

IUCrJ (2024). 11, https://doi.org/10.1107/S2052252523009521 Supporting information

IUCrJ
Volume 11 (2024)

Supporting information for article:

Unravelling the components of diffuse scattering using deep
learning

Chloe A. Fuller and Lucas S. P. Rudden

Unravelling the components of diffuse scatter-
ing using deep learning

Chloe A. Fuller and Lucas S. P. Rudden

Supplementary Information

1 Compiling the dataset

1.1 Molecule pairs

For each molecule in the list, the approximate centre of mass was positioned at the origin,
and the molecule was rotated such that major axes lay along the Cartesian axes. Molecules
were assigned a lattice type, based on the shape/anisotropy of the molecule. Single atoms
and molecules which were roughly spherical (e.g. tetrahedra, octahedra etc), were assigned a
primitive cubic lattice. Molecules in which one axis was significantly different from the other two
were assigned a tetragonal lattice, with the unique axis being either short or long and pointing
along b. Molecules based on benzene rings were assigned a hexagonal lattice, with the unique
axis also as b.

Next, each molecule was given values for lattice constants. For the single atoms, the literature
value for the cubic primitive lattice of the metal was used. For the others, the lattice parameters
were set equal to the longest interatomic distance in the molecule along that direction +1.5 Å. If
the terminating atoms were F or O, additional distances of 2 or 2.5 were used instead of 1.5. For
all molecules with non-cubic lattices, the unique axis was always b, and a = c. This process of
cell parameter assignment is largely arbitrary and we have excluded monoclinic/triclinic lattices.
For the purpose of training the network, the lattice parameters do not need to be exact, they
just need to be different enough to produce a change in the position of the maxima. Likewise,
we do not necessarily need to include all Bravais lattices and restricting the choice means that
molecules can be grouped more easily. Additional lattices can always be added to the training
dataset at a later date if it proves necessary.

To expand the dataset further, some of the molecules can be rotated to form unique orienta-
tions. A molecule can be paired with a rotated version of itself. For cubic structures (excluding
the spherically symmetric single atoms), three random angles (10-340°) were generated, and a
rotation matrix was applied using these angles, using the Cartesian axes as a basis. If the angles
happen to produce a rotation that is symmetrically equivalent to the original molecule, this was
discarded and the process repeated. For the tetragonal and hexagonal molecules, the molecules
were predominately rotated around the b-axis (to avoid having to change the cell parameters).
A random rotation between 10 and 340° was chosen for this and a rotation of between -20 and
20° was applied around the other axes.

Molecules were allowed to pair only with other molecules with the same lattice type. For
each molecule pair, a new set of lattice parameters is calculated based on the concentrations
and lattice parameters of the individual molecules, assuming Vegard’s law.

1

Table 1: Summary of the molecules comprising the training and validation datasets.
Group Number Lattice Molecules Combinations

Training set

0 Cubic 16 120
1 Tetragonal, long b 20 190
2 Tetragonal, short b 30 435
3 Hexagonal 24 276
4 Cubic/tetragonal extended structures 8 28

98 1049

Validation set

0 Cubic 5 10
1 Tetragonal, long b 6 15
2 Tetragonal, short b 8 28
3 Hexagonal 10 45

29 98

The number of combinations denotes the number of unique pairs of molecules (i.e. AB = BA).
The training dataset, therefore, contains a total of 1049 pairs of molecules, and the validation
set 98 pairs (about 10%).

1.2 Monte Carlo simulations

Chemical short-range order models were constructed on a primitive cubic lattice with one
pseudo-atom in each unit cell, represented by a spin (1 or -1), as shown in Figure 1.2.

Figure 1: Schematic of a Monte Carlo chemical short-range order model. White and grey spheres
represent spins of 1 or -1, respectively, which are numbered according to the unit cell in which
they reside. The Cartesian axes are shown in blue and some interatomic vectors are shown in
red.

