

Volume 10 (2023)

Supporting information for article:

Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation

Shasha Jin, Molly M. Haskins, Cheng-Hua Deng, Catiúcia R. M. O. Matos and Michael J. Zaworotko

Solid forms	Coordination number	Coordination	Distance Å
		Network	
	Na-O bond leng	gths in HESNAO	
		2D	2.3320(17)
HESNA·H2O			2.3792(15)
	5		2.6371(15)
			2.2610(16)
			2.3222(16)
			2.3361(15)
HESNAH	6	1D	2.4399(15)
			2.4039(13)
		1D	2.4669(21)
HESNAH·2EtOH			2.4557(19)
			2.5960(17)
	7		2.5267(24)
			2.2885(22)
			2.3117(22)
			2.3395(24)
	K-O bond leng	ths in HESKOH	
HESK·3H2O		2D	2.6450(19)
			3.0171(17)
	<i>,</i>		2.7970(17)
	6		2.7653(16)
			2.7911(17)
			2.800(17)
HESKHE·2H ₂ O	8	1D	2.6541(22)
			2.8166(20)
			2.8050(19)
			2.8218(23)
HESKHE·xEtOH		2D	2.8237(85)
			2.8647(37)
	6, 8		2.7121(36)
			2.6676(30)
			2.6712(26)
			2.6637(34)
			2.8430(27)
	6, 8		2.8548(19)
HESKHE·xMeOH		2D	× ,

Table S1K/Na–O bond lengths observed in the structures of HESNAO and HESKOH.

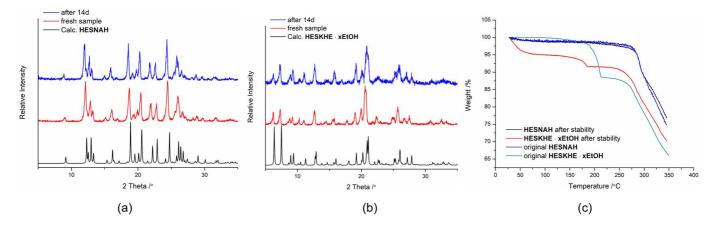
2.6587(16)
2.6813(22)
2.7434(21)
2.8714(24)

*one K-O bond length in **HESKHE**·**xMeOH** is not included due to oxygen atom disorder.

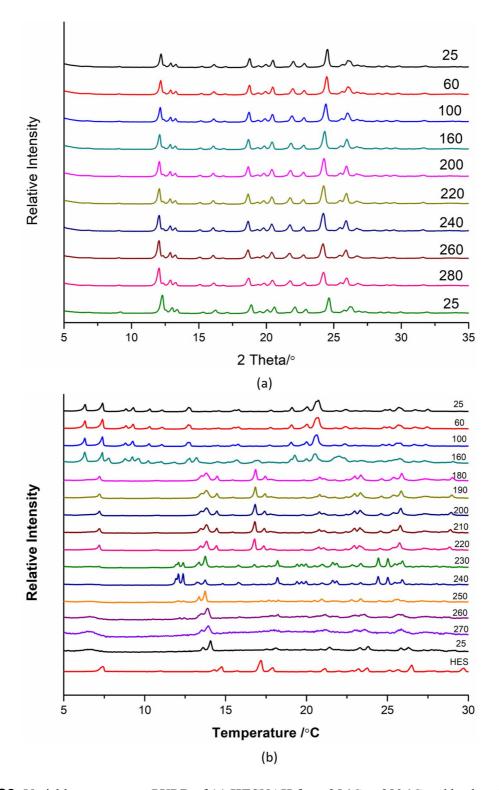
Table S2Frequency of PhOH···PhO⁻, PhOH···PhOH, and PhOH···O=C supramolecular synthonsappearing in related structures deposited in CSD. (ConQuest version 2020.3.0 with Nov. 2022 update,search parameters: 3D coordinates present; only organics; R factor ≤ 0.05 , no disorder and single-crystal structure only).

