

Volume 10 (2023)

Supporting information for article:

Crystal structures and kinetic studies of a laboratory evolved aldehyde reductase explain the dramatic shift of its new substrate specificity

Shruthi Sridhar, Alberto Zavarise, Tiila-Riikka Kiema, Subhadra Dalwani, Tor Eriksson, Yannick Hajee, Thilak Reddy Enugala, Rik K. Wierenga and Mikael Widersten

Index

Supporting Tables	
Table S1. Crystallization and crystal treatment protocols	S2
Table S2. Medium viscosity effects on reaction rates of the DA1472 variant	S3
Supporting Figures	
Figure S1. Electron density 2Fo-Fc omit maps	S4
Figure S2. Kinetic data of the DA1472 variant	S5
Figure S3. pH dependency of the reduction reaction of the DA1472 variant	S6

Data set (cocrys-	D93 (L259V)	DA1472 (N151G/L259V)	DA1472 (N151G/259V)	DA1472 (N151G/L259V)
tallization; cryo-	(with Fe ²⁺ , NADH;	(with Fe ²⁺ , NADH; glycerol)	(with Fe ²⁺ , NAD ⁺ , sub-	(with Fe ²⁺ , NADH, sub-
protectant)	glycerol)		strate analog (compound	strate analog (compound
			7); PEG600)	7); PEG600)
PDB entry	7QLG	7QNH	7QLQ	7QLS
Protein buffer	10.03 mg/ml dissolved	9.25 mg/ml dissolved in 20	9.25 mg/ml dissolved in	9.25 mg/ml dissolved in 20
	in 20 mM Tris-HCl,	mM Tris-HCl, pH 7.5 that	20 mM Tris-HCl, pH 7.5	mM Tris-HCl, pH 7.5 that
	pH 7.5 that was supple-	was supplemented with 0.5	that was supplemented	was supplemented with 1
	mented with 0.5 mM	mM FeCl ₂ and 10 mM	with 1 mM substrate ana-	mM substrate analog 0.5
	FeCl ₂ and 10 mM	NADH and incubated for 10	log 0.5 mM FeCl ₂ and 10	mM FeCl ₂ and 10 mM
	NADH and incubated	min at room temperature.	mM NAD ⁺ and incubated	NADH and incubated for
	for 10 min at room		for 10 min at room tem-	10 min at room tempera-
	temperature.		perature.	ture.
Well solution	50.64 mM sodium ace-	50.64 mM sodium acetate	0.1 M bis-tris pH 5.5; 20	0.1 M sodium acetate pH
buffer	tate trihydrate, pH 4.5;	trihydrate, pH 4.5; 15 %	% (w/v) PEG 6000; 0.2	4.5; 20 % (w/v) PEG 8000;
	15 % (w/v) PEG 3350;	(w/v) PEG 3350; 200 mM	M sodium formate.	0.2 M sodium formate.
	200 mM sodium for-	sodium formate.		
	mate.			
Drop size	$0.4~\mu L + 0.4~\mu L$	$0.4~\mu L + 0.4~\mu L$	$0.4~\mu L + 0.4~\mu L$	$0.4~\mu L + 0.4~\mu L$
Crystal soaking	The crystal was trans-	The crystal was transferred	The crystal was trans-	The crystal was transferred
protocol (time,	ferred in 1 μ L well so-	in 1 μ L well solution, sup-	ferred in 1 μL well solu-	in 1 μ L well solution, sup-
composition) ^a	lution, supple-	plemented with10 mM	tion, supplemented	plemented with10 mM
	mented with 10 mM	NADH, and diluted with	with10 mM NAD ⁺ + 1	NADH + 1 mM compound
	NADH and diluted	glycerol to a final concentra-	mM compound 7 and di-	7 and diluted with PEG600
	with glycerol to a final	tion of 30 % (v/v), for 1 min.	luted with PEG600 to a	to a final concentration of
	concentration of 30 %		final concentration of 20	20 % (w/v), for 1 min.
	(v/v), for 1 min.		% (w/v), for 1 min.	
Sample name	FUCO_96ehE08d2c5	FUCO_96ekE08d1c1	FUCO_96j2G10d2c2	FUCO_96j1F06d3c1
(in IceBear ^b)				

Table S1. Crystallization and crystal treatment protocols

^a Each crystal was cryoprotected at the end of the crystal treatment protocol by immersing in liquid nitrogen.
^b Daniel, E., Maksimainen, M. M., Smith, N., Ratas, V., Biterova, E., Murthy, S. N., Rahman, M. T.,

Kiema, T.-R., Sridhar, S., Cordara, G., Dalwani, S., Venkatesan, R., Prilusky, J., Dym, O., Lehtio, L., Koski, M.K., Ashton, A.W., Sussman, J. L. & Wierenga, R. K. (2021) Acta Cryst. D77, 151-163.

Table S2. Medium viscosity effects on reaction rates of the DA1472 variant

					k _{cat}	
					dependency on	$k_{\rm cat}/K_{\rm M}$ depend-
					medium viscos-ency on medium	
Enzyme	Substrate	$\eta_{ m rel}$	k_{cat} (s ⁻¹)	$k_{\rm cat}/K_{\rm M}~({\rm s}^{-1}~{\rm mM}^{-1})$	ity ^a	viscosity ^a
DA1472	compound 5	1	8.0±0.005	80±6		
	compound 5	1.5	5.6±0.006	43±7	1.2±0.1	1.0±0.2
	compound 5	2.8	2.5±0.002	27±2		

^a The slopes are calculated from the linear fits shown in **Fig. S2C**.

Figure S1. Electron density 2Fo-Fc omit maps, calculated using models in which the specified ligand was omitted from the model. The maps have been contoured at 1 sigma. (a) The DA1472 structure (PDB entry 7QNH) in which NADH of chain B was omitted. (b) The DA1472 structure (PDB entry 7QLS) in which the bound substrate analog (compound 7, 3,4-dimethoxyphenylacetamide) of chain B was omitted from the model. (c) The D47 structure (PDB entry 7R0P) in which the bound NAD⁺ of chain A was omitted.

Figure S2. Kinetic data of the DA1472 variant. (a) Model fitting to steady state data of DA1472 catalyzed reduction of compound 3. Solid line: Michaelis-Menten model, and dashed line: a model including an additional step of an alternative aldehyde binding mode resulting in a nonproductive dead-end complex. Units of activity is $\Delta A_{340}/min$. The model used is shown in (b). Extracted parameter values (Eq. 3) are given in the main text. (c) Influence of medium viscosity on steady state rate constants k_{cat} (\blacksquare , solid line) and k_{cat}/K_M (\bullet , dotted line) in the

DA1472 catalyzed reduction of compound **5**. The unit dependencies (**Table S2**) of both parameters suggest product release to be rate limiting for turnover.

Figure S3. pH dependency of the reduction reaction of the DA1472 variant. The pH dependency of the k_{cat} and k_{cat}/K_{M} of the DA1472 catalyzed reduction of compound 3 in the presence of 0.4 mM NADH.