2

The spins were added to the lattice randomly, then were ordered in 3D using a Monte Carlo
algorithm. For each MC move, two opposite spins are selected at random and their values are
swapped. The energy of the system before and after is calculated using an Ising energy:

E =

n=6
∑

n=1

−kijσiσj (1)

where kij is interaction energy between spins i and j and σ is the value of those spins (1/-1).
The sum runs over the neighbours, n, of spin i. In this case, we included 6 neighbours: those
along the unit cell vectors in the positive and negative directions. MC moves were accepted if a
random number is less than

exp(−∆E/T)− 0.5 (2)

where ∆E is the difference in energy between the two states, T is the MC temperature (set at
0.1, as this was found empirically to give the best results). The minus 0.5 is used such that
states with 0 change in energy have a 50% chance of being accepted, assisting in preventing the
system from getting stuck in local minima.

After a certain number of MC moves (usually the number of atoms in the simulation box),
the program has completed 1 MC cycle. At this point, the interaction energies are updated in
order to drive the system towards the desired correlation.

knew = kold + (Ccurrent − Ctarget)× 100 (3)

The program saves the configuration of the lattice after each cycle and the one that is closest
to the target correlations is saved as the final configuration. Using this final configuration, the
Warren-Cowley SRO parameters for all vectors up to and including [7,7,7] were calculated.

This whole process was run in a loop to create ∼12000 lists of SRO parameters. For each
one, the concentrations of the two molecules, mA and mB, were selected randomly between 0.1
and 0.5 (to avoid very low defect concentrations which make correlated configurations harder
to generate) and the target correlations along 100, 010 and 001 were selected randomly from
values between (−mA/(1−mA) (which is the lower correlation limit) and 0.5. These limits were
chosen to provide the widest range of correlations, without becoming entirely long-range order.
For systems with the higher correlations, the configuration was started from a fully ordered
arrangement as the MC algorithm struggled to achieve this when initialised from a random
state.

1.3 Interatomic vector sets

The number of interatomic vectors included in the calculation of ISRO(Q) has a large effect
on the appearance of the diffuse scattering, as illustrated by Figure 2a. Ideally, the calculation
would include all vectors extending to infinity and, in general, including more vectors improves
the calculation. This is especially important with highly correlated systems, where ISRO(Q)
resembles sharp peaks. Vectors are usually considered in sets corresponding to nearest-neighbour
shells surrounding a central atom. To enable generalisation between different lattice shapes, we
opted to define the first vector set as

Vn =

{

~v =

u
v
w

∣

∣

∣

∣

∣

(0 ≤ u ≤ n) ∩ (0 ≤ v ≤ n) ∩ (0 ≤ w ≤ n)

}

. (4)

A small benchmark was performed to decide how many sets of vectors to include in the
ISRO(Q) calculations. We needed to include enough so that patterns would look realistic, but

3

including more vectors is computationally expensive, and the number of vectors in each set
increases very quickly.

The diffuse scattering of molecule pair cyclohexane-dioxane was calculated for 50 different
sets of SRO parameters, using Vn where n = 1 − 7. The difference in calculated scattering
between successive vector sets was recorded and is plotted in Figure 2. The first 4 sets create
large differences in scattering which then start to converge. The total number of vectors increases
rapidly with each new shell and the marginal gain after n = 5 was not worth the huge increase
in computational cost. Therefore, 5 neighbour sets were used in all calculations.

2 3

4

a) b)

0
1

10 200

400

600

800

1000

1200

1400

1600

1800

N
u

m
b

e
r o

f ve
cto

rs

2 3 4 5 6 7
Neighbour sets

In
te

n
si

ty
 c

h
a

n
g

e
 /

 %

0

20

30

40

50

60

70

80

90

100

Figure 2: a) ISRO(Q), calculated with 2,3 and 4 sets of neighbours. b) Total difference in
intensity of the ID(Q) of a cyclohexane-dioxane system as a function of neighbour sets included.
Red points show the spread in the data across 50 different sets of SRO parameters, black shows
the average and the error bar show the standard deviations. The blue line is plotted on the
secondary y-axis and shows the number of vectors that need to be included with each set.

1.4 Selection of scattering planes to calculate

Due to the necessity of the large training dataset, the most relevant scattering planes for
each model needed to be found in an automated way. We chose to calculate 12 scattering planes
per model based on a compromise between extracting as many planes as possible while ensuring
each one is unique in order to avoid problems with overfitting the network (12 referring to 4
planes from each of the x, y and z directions used). We implemented the following method for
selecting scattering planes.