REFCODEs of structures deposited in CSD that contain PhOH, PhO⁻, and O=C moieties with no COOH or COO⁻ moieties

COLHER	DAVLER	DUCWUV	FILGUF	HEGHEH	HIVBET
JICKIS	JIYXEX	LUZRAZ02	NICCEJ	SAFMOF	UNIHUU
UYOYIR	WIHFAW	IWUGEP	XAZHIT	XAZHOZ	
PhOH…PhO ⁻ , PhOH…PhOH, PhOH…O=C, and other supramolecular synthons occur in 58.8%, 11.8%, 23.5%, and 29.4% of structures, respectively.					


Table S3HES entries in the CSD where infinite chains of HES molecules form via eitherPhOH…PhOH or PhOH…O=C supramolecular synthons.

HES Chains				
Р hOH…PhOH	PhOH…O=C			
FOYTOC	IJIWAC			
LAVLEC	LAVLAY			
RUWHEX	LAVLIG			
RUWHIB	YEHROS			
CANPOA				


Table S4Dihedral angles between benzopyrone rings and phenolic rings of HES moietiesextracted from structures of HES reported herein.

Solid forms	Dihedral angles/°
HESNA·H ₂ O	75.11
HESNAH·2EtOH	86.94, 82.01
HESK·3H ₂ O	55.83
HESKHE·xEtOH	81.47, 89.13
HESKHE·xMeOH	88.67
HESNAH	89.89*
HESKHE·2H ₂ O	86.58*

*folded conformation

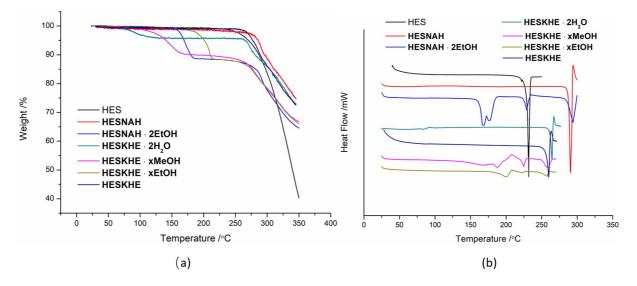


Figure S1 (a) (b) PXRD patterns and (c) TGA plots of **HESNAH** and **HESKHE**·**xEtOH** after 14 days in accelerated stability test (there is peak shift due to thermal expansion as ICCs were collected at low temperature).

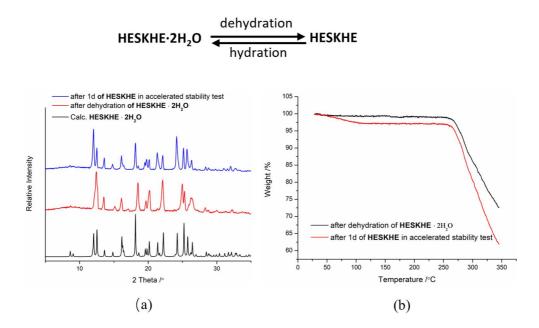
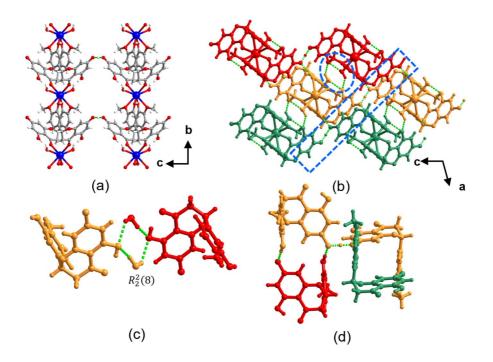
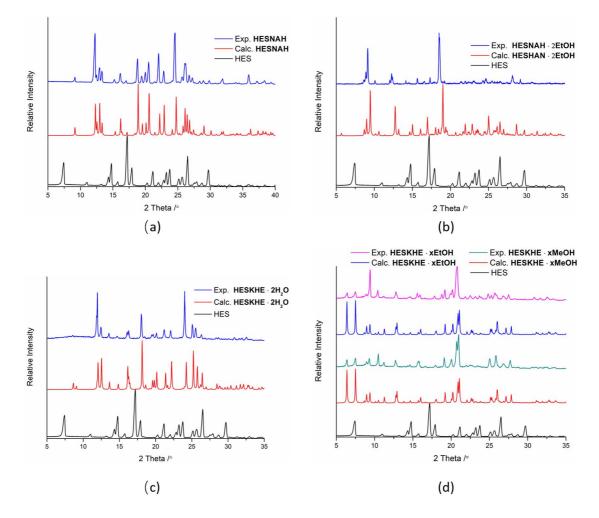
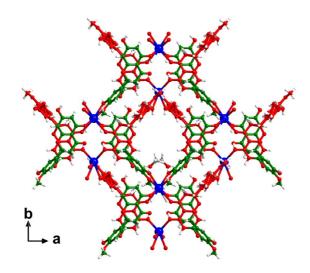


