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1. Details on data generation

The synthetic datasets used in this process were generated as follow, see Figure 1.

We first curated a dataset of nearly 24000 representative Protein Data Bank (PDB)

entries of proteins solved by X-ray crystallography after 1995, with sequence length ≥

40, refinement resolution ≤ 2.75, and refinement R-Free ≤ 0.28, with clustering at 30%

sequence identity. To generate each of our datasets, we began by randomly selecting a

subset of 10000-15000 entries from this curated set of PDB entries. For each of these

selected entries, we extracted each dipeptide of adjacent amino acid residues and

stored the coordinates of these dipeptides in separate .pdb files. For Datasets 1a and

1b, we truncated the side chains of the residues to enforce only dialanine examples. We

then randomly selected a small subset of all of these extracted dipeptide coordinates.

Using the pdbfixer Python API (Eastman et al., 2017), we removed all dipeptides that

contained nonstandard residues or had missing atoms from our set of examples. We

then applied several standardized modifications to each of the remaining dipeptide

.pdb files: we set all temperature factors to 20.0 and removed all hydrogen atoms

leaving only carbon, nitrogen, oxygen, and potentially sulfur.

Afterwards, the coordinates were translated to place the center of mass of the dipep-

tide in the center of a P1 unit cell of fixed unit cell lengths and with angles set to 90◦.

Structures that had any atom within 1.5 Å of an atom in an adjacent cell were removed

from the dataset. We then calculated structure factors in .mtz format using the gemmi

sfcalc program (Wojdyr, 2022) to a resolution of 1.5 Å. From these .mtz files, we cre-

ated .ccp4 format Patterson and electron density maps using the fft program of the

CCP4 program suite (Read & Schierbeek, 1988; Winn et al., 2011), specifying a grid

oversampling factor of 3.0. This results in a 0.5-0.6 Å grid spacing in the produced

maps. For both the generated Patterson and electron density maps, we converted from

.ccp4 format to PyTorch tensor by using the gemmi Python API (Wojdyr, 2022) to
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read in the ccp4 maps and copying all the grid points.

We then found the maximum and minimum values in each of the Patterson tensors,

as well as the maximum and minimum values in each of the electron density tensors.

Finally, we used the maximum and minimum over the values in all tensors to scale our

Patterson and electron density maps. In particular, we divided each element in the

maps by the difference between the largest maximum and smallest minimum values.

This constrained all elements in the tensors of our datasets to be in the range [-1, 1].

Fig. 1. Visualization of our data generation process
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In selecting the dipeptides, effort was taken to ensure diversity by sampling from

PDB entities with low sequence similarity to each other. However, both test and

training sets are taking random samples from the conformations allowed in rotamer

and Ramachandran space. Any similar conformations would be expected to be in a

different rotational orientation in the cell by the nature of the selection process. We

did not compute all verses all clustering or force the test and training sets to sample

distinct conformational regions.

2. Layers of our model and residual blocks

The layers of our model architecture are described in detail in Tables 1 and 2.

Table 1. Layers of the model architecture
Layer Description Trainable

Parameters
Convolutional 7x7x7 kernels, 23 output channels, 3 padding, 1

stride, 1 dilation, no bias
7889

Batch Normalization 46
ReLU
Convolutional 7x7x7 kernels, 25 output channels, 3 padding, 1

stride, 1 dilation, no bias
197225

Batch Normalization 50
ReLU
Max Pooling 2x2x2, 2 stride
Residual Block x7 429487
Upsampling Increase h,w,d dimensions by a factor of 2
Convolutional 5x5x5 kernels, 23 output channels, 2 padding, 1

stride, 1 dilation, no bias
71875

Batch Normalization 46
ReLU
Convolutional 5x5x5 kernels, 1 output channel, 3 padding, 1

stride, 1 dilation, with bias
2876

Tanh
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Table 2. Layers of a Residual Block
Layer Description Trainable

Parameters
Convolutional 7x7x7 kernels, 25 output channels, 3 padding, 1

stride, 1 dilation, no bias
214375

Batch Normalization 50
ReLU
Convolutional 7x7x7 kernels, 25 output channels, 3 padding, 1

stride, 1 dilation, no bias
214375

Batch Normalization 50
Squeeze and Excitation
Block (Hu et al., 2018)

Global reweight of current channels 637

Skip Connection
ReLU
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3. Algorithmic description of the three phases of our model

The three phases of our model architecture are defined below.

Def: EncodingPhase(X); X:Input Patterson map
1: X = 3d 7x7x7, 23 Channel Convolution(X)
2: X = ReLU(BatchNorm(X))
3: X = 3d 7x7x7, 25 Channel Convolution(X)
4: X = ReLU(BatchNorm(X))
5: X = 3d 2x2x2 Max Pooling(X)

Def: LearningFeaturesPhase(X); X:EncodingPhase Output
1: for i← 1 to 7 do
2: X’ = X
3: X = 3d 7x7x7, 25 Channel Convolution(X)
4: X = ReLU(BatchNorm(X))
5: X = 3d 7x7x7, 25 Channel Convolution(X)
6: X = BatchNorm(X)
7: X = SEBlock(X) (Hu et al., 2018)
8: X = X + X’
9: X = ReLu(X)

10: end for
11: X = 3d Nearest Upsampling(X)

Def: DecodingPhase(X); X:LearningFeaturesPhase Output
1: X = 3d 5x5x5, 23 Channel Convolution(X)
2: X = ReLU(BatchNorm(X))
3: X = 3d 5x5x5, 1 Channel Convolution(X)
4: X = Tanh(X)

4. Memory and time cost on datasets

Dataset Training examples Cell size (Å3) GPU Memory Usage (MiB) Time per epoch (min)

1a 28 470 20x20x20 15409 14.3
1b 66 504 10x10x10 3393 5.1
2 424 096 12x12x12 4151 42.0
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