Since IFF(Q) is continuous in reciprocal space, the most relevant planes will be where there
are maxima in ISRO(Q). The position of the maxima along a particular direction depends
on the underlying correlations along the corresponding directions in the direct-space unit cell.
Broadly speaking, positive correlations produce maxima underneath the Bragg peaks, negative
correlations produce maxima somewhere between the Bragg peaks, and zero correlations give
rise to constant intensities. Given that the b-axis is unique in most of our models, we started by
calculating the 4 hxl planes. If the SRO parameter is positive, or close to 0 along b, we calculated
ID(Q) at the Bragg positions, corresponding to h0l, h1l, h2l and h3l scattering planes.

If the correlation along b is negative, it is more difficult to determine where the diffuse
maxima will be as it depends on the concentration and correlations across multiple neighbour
shells (unless in a 50:50 mixture). For this reason, we calculated all the planes between h0l and

h1l (with a resolution of (2×8)/256 Å
−1

), and found the one with the most scattering by simply
summing the total intensity in each plane. The offset in k relative to k = 0, o, is recorded and

4

the 4 final planes were calculated at hol , h1+ol, etc.

For the samples with symmetry-restricted SRO, only these 4 planes are used as ones taken
along the other axes will not have the desired symmetry. For the rest of the samples, with
MC-generated SRO, the first of those 4 planes was used to select the planes normal to the other
two axes. The scattering is summed along the x and z directions to produce a 1D distribution.
Scipy’s peak finding algorithm [1] is then used to locate the areas with the 4 highest intensities.
Peak finding was used instead of just taking the 4 highest values to ensure they can from separate
areas of reciprocal-space to ensure uniqueness. The highest peaks were defined based on their
prominence (instead of height). Using the peak positions, full xkl and hkx scattering planes
are calculated. The 12 planes (3 along each direction) are stacked to create an array of size
256× 256× 12, which is saved.

While this method does not guarantee the best planes, or even unique ones, it is reproducible.
Selected planes then undergo additional checks for uniqueness through a Wasserstein Distance
check.

1.5 Wasserstein Distance check

The Wasserstein Distance, or Earth Mover’s distance, is a means of measuring the distance
between two probability distributions. It can be interpreted as the energy cost of moving one
probability distribution into the shape of another. If f(x) and g(x) are two probability distri-
butions, let F and G define their cumulative distribution functions. The Wasserstein Distance
between two distributions (formally the 2-Wasserstein Distance), WD, is defined as:

WD =

[∫ 1

0

|F−1(y)−G−1(y)|2dy

]1/2

, (5)

where F−1 and G−1 denote the respective quantile functions of F and G.

We reasoned that for a sample to be considered unique with respect to all other samples in
its set, where a set is given by one molecule pair, its WD between every other possible sample
in the set should be greater than the WD between two uniformly random distributions of the
same dimensions. We ran 20000 total simulations of moving between two such distributions and
converged on a WD of 6.7. Thus, for each generated set of data, each sample is only accepted
if its WD is greater than 6.7 when compared with all other samples in the respective set. If it
is less than this amount, then the first sample is accepted and the remaining discarded. This
process removed roughly 5% of all samples from the initial dataset generation.

2 Network details

DSFU-net is based on a Pix2PixGAN [2], which has demonstrated proficiency in extracting
and transferring underlying features present from one domain to another, such as converting
satellite imagery to road maps. We experimented with several flavours of Pix2PixGANs, as
discussed below, but found a relatively simple setup sufficed for our purposes. We first describe
our network architecture before discussing architectures and approaches that were suboptimal.

2.1 Architecture details

Input to DSFU-net must always be 1× 256× 256, the 1 referring to the RGB channel - i.e.
greyscale images. In principle, an inspired user can take our GAN and retrain on larger images
provided a decent training dataset, but this demands both increased computational resources
and risks introducing known GAN training failure modes[3]. Interpolating from 512 × 512 or
even larger to the required input of 256 × 256, while not providing as high a quality output,

5

should ultimately still provide quantitatively useful output provided one is careful with the
interpolation process.

The details of each operation performed within DSFU-net are provided in Tables 2 and 3,
while the corresponding schematics for both the generator and discriminator are given in Figures
3 and 4 respectively.

