

Volume 10 (2023)

Supporting information for article:

Applicability of transferable multipole pseudo-atoms for restoring inner-crystal electronic force density fields. Chemical bonding and binding features in the crystal and dimer of 1,3-bis(2-hydroxyethyl)-6-methyluracil This article is part of IUCr2023.

Alina F. Saifina, Sergey V. Kartashov, Liliya F. Saifina and Robert R. Fayzullin

Figure S1 Contour maps of the inner-crystal (*a*) bosonic and (*b*) fermionic potentials, $\varphi_W(\mathbf{r})$ and $\varphi_f(\mathbf{r})$, for 1,3-bis(2-hydroxyethyl)-6-methyluracil, calculated from the transferable aspherical pseudoatom model (TAAM). Contour intervals of 0.2 a.u. are used; additional contours are shown at -1.2 and 1.6 a.u. for $\varphi_W(\mathbf{r})$ and -0.3, ± 0.1 , 4, 10 a.u. for $\varphi_f(\mathbf{r})$. Function scale bars are displayed above the maps. The distance between adjacent axis tick marks is 1 Å. Both maps are plotted on the same atomic plane of N1, N3, and C6.

Figure S2 Superposition of the theoretical inner-crystal gradient fields of the electron density $\nabla \rho(\mathbf{r})$ (black), the electrostatic potential $\nabla \varphi_{es}(\mathbf{r})$ (blue), and the kinetic potential $\nabla \varphi_k(\mathbf{r})$ (orange) for the uracil core of 1,3-bis(2-hydroxyethyl)-6-methylpyrimidine-2,4(1*H*,3*H*)-dione. The maps are calculated based on the aspherical pseudo-atom model with the parameters fitted to the theoretical structure factors (TMM). (Pseudo)atomic boundaries are highlighted with thicker lines of the corresponding color. Saddle critical points (3, -1) in $\rho(\mathbf{r})$, $\varphi_{es}(\mathbf{r})$, and $\varphi_k(\mathbf{r})$ are indicated by magenta and violet rhombuses and green squares, respectively; the maximum critical points (3, -3) are shown as element-type-colored circles. Gradient paths connecting these critical points are colored red, violet, and green, respectively. An out-of-plane distance is set to 0.3 Å. The trajectory maps are plotted on the same atomic plane of N1, N3, and C6.

Figure S3 Superposition of the experimental inner-crystal gradient fields of the electron density $\nabla \rho(\mathbf{r})$ (black), the electrostatic potential $\nabla \varphi_{es}(\mathbf{r})$ (blue), and the kinetic potential $\nabla \varphi_k(\mathbf{r})$ (orange) for the uracil core of 1,6-dimethyl-3-(prop-2-yn-1-yl)pyrimidine-2,4(1*H*,3*H*)-dione studied previously (Shteingolts, Saifina *et al.*, 2021; Shteingolts, Stash *et al.*, 2021). (Pseudo)atomic boundaries are highlighted with thicker lines of the corresponding color. Saddle critical points (3, -1) in $\rho(\mathbf{r})$, $\varphi_{es}(\mathbf{r})$, and $\varphi_k(\mathbf{r})$ are indicated by magenta and violet rhombuses and green squares, respectively; the maximum critical points (3, -3) are shown as element-type-colored circles. Gradient paths connecting these critical points are colored red, violet, and green, respectively. An out-of-plane distance is set to 0.3 Å. The trajectory maps are plotted on the atomic plane of N1, N3, and C6.

Figure S4 Two different views of the optimized (ω B97X/pob-TZVP-rev2) hydrogen-bonded, π -stacked dimer of the 1,3-bis(2-hydroxyethyl)-6-methyluracil molecules. Bond critical points and bond paths are shown as orange spheres and green or brown lines.

Figure S5 Overlays of the fragments of atomic ρ -basins (gray) and of pseudoatomic φ_{es} -basins (blue) within the intermolecular interaction N3'...C5 of the optimized (ω B97X/pob-TZVP-rev2) hydrogen-bonded, π -stacked dimer of the 1,3-bis(2-hydroxyethyl)-6-methyluracil molecules.

Figure S6 Isosurfaces of the fermionic potential $\varphi_f(\mathbf{r})$ at 0.13 a.u. (blue) in the crystal of 1,3-bis(2-hydroxyethyl)-6-methyluracil around the atom O4, derived from the aspherical pseudo-atom model with parameters fitted to the calculated structure factors (TMM).

Table S1 Optimized geometry of the crystal of 1,3-bis(2-hydroxyethyl)-6-methyluracil at the ω B97X/pob-TZVP-rev2 level.