Figure S2 Variable temperature PXRD of (a) **HESNAH** from 25 °C to 280 °C and back to 25 °C which retained the structure until 280 °C; and (b) **HESKHE**•**xEtOH** from 25 °C to 270 °C and back to 25 °C. **HESKHE**•**xEtOH** remined unchanged before desolvation at *ca*. 160 °C confirmed by TGA in Figure S3, and then changed to a phase displaying similar PXRD to HES until 220 °C (likely caused by dissociation to HES which is supported by DSC displaying HES melting peak at similar temperature) followed by another phase change during 230 - 240 °C and then decomposition after 250


°C as black decomposed compound was observed after test (there is peak shift due to thermal expansion as ICC samples were measured at different temperature).


Figure S3 TGA (a) and DSC (b) plots of HES and ICCs. The weight losses in **HESKHE**·**xMeOH** and **HESKHE**·**xEtOH** samples calculated from TGA curves are 9.8% and 11.6%, respectively, which indicates 1.75~2.2 solvent molecules in both structure formulas.


Figure S4 (a) PXRD patterns and (b) TGA plot of dehydration of $\text{HESKHE} \cdot 2H_2O$ and hydration of HESKHE exposed to 75% RH for one day.

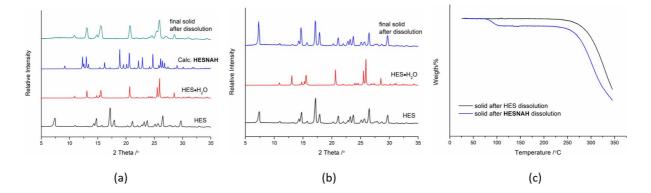

Figure S5 Crystal structure of **HESKHE**·2**H**₂**O**. (a) Coordination polymeric chains give rise to 2D network via [PhO \cdots H \cdots PhO⁻] H-bonds. (b) Packing of layers (represented in different colors) causing the formation of (c) $R_2^2(8)$ H-bonded motif between HES moieties and H₂O molecules, and (d) a chain of cyclic dimers of HES moieties (Motif I).

Figure S6 Calculated PXRD generated from single crystal structures of (a) **HESNAH**, (b) **HESNAH**·2EtOH, (c) **HESKHE**·2H₂O and (d) **HESKHE**·xMeOH and **HESKHE**·xEtOH compared with experimental PXRD (there is peak shift due to thermal expansion as ICCs were collected at low temperature).

Figure S7 'Double-wall' square grid filled with MeOH molecules in the crystal structure of **HESKHE·xMeOH**. HES molecules and HES⁻ anions are colored green and red, respectively.

Figure S8 (a) (b) PXRD patterns and (c) TGA plots of final solid forms after dissolution test of **HESNAH** and HES at PBS buffer at pH6.8.