Figure 3: U-NET generator schematic with a IFF(Q) example. Each layer is coloured according
to its operation. Note the skip connections, where the output from the down blocks are con-
catenated with respective input to up blocks. The full details of the parameters for each layer
are given in Table 2.

Figure 4: Discriminator schematic with a IFF(Q) example. Each layer is coloured according to
its operation. The full details of the parameters for each layer are given in Table 3.

6

Table 2: Summary of full U-NET generator architecture
Block Operation Parameters Output Size

Input - - 1× 256× 256

Down 0
Convolution Kernel=4, Stride=2, Padding=1, bias=False 64× 128× 128
Leaky ReLU Slope=0.2

Down 1
Convolution Kernel=4, Stride=2, Padding=1, bias=False 128× 64× 64
InstanceNorm Num. Features=128
LeakyReLU Slope=0.2

Down 2
Convolution Kernel=4, Stride=2, Padding=1, bias=False 256× 32× 32
InstanceNorm Num. Features=256
LeakyReLU Slope=0.2

Down 3

Convolution Kernel=4, Stride=2, Padding=1, bias=False 512× 16× 16
InstanceNorm Num. Features=512
LeakyReLU Slope=0.2
Dropout Probability=0.5

Down 4

Convolution Kernel=4, Stride=2, Padding=1, bias=False 512× 8× 8
InstanceNorm Num. Features=512
LeakyReLU Slope=0.2
Dropout Probability=0.5

Down 5
Convolution Kernel=4, Stride=2, Padding=1, bias=False 512× 4× 4
LeakyReLU Slope=0.2
Dropout Probability=0.5

Up 0

Transposed Convolution Kernel=4, Stride=2, Padding=1, bias=False 512× 8× 8
InstanceNorm Num. Features=512
LeakyReLU Slope=0.2
Dropout Probability=0.5

Concatenate Dimension=1 1024× 8× 8

Up 1

Transposed Convolution Kernel=4, Stride=2, Padding=1, bias=False 512× 16× 16
InstanceNorm Num. Features=512
LeakyReLU Slope=0.2
Dropout Probability=0.5

Concatenate Dimension=1 1024× 16× 16

Up 2

Transposed Convolution Kernel=4, Stride=2, Padding=1, bias=False 256× 32× 32
InstanceNorm Num. Features=256
LeakyReLU Slope=0.2
Concatenate Dimension=1 512× 32× 32

Up 3

Transposed Convolution Kernel=4, Stride=2, Padding=1, bias=False 128× 64× 64
InstanceNorm Num. Features=128
LeakyReLU Slope=0.2
Concatenate Dimension=1 256× 64× 64

Up 4

Transposed Convolution Kernel=4, Stride=2, Padding=1, bias=False 64× 128× 128
InstanceNorm Num. Features=64
LeakyReLU Slope=0.2
Concatenate Dimension=1 128× 128× 128

Up 5

Upsample Scale Factor=2 128× 256× 256
ZeroPad Padding=(1, 0, 1, 0) 128× 257× 257

Convolution Kernel=4, Stride=1, Padding=1, bias=True 1× 256× 256
Tanh

Table 3: Summary of full discriminator architecture
Block Operation Parameters Output Size

Input - - 2× 256× 256

Block 0
Convolution Kernel=4, Stride=2, Padding=1, bias=True 64× 128× 128
LeakyReLU Slope=0.2

Block 1
Convolution Kernel=4, Stride=2, Padding=1, bias=True 128× 64× 64
InstanceNorm Num. Features=128
LeakyReLU Slope=0.2

Block 2
Convolution Kernel=4, Stride=2, Padding=1, bias=True 256× 32× 32
InstanceNorm Num. Features=256
LeakyReLU Slope=0.2

Block 3
Convolution Kernel=4, Stride=2, Padding=1, bias=True 512× 16× 16
InstanceNorm Num. Features=512
LeakyReLU Slope=0.2

Block 4
ZeroPad Padding=(1, 0, 1, 0) 512× 17× 17

Convolution Kernel=4, Stride=1, Padding=1, bias=False 1× 16× 16

We settled on a latent space of 4× 4 within the U-NET generator as a compromise between
avoiding overfitting and ensuring we capture the essential features necessary to map between
our sets of domains. Alternative latent spaces, such as 2×2 and 8×8 gave higher losses overall,
resulting in slightly worse quality output in terms of the FID and KID scores.