Atom			x/a	<i>y/b</i>	z/c
1	Т	8	-0.2464346257374000	0.3068943878001000	-0.2785094236576000
2	F	8	-0.2535653742626000	-0.1931056121999000	-0.2214905763424000
3	F	8	0.2464346257374000	-0.3068943878001000	0.2785094236576000
4	F	8	0.2535653742626000	0.1931056121999000	0.2214905763424000
5	Т	8	-0.2521944939891000	0.0506492200627300	-0.4996845403381000
6	F	8	-0.2478055060109000	-0.4493507799373000	-0.0003154596618528
7	F	8	0.2521944939891000	-0.0506492200627300	0.4996845403381000
8	F	8	0.2478055060109000	0.4493507799373000	0.0003154596618529
9	Т	8	-0.2685262565743000	0.2045532818015000	0.2669259111640000
10	F	8	-0.2314737434257000	-0.2954467181985000	0.2330740888360000
11	F	8	0.2685262565743000	-0.2045532818015000	-0.2669259111640000
12	F	8	0.2314737434257000	0.2954467181985000	-0.2330740888360000
13	Т	8	-0.4514521498283000	-0.4455879984223000	0.3563317590273000
14	F	8	-0.0485478501716800	0.0544120015776900	0.1436682409727000
15	F	8	0.4514521498283000	0.4455879984223000	-0.3563317590273000
16	F	8	0.0485478501716800	-0.0544120015776900	-0.1436682409727000
17	Т	7	-0.1761511219838000	0.3377509595273000	-0.4525677792857000
18	F	7	-0.3238488780162000	-0.1622490404727000	-0.0474322207143100
19	F	7	0.1761511219838000	-0.3377509595273000	0.4525677792857000
20	F	7	0.3238488780162000	0.1622490404727000	0.0474322207143100
21	Т	7	-0.3556564710969000	0.3000208262878000	0.4284358651618000
22	F	7	-0.1443435289031000	-0.1999791737122000	0.0715641348381600
23	F	7	0.3556564710969000	-0.3000208262878000	-0.4284358651618000
24	F	7	0.1443435289031000	0.1999791737122000	-0.0715641348381600
25	Т	6	-0.2610839268805000	0.2201686971327000	0.4926722913539000
26	F	6	-0.2389160731195000	-0.2798313028673000	0.0073277086460690

27	F	6	0.2610839268805000	-0.2201686971327000	-0.4926722913539000
28	F	6	0.2389160731195000	0.2798313028673000	-0.0073277086460680
29	Т	6	-0.3686972569941000	0.4903582396745000	0.4165331129851000
30	F	6	-0.1313027430059000	-0.0096417603254740	0.0834668870149500
31	F	6	0.3686972569941000	-0.4903582396745000	-0.4165331129851000
32	F	6	0.1313027430059000	0.0096417603254740	-0.0834668870149500
33	Т	6	-0.2832052228394000	-0.3969218425591000	0.4772252829719000
34	F	6	-0.2167947771606000	0.1030781574409000	0.0227747170281100
35	F	6	0.2832052228394000	0.3969218425591000	-0.4772252829719000
36	F	6	0.2167947771606000	-0.1030781574409000	-0.0227747170281100
37	Т	6	-0.1905594703922000	-0.4716542801478000	-0.4593756781677000
38	F	6	-0.3094405296078000	0.0283457198521800	-0.0406243218323200
39	F	6	0.1905594703922000	0.4716542801478000	0.4593756781677000
40	F	6	0.3094405296078000	-0.0283457198521800	0.0406243218323200
41	Т	6	-0.0678312652912600	0.2453758370740000	-0.3885021580534000
42	F	6	-0.4321687347087000	-0.2546241629260000	-0.1114978419466000
43	F	6	0.0678312652912600	-0.2453758370740000	0.3885021580534000
44	F	6	0.4321687347087000	0.2546241629260000	0.1114978419466000
45	Т	6	-0.1667767031015000	0.1663862217024000	-0.3221505958724000
46	F	6	-0.3332232968985000	-0.3336137782976000	-0.1778494041276000
47	F	6	0.1667767031015000	-0.1663862217024000	0.3221505958724000
48	F	6	0.3332232968985000	0.3336137782976000	0.1778494041276000
49	Т	6	-0.4529725358869000	0.1726482406470000	0.3735067052557000
50	F	6	-0.0470274641131200	-0.3273517593530000	0.1264932947443000
51	F	6	0.4529725358869000	-0.1726482406470000	-0.3735067052557000
52	F	6	0.0470274641131200	0.3273517593530000	-0.1264932947443000
53	Т	6	-0.3460832972994000	0.0720249925153600	0.3158990940825000
54	F	6	-0.1539167027006000	-0.4279750074846000	0.1841009059175000
55	F	6	0.3460832972994000	-0.0720249925153600	-0.3158990940825000

