate); and 1.006 for
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NE = 96 (significantly larger than our calculated estimate). We expect that too low a value

for NE produces undersubtracted data, while too large a value produces oversubtracted data

(Fig. 3b). Nevertheless, as shown in Figure 3c, this sensitivity only manifests in a slight

variation in the absolute intensities of features in the low-Q region of the final ∆F (Q), after

further baseline correction (vide infra).
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Figure S4 : a, Raw, azimuthally-integrated data, I(m)(Q), as well as corrected
data using PDFGetX2 [24], I(m,corr)(Q). Data labeled B (black) are from a mea-
surement of neat water, while those labeled A (orange) are from a measurement of 15
mM aqueous [Ru(bpy)3]Cl2. b, The differential total scattering following optimiza-
tion, as described. The grey lines show the differential self-scattering (∆Iself(Q),
solid line), and the differential Compton scattering (∆Iinc(Q), dashed line). c, The
differential distinct scattering, following subtraction of ∆Iself(Q) and ∆Iself(Q). d,
Transformation of the “raw” ∆Id(Q) to the differential total scattering structure
function, ∆F (Q), (orange line), along with the final, baseline-corrected data (blue
line).

For the data presented in the main text, we employed (NE , Qε, Qmax) = (66, 5, 20). The

complete reduction to the differential reduced structure function is depicted in Figure S4.

We note that, after transforming the “raw” ∆Id(Q) (Fig. S4c) to ∆F (Q), the structure

function oscillates about zero, as expected, but begins to diverge smoothly for Q ≳ 17 Å−1

(Fig. S4d, orange line). There are a number of potential causes for this errant behavior,

including improper data corrections, improper flat-field correction of the detector [25], and,

perhaps most expectedly, inaccurate calculation of the differential Compton scattering.
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Nevertheless, employing the ad hoc baseline correction algorithm published by Juhás, et

al. [26], we obtain the final ∆F (Q) shown in Figure S4d (blue line). While this ad hoc

procedure may itself introduce spurious signals into the data, the final comparison between

our experimental results and the ab initio simulation validates the data reduction ansatz

developed here.
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