2.2 Alternative architectures

Transformers [4] are able to focus attention on regions of high interest and connect contextual
features from distal parts of an input. They have had a huge impact on the quality of output
from deep learning networks over the last few years, and as a consequence, we decided to employ
them within our Pix2PixGAN. We envisaged that their use could greatly compensate the regions
of low scattering intensity. However, we were unable to find a published Pix2PixGAN featuring
a transformer, and therefore in order to apply them here we ran several benchmarks to assess
their applicability. We discuss the architecture of and report on the best-performing results
below but note we were unable to complete a comprehensive suite of benchmarks owing to our
limited computational resources.

Against the generator architecture provided in Table 2, the primary difference is the insertion
of a self-attention layer after every block with the exception of Down 0 and Up 4 and 5. We
follow the standard procedure for self-attention on images, where the image is treated as an input
sequence with length width × height. We set the number of attention heads as equal to the
output channel size divided by 8. We replace the InstanceNorm operations with SpectralNorm
following Silva [5]. For the discriminator, we apply a self-attention layer after Block 1 and 3,
with SpectralNorm again used throughout.

A comparison of the general assessment metrics is provided in Table 4 versus the counterpoint
values obtained from DSFU-net. Figure 5 shows the predicted output from the two validation
examples discussed in the main text in Figure 3.

8

Table 4: Fréchnet Inception Distance (FID), Kernel Inception Distance (KID), and Mean
Squared Error (MSE) between the DSFU-net-generated and ground truth (GT) scattering planes
for the validation (12607 total samples) and training datasets (50000 random selection of sam-
ples) compared with the self-attention version of DSFU-net. The lower the score, the better.

Validation Training
DSFU-net vs. GT Attn. vs. GT DSFU-net vs GT Attn. vs. GT

ISRO(Q)
FID 13.1 32.3 8.35 26.4
KID 0.003 0.018 0.002 0.009
MSE 0.015 0.043 0.010 0.035

IFF(Q)
FID 36.9 113.9 33.3 103.3
KID 0.008 0.066 0.018 0.100
MSE 0.006 0.011 0.004 0.008

In general, the transformer scores are worse than the DSFU-net counterpart. The significantly
increased FID and KID scores indicate that the self-attention network is unable to capture the
probability distribution of ISRO(Q) and IFF(Q) as proficiently as DSFU-net. Through visual
inspection, we can see in Figure 5 that the transformer network output is not quite as sharp as
DSFU-net, with pixelation and blurred artefacts appearing on the output. In general, while we
occasionally observe some improvement in compensating for regions of low intensity such as in
the top of the IFF(Q) Transformer output in Figure 5, these manifested artefacts worsen the
quality of our output. The use of self-attention in our U-NET generator considerably increases
the number of trainable parameters, and thus these defects may be a sign of overfitting. An
increased dataset size, coupled with finer-tuning of the hyperparameters, including the placement
of the self-attention layers, would likely resolve these issues and potentially improve the quality
of output beyond that reported here.

Input Sca�ering Ground Truth DSFU-Net Di�erence

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

SRO

FF

Di�erenceTransformer

Figure 5: Two examples from Figure 3 in the main text of scattering inputs from the validation
dataset and their corresponding DSFU-net/transformer GAN outputs and GTs for one of the
best (top) and worst (bottom) performances. We also provide the differences between the DSFU-
net and transformer GAN outputs versus the GT. Scattering planes are shown on a square root
scale to better emphasise low-intensity features.

9

As an alternative approach to tackling the regions of low intensity, we wondered whether
the decoder within the generator could be improved in terms of its ability to produce de novo
intensity, as opposed to mapping purely from the input scattering plane, using the surrounding
contextual information as a conditioning measure. We leveraged the recently published Dynamic
Pix2PixGAN [6] for this task. In summary, the network maps towards the target distribution
better than a traditional Pix2PixGAN owing to its dynamic neural network. It accepts as input
both conditioning images (in our case the scattering planes) and pure noise. A bottleneck in the
centre of the U-NET freezes the encoder when noise is input, ensuring no dependency is learnt
within the encoder on noise, while the decoder can still learn the target distribution based on
this noise. This bottleneck is opened when a scattering plane is used, allowing backpropagation
to flow through the encoder. The discriminator is then fed either noise or the scattering plane
concatenated to the ISRO(Q) or IFF(Q) as necessary. Within the context of this work, regions
of very low intensity in the input scattering planes were replaced with noise to emulate the pure
noise input.