56	F	6	0.1539167027006000	0.4279750074846000	-0.1841009059175000
57	Т	6	-0.1042570561553000	-0.3514634931825000	-0.3958294718655000
58	F	6	-0.3957429438447000	0.1485365068175000	-0.1041705281345000
59	F	6	0.1042570561553000	0.3514634931825000	0.3958294718655000
60	F	6	0.3957429438447000	-0.1485365068175000	0.1041705281345000
61	Т	1	-0.3524601893091000	0.3455454131960000	-0.3078322385798000
62	F	1	-0.1475398106909000	-0.1544545868040000	-0.1921677614202000
63	F	1	0.3524601893091000	-0.3455454131960000	0.3078322385798000
64	F	1	0.1475398106909000	0.1544545868040000	0.1921677614202000
65	Т	1	-0.1924975332665000	0.1411546534124000	0.2326341991518000
66	F	1	-0.3075024667335000	-0.3588453465876000	0.2673658008482000
67	F	1	0.1924975332665000	-0.1411546534124000	-0.2326341991518000
68	F	1	0.3075024667335000	0.3588453465876000	-0.2673658008482000
69	Т	1	-0.2945640001718000	-0.2479846516261000	0.4710085715715000
70	F	1	-0.2054359998282000	0.2520153483739000	0.0289914284285200
71	F	1	0.2945640001718000	0.2479846516261000	-0.4710085715715000
72	F	1	0.2054359998282000	-0.2520153483739000	-0.0289914284285200
73	Т	1	0.0251416988517900	0.3445283608628000	-0.3630641728482000
74	F	1	0.4748583011482000	-0.1554716391372000	-0.1369358271518000
75	F	1	-0.0251416988517900	-0.3445283608628000	0.3630641728482000
76	F	1	-0.4748583011482000	0.1554716391372000	0.1369358271518000
77	Т	1	0.0005099255160784	0.1342862058390000	-0.4167448212116000
78	F	1	0.4994900744839000	-0.3657137941610000	-0.0832551787884200
79	F	1	-0.0005099255160784	-0.1342862058390000	0.4167448212116000
80	F	1	-0.4994900744839000	0.3657137941610000	0.0832551787884200
81	Т	1	-0.0752453512793900	0.0958859023450600	-0.2800617450679000
82	F	1	-0.4247546487206000	-0.4041140976549000	-0.2199382549321000
83	F	1	0.0752453512793900	-0.0958859023450600	0.2800617450679000
84	F	1	0.4247546487206000	0.4041140976549000	0.2199382549321000

85	Т	1	-0.2595186396917000	0.0634940389340000	-0.3456006982393000
86	F	1	-0.2404813603083000	-0.4365059610660000	-0.1543993017607000
87	F	1	0.2595186396917000	-0.0634940389340000	0.3456006982393000
88	F	1	0.2404813603083000	0.4365059610660000	0.1543993017607000
89	Т	1	0.4860161680240000	0.0712441615691400	0.4104110241849000
90	F	1	0.0139838319759900	-0.4287558384309000	0.0895889758150700
91	F	1	-0.4860161680240000	-0.0712441615691400	-0.4104110241849000
92	F	1	-0.0139838319759900	0.4287558384309000	-0.0895889758150700
93	Т	1	0.4495145882111000	0.2547171150497000	0.3404052663738000
94	F	1	0.0504854117888900	-0.2452828849503000	0.1595947336262000
95	F	1	-0.4495145882111000	-0.2547171150497000	-0.3404052663738000
96	F	1	-0.0504854117888900	0.2452828849503000	-0.1595947336262000
97	Т	1	-0.2494313176063000	-0.0139310201449100	0.3485522651015000
98	F	1	-0.2505686823937000	0.4860689798551000	0.1514477348985000
99	F	1	0.2494313176063000	0.0139310201449100	-0.3485522651015000
100	F	1	0.2505686823937000	-0.4860689798551000	-0.1514477348985000
101	Т	1	-0.4314284442535000	-0.0205693539503100	0.2795269727249000
102	F	1	-0.0685715557464600	0.4794306460497000	0.2204730272751000
103	F	1	0.4314284442535000	0.0205693539503100	-0.2795269727249000
104	F	1	0.0685715557464600	-0.4794306460497000	-0.2204730272751000
105	Т	1	-0.1529635042120000	-0.3792100103386000	-0.3375418600741000
106	F	1	-0.3470364957880000	0.1207899896614000	-0.1624581399259000
107	F	1	0.1529635042120000	0.3792100103386000	0.3375418600741000
108	F	1	0.3470364957880000	-0.1207899896614000	0.1624581399259000
109	Т	1	0.0331076177189100	-0.3747202501597000	-0.3890947915685000
110	F	1	0.4668923822811000	0.1252797498403000	-0.1109052084315000
111	F	1	-0.0331076177189100	0.3747202501597000	0.3890947915685000
112	F	1	-0.4668923822811000	-0.1252797498403000	0.1109052084315000
113	Т	1	-0.1280084928719000	-0.2064408356193000	-0.4115295654610000

