

Volume 11 (2024)

Supporting information for article:

Orientational ordering and assembly of silica–nickel Janus particles in a magnetic field

Gouranga Manna, Thomas Zinn, Lewis Sharpnack and Theyencheri Narayanan

Orientational ordering and assembly of silica-nickel Janus particles in a magnetic field

Gouranga Manna,^a Thomas Zinn,^{a,b} Lewis Sharpnack^{a,c} and Theyencheri Narayanan ^{a*}

^aESRF - The European Synchrotron, 38043 Grenoble, France, ^bPresent address: Diamond Light Source, Didcot OX11 0DE, United Kingdom, and ^cPresent address: Department of Earth Science, University of California, Santa Barbara, CA 93106, U.S.A.. E-mail: narayan@esrf.fr

Supporting Information (SI)

1. XPCS

Figure 1 presents a set of normalized intensity-intensity autocorrelation functions, $g_2(q,t)$, measured at two different fields (a) 0.1 mT and (b) 1.0 T for a JPs suspension with $\phi \simeq 1 \times 10^{-4}$. The top and bottom rows display $g_2(q,t)$ along the y and z direction, respectively, and \vec{B} was along y-axis. The dynamics is clearly isotropic at 0.1 mT and the $g_2(q,t)$ could be described by a single-exponential decay as indicated by the solid lines (Zinn *et al.*, 2023). The relaxation rates, $\Gamma_e(q)$, shown in Figure 1(c) obtained from the fits display a q^2 -dependence as expected for free translational diffusion. The deduced value of diffusion coefficient, $D_0 = 0.81 \,\mu m^2 s^{-1}$ corresponds to an apparent hydrodynamic radius, $R_H = 281 \,\mathrm{nm}$, assuming solvent viscosity, $\eta_s = 0.95 \,\mathrm{mPas}$ and a temperature of 295 K. A comparison of the $g_2(q, t)$ at 1.0 T in Figure 1(b) reveals that the decay of $g_2(q,t)$ along z direction can still be described by a single-exponential function. However, along \vec{B} direction, $g_2(q,t)$ decay more like a compressed exponential function with an exponent close to 1.4 and the corresponding $\Gamma_e(q)$ manifest a weaker q-dependence signifying an anomalous dynamics.

Fig. 1. Normalized intensity-intensity autocorrelation functions, $g_2(q, t)$, from JPs ($\phi \simeq 1 \times 10^{-4}$) measured at two different values of $|\vec{B}|$ (a) 0.1 mT, (b) 1 T for a range of q-values along y and z directions, respectively. The horizontal and vertical sections were taken over an azimuthal range of \pm 5°. Corresponding dispersion relationship is shown in (c) for both \vec{B} .

2. USAXS modeling

A comparison of the 1D USAXS profiles for the data shown in Figures 5(a) and 8(a) in the main text.

 $\mathbf{2}$

Fig. 2. Comparison between the experimental and model USAXS profiles at two different \vec{B} values (a) 0.1 mT and (b) 1 T perpendicular to the X-ray beam direction (y-axis). The vertical and horizontal sections were taken over an azimuthal range of \pm 5°.

References

Zinn, T., Sharpnack, L. & Narayanan, T. (2023). Soft Matter, 19(13), 2311-2318.

IUCr macros version 2.1.15: 2021/03/05