The dynamic Pix2PixGAN performed worse overall than the transformer version discussed
above, primarily as it would fill the noised regions with nonsensical ISRO(Q) or IFF(Q) that
did not fit within the context of the GT. Consequently, we also included some self-attention
layers, albeit with a considerably reduced architecture size than described above due to VRAM
limitations. This network performed worse than the transformer GAN, but better than the pure
dynamic Pix2PixGAN. In much of the training data, the size of the ‘instrumental’ artefacts varies
significantly, in some cases making up most of the input scattering plane. We, therefore, attribute
the worse performance to the inability of the network to correctly identify relevant contextual
information. In the ideal circumstance of a training set built from clean input samplings, coupled
with greater benchmarking of architectures and improved computational resources, we expect
the transformer GAN to perform best. In this context, the dynamic Pix2PixGAN would be less
applicable, as the addition of noise would effectively silence any contributions from small but
present low-intensity regions.

2.3 Differing training strategies

We experimented with several training strategies to ensure the highest quality results from
DSFU-net. We outline these briefly below but note that none ended up in the final version of
DFSU-net.

1. We trained both the generators or discriminators for additional iterations (4, 5, 6 times
were attempted) while training the other for only one iteration to prevent either the
generator or discriminator from becoming too strong. Unsurprisingly as the losses are
well-behaved, this had minimal impact on the quality of the output, only increasing the
computational cost of training.

2. A layer of Gaussian noise was included in each Block of the discriminator, emulating
adding a gradient penalty to the discriminator loss function. This acts to weaken the
discriminator, avoiding the loss appearing as a step function and ensuring the generator
has a gradient to learn from. Similar to the additional training iterations, this had little
impact on the quality of the output. Note we also included this with the transformer
GAN, but again found it had little impact.

3. As opposed to the loss described in Equation 8 of the main text, we applied a WGAN
type loss, which effectively uses a Wasserstein distance measure (see Equation 5) coupled
with a gradient penalty term [7]. This approach ensures the generator always has a vector
direction to adjust its parameters towards - in other words, the loss in the main text pre-
sumes there is already some overlap between the initial and final probability distributions
to use as a guide, which can be problematic, particularly at the start of training.

10

4. We ran an ablation test on the use of our auxiliary loss described in Equation 11, effectively
to test the quality of the output from the two decoupled GANs. We found that while
output was still reasonable, the network generalisability worsened, a property particularly
noticeable in regions of low scattering intensity. Thus, the addition of this loss aids in the
network’s learning of the factorisation and ability to compensate for missing data.

3 Analysis of DSFU-net output

3.1 Performance assessment

The Fréchnet Inception Distance (FID) [8] and Kernel Inception Distance (KID) [9] are both
means of assessing the quality of images produced via generative models as an effective proxy
for human assessment. They are typically applied to compare generative models and measure
performance. While no formal comparison can be made here as this work is the first of its kind,
we can still use the absolute value to inform us of the perceived quality of the model’s output
and, more specifically, assess the model’s performance on the validation dataset to examine
whether it is generalised enough. The FID measures the differences in density between two
distributions of assumed Gaussian shape based on the pre-trained InceptionV3 classifier [10].
Specifically, it calculates the Fréchnet distance between two multivariate Gaussians fitted to the
real and generated data.

Since we don’t necessarily know that our distributions are Gaussian, we also employ the KID
as a comparative measure. KID measures the maximum mean discrepancy between InceptionV3
embeddings of the real and generated data using a polynomial kernel; in other words, it does
not assume a Gaussian prior. The KID is generally, therefore, a more generalisable metric, but
we include the FID as it is a more widely-used scoring method.

It is worth noting that since the FID and KID both use a classifier network trained on a
large set of images which do not feature examples like our training data, it is unlikely that these
metrics will accurately capture all underlying features present in our scattering data. However,
since the training set for these classifiers is very general - the ImageNet dataset [11] - it is a
safe assumption that these metrics can approximate the correct distance between our target and
source domains.