114	F	1	-0.3719915071281000	0.2935591643807000	-0.0884704345390300
115	F	1	0.1280084928719000	0.2064408356193000	0.4115295654610000
116	F	1	0.3719915071281000	-0.2935591643807000	0.0884704345390300

"T" marks the atoms belonging to the asymmetric cell. The fractional coordinates x/a, y/b, and z/c are given in angstroms.

Table S2 Optimized geometry of the hydrogen-bonded dimer of 1,3-bis(2-hydroxyethyl)-6-methyluracil at the ω B97X-D/aug-cc-pVTZ level.

Center number	Atomic number	x	у	Z
1	1	1.565820	-4.332110	0.688453
2	1	-0.057651	-4.859086	1.170879
3	8	3.604658	1.996683	0.713193
4	8	2.607311	-2.047961	1.322048
5	8	0.192773	-4.508430	-0.861991
6	8	-1.000504	-1.436019	-1.379358
7	7	2.816507	-0.618376	-0.431706
8	7	0.814847	-1.812158	-0.047102
9	6	2.110329	-1.524707	0.346373
10	6	0.174062	-1.208388	-1.125865
11	6	0.983137	-0.299467	-1.880978
12	6	2.251627	-0.012961	-1.527715
13	6	4.157843	-0.283253	0.054676
14	6	4.134938	0.772091	1.155035
15	6	0.087645	-2.780417	0.767995
16	6	0.499340	-4.210739	0.485259
17	6	3.068914	0.959361	-2.315175
18	1	2.662783	2.000249	0.936685
19	1	0.576023	-5.353802	-1.090809
20	1	0.524084	0.168285	-2.735559

21	1	5.166190	0.939897	1.474111
22	1	3.575861	0.387122	2.009862
23	1	0.273747	-2.554286	1.815204
24	1	-0.967074	-2.646709	0.550232
25	1	3.433012	1.759314	-1.671505
26	1	2.459180	1.380367	-3.109445
27	1	4.749268	0.065834	-0.785609
28	1	4.607584	-1.196325	0.436652
29	1	3.929449	0.467415	-2.770713
30	1	-4.748459	-0.067578	0.786976
31	1	-4.608098	1.195112	-0.434892
32	1	-3.927433	-0.469031	2.771660
33	8	-3.603283	-1.997187	-0.712901
34	8	-2.608744	2.047897	-1.321284
35	8	-0.194082	4.509101	0.861418
36	8	1.000845	1.437169	1.377996
37	7	-2.81625	0.617825	0.432272
38	7	-0.8154	1.812632	0.046776
39	6	-2.11095	1.52466	-0.34602
40	6	-0.17375	1.209021	1.125134
41	6	-0.98198	0.299617	1.880553
42	6	-2.25051	0.012516	1.527873
43	6	-4.15766	0.282144	-0.05349
44	6	-4.13467	-0.77284	-1.15418
45	6	-0.08905	2.781253	-0.76867
46	6	-0.50124	4.211381	-0.48569
47	6	-3.06686	-0.9604	2.315568
48	1	-2.66168	-2.00031	-0.93764
49	1	-0.57483	5.355798	1.089532

50	1	-0.52226	-0.16803	2.734832
51	1	-5.16597	-0.9412	-1.47282
52	1	-3.57626	-0.38728	-2.00918
53	1	-0.27561	2.555053	-1.81578
54	1	0.965829	2.648017	-0.55138
55	1	-3.43086	-1.76041	1.671907
56	1	-2.45649	-1.38125	3.109431
57	1	-1.56791	4.332265	-0.68826
58	1	0.055055	4.859997	-1.17161

The x, y, and z coordinates are given in angstroms.