We employ the pixel-wise mean-squared error (MSE) as a third metric to measure the sim-
ilarity between the ground truths and the network-generated images. While it is unable to
measure distances between the probability distributions DSFU-net is trained to recapitulate, it
is simpler to interpret. The MSE was calculated for each sample in the validation dataset for
the FF and SRO components. Because the magnitude of the error depends on the magnitude of
the pixel intensities, the MSE between the ground truths and some random noise (normalised
between -1 and 1) was calculated along with the MSE between two similarly-sized datasets of
random noise to contextualise our values. The resulting MSE distributions for the FF and SRO
are shown in Figure 6.

11

Noise-GTNetwork generated-GT

SRO FF

Figure 6: Histograms of the pixelwise mean squared error between various test datasets.

3.2 Tris-tert-butyl-1,3,5-benzene tricarboxamide

The data used in this work was originally collected by Kristiansen et. al. who solved the
structure from single crystal data. An illustration of the average structure and the disorder is
given below for reference, along with a table with fractional coordinates of the asymmetric unit
cell in Table 5.

Table 5: Fractional coordinates of the asymmetric unit cell of tris-tert-butyl-1,3,5-benzene tri-
carboxamide. The lattice parameters are a = b = 14.1212 Å, c = 6.9341 Å, α = β = 90°,
γ = 120° and the space group is P63/m.

Atom x y z

O 0.77740 0.72910 0.01110
N 0.70500 0.80110 0.21800
C -0.09230 0.01070 0.13190
C 0.89670 -0.09240 0.13280
C 0.58910 0.70930 0.20900
C 0.78730 0.80500 0.11400
C 0.58390 0.60620 0.28600
C 0.52580 0.74340 0.33880
C 0.54820 0.69190 0.00400
H 0.72000 0.85470 0.29510
H 0.84420 0.01900 0.12100
H 0.61020 0.61820 0.41650
H 0.62870 0.58800 0.20740
H 0.50950 0.54700 0.28280
H 0.55320 0.75200 0.46820
H 0.44970 0.68830 0.33660
H 0.53420 0.81170 0.29430
H 0.55060 0.75720 -0.04260
H 0.47420 0.63210 -0.00050
H 0.59370 0.67530 -0.07560

12

a

b

'up' 'down'

b

c

a) b)

c�

Figure 7: a) A single tris-tert-butyl-1,3,5-benzene tricarboxamide molecule with carbon, nitro-
gen, oxygen and hydrogen shown in grey, blue, red and white, respectively. b) The molecule
in its unit cell, viewed down the c-axis and along the molecular stacks. c) The two possible
orientations of the molecular stack, with the oxygen atoms above (up) or below (down) the
plane of the central benzene ring.

This molecule has been used previously by a few members of the diffuse scattering community
to test their analysis methods [12, 13]. The data used here were kindly provided by Arkadiy
Simonov, in the form of pre-processed hkx planes [13]. The background had been estimated
using the average intensity of the planes just above and below those of interest, and the Bragg
peaks were removed using the Punch-and-fill method.

3.3 Least-squares refinement of SRO

The first step is to project the DFSU-Net SRO output into one reciprocal space unit cell.
The size of the reciprocal unit cell in pixels is determined by the resolution of the original layer
reconstruction and the size of the real-space unit cell. In this example, the reciprocal unit cell is
15 × 17 pixels; however, because we were fitting in python and thus are limited to using square
pixels, we found that is was easier and better if we used a larger rectangular unit cell of 30 × 17
pixels, instead of the obvious hexagonal one. The intensities were summed averaged all the unit
cells in the plane and then were normalised to 1. Additional processing steps such as masking
low-intensity areas were applied before this averaging.

13

If the mask is not included, the noise in the low-intensity areas softens the features in the
SRO scattering, leading to smaller SRO parameters being refined. The SRO parameters refined
from the DSFU-Net output with no preprocessing are shown in Table 6, with those from YELL
in the main text repeated for convenience. Crucially, the signs of all the SRO parameters are
still correct.

Table 6: A comparison between SRO parameters refined by Schmidt and Neder using YELL ,
and the least-squares refinement in this work with no preprocessing. Note that v is given here
in reciprocal lattice units.

v YELL This work

(1,0,0) -0.2516 -0.1617
(2,0,0) 0.0984 0.0669
(2,1,0) 0.0950 0.0453
(3,0,0) -0.0345 -0.0186
(3,1,0) -0.0532 -0.0233
(3,2,0) -0.0435 -0.0200
(4,0,0) 0.0164 0.0035
(4,1,0) 0.0256 0.0097
(4,2,0) 0.0310 0.0090
(4,3,0) 0.0165 0.0074
(5,0,0) -0.0090 -0.0006
(5,1,0) -0.0128 -0.0016
(5,2,0) -0.0175 -0.0055
(5,3,0) -0.0149 -0.0039
(5,4,0) -0.0073 -0.0014

Another thing we noted during testing was that careful treatment of any Bragg scattering
is required. Since Bragg scattering is periodic and often much more intense than any diffuse
scattering, if there are Bragg peaks in the input plane, the SRO output from DSFU-Net will be
a mixture of any scattering from SRO and Bragg. A simple way to remove Bragg peaks is the
punch and fill method, where the intensities of n pixels around each peak are set to the average
intensity of the surrounding background pixels. We found that DSFU-Net is sensitive enough to
interpret this circle of constant scattering as a periodic feature, which adversely affects the the
refinement of SRO parameters. Therefore, when removing the Bragg peaks, it is important to
replace them with realistic noise fluctuations, so that no artificial periodic features are added.

3.4 Simulated data test

During the above analysis, it was found that the intensity of the DSFU-Net output IFF(Q)
did not have the same Q-dependence as the calculated IFF(Q) and appeared to decrease at a
faster rate. It was thought that a possible cause for this could be that the network had learnt
that all IFF(Q)s decay with the same rate, as all of the training data provided were calculated
with a very similar Qmax and were largely small organic molecules. To test whether this was
the case, the scattering of Tris-tert-butyl-1,3,5-benzene tricarboxamide was calculated from its
constituent SRO and FF components, on the same Q-grid as the experimental data. The hk1
plane is shown in Figure 8. This was input into DSFU-Net and the outputs are also shown
in Figure 8, along with the correct SRO and FF components used for the initial scattering
calculation.

14

Simulated scattering SROFF

GT

Network

GT

Network

Figure 8: Simulated hk1 scattering plane, and the constituent ground truth (GT) FF and SRO
compared with the FF and SRO predicted by the network.

In this simulated example, the network reproduces the calculated IFF(Q) all the way out
to Qmax and the intensities do not appear to drop off. This phenomena must therefore be due
to the experimental data and the network has not falsely learnt a particular Q-dependence.
Further discussion of this is given in the main text.

It is also worth noting that, just like with the experimental data, there are ‘holes’ in the
intensity near the middle of the IFF(Q) pattern due to the low input intensities. However, both
the FF and, more noticeably, the ISRO(Q) in this example look much cleaner with lower noise
levels. This demonstrates the effect of experimental noise on the quality of the network output.

References

(1) Virtanen, P. et al. Nature Methods 2020, 17, 261–272.
(2) Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A. A. Image-to-Image Translation with Conditional

Adversarial Networks, 2018.
(3) Saxena, D.; Cao, J. Generative Adversarial Networks (GANs Survey): Challenges, Solu-

tions, and Future Directions, 2023.
(4) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.;

Polosukhin, I. Attention Is All You Need, 2017.
(5) Silva, T. S. https://sthalles.github.io 2018.
(6) Naderi, M.; Karimi, N.; Emami, A.; Shirani, S.; Samavi, S. 2022.
(7) Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. C. CoRR 2017,

abs/1704.00028.
(8) Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by

a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2018.
(9) Bińkowski, M.; Sutherland, D. J.; Arbel, M.; Gretton, A. Demystifying MMD GANs,

2021.
(10) Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image

Recognition, 2015.
(11) Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. In 2009 IEEE conference on

computer vision and pattern recognition, 2009, pp 248–255.
(12) Schmidt, E.; Neder, R. B. Acta Crystallographica Section A 2017, 73, 231–237.
(13) Simonov, A.; Weber, T.; Steurer, W. Journal of Applied Crystallography 2014, 47, 2011–

2018.

15

