

Volume 9 (2022)

Supporting information for article:

Insights into molecular recognition from the crystal structures of *p*-*tert*-butylcalix[6]arene complexed with different solvents

Maura Malinska

Insights into Molecular Recognition from the Crystal Structures of p-tert-Butylcalix[6]arene Complexed with Different Solvents

Maura Malinska*

Faculty of Chemistry, University of Warsaw, Poland

E-mail: mmalinska@chem.uw.edu.pl

Phone: +48 22 55 26356

List of Figures

S1	Energy frameworks generated for the 1 crystal $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12
S2	Energy frameworks generated for the 2 crystal	13
S3	Energy frameworks generated for the 3 crystal	14
S4	Energy frameworks generated for the 4 crystal	15
S5	Energy frameworks generated for the 5 crystal	16
S6	Energy frameworks generated for the 6 crystal $\ldots \ldots \ldots \ldots \ldots \ldots$	17
S7	Energy frameworks generated for the 7 crystal	18
S8	Energy frameworks generated for the 8 crystal	19
S9	Energy frameworks generated for the 9 crystal	20
S10	Energy frameworks generated for the $10~{\rm crystal}$	21
S11	Energy frameworks generated for the 11 crystal $\ldots \ldots \ldots \ldots \ldots \ldots$	22
S12	Energy frameworks generated for the 12 crystal \ldots	23

S13	Energy frameworks	generated for	the 13	crystal		•												24
-----	-------------------	---------------	----------	---------	--	---	--	--	--	--	--	--	--	--	--	--	--	----

List of Tables

S1	Crystallization condition summary	3
S2	XRD data colections for $1, 3-5$	5
S3	XRD data collections for $6, 7, 9, 10$	6
S4	XRD data collections for $11-13$	7
S5	Interaction Energies for Selected Dimer Motifs (I-III) Observed in ${\bf 1}$ Crystal	
	Structure ^{a}	12
S6	Interaction Energies for Selected Dimer Motifs (I-III) Observed in ${\bf 2}$ Crystal	
	Structure ^{a}	15
S7	Interaction Energies for Selected Dimer Motifs (I-III) Observed in ${\bf 3}$ Crystal	
	Structure ^{a}	16
S8	Interaction Energies for Selected Dimer Motifs (I-V) Observed in 4 Crystal	
	Structure ^{a}	17
S9	Interaction Energies for Selected Dimer Motifs (I-V) Observed in 5 Crystal	
	Structure ^{a}	18
S10	Interaction Energies for Selected Dimer Motifs (I-V) Observed in 6 Crystal	
	Structure ^{a}	19
S11	Interaction Energies for Selected Dimer Motifs (I-V) Observed in 7 Crystal	
	Structure ^{a}	20
S12	Interaction Energies for Selected Dimer Motifs (I-V) Observed in 8 Crystal	
	Structure ^{a}	21
S13	Interaction Energies for Selected Dimer Motifs (I-V) Observed in ${\bf UWIVUS}$	
	Crystal Structure ^{a}	22

S14	Interaction Energies for Selected Dimer Motifs (I-V) Observed in ${\bf UWIWAZ}$	
	Crystal Structure ^{a}	23
S15	Interaction Energies for Selected Dimer Motifs (I-V) Observed in ${\bf KENBUA}$	
	Crystal Structure ^{a}	24
S16	Interaction Energies for Selected Dimer Motifs (I-V) Observed in ${\bf LODNIB}$	
	Crystal Structure ^{a}	25
S17	Interaction Energies for Selected Dimer Motifs Observed in ${\bf 9}$ Crystal Structure^a	25
S18	Interaction Energies for Selected Dimer Motifs Observed in ${\bf 10}$ Crystal Structure^a	25
S19	Interaction Energies for Selected Dimer Motifs Observed in ${\bf 11}$ Crystal Structure^a	26
S20	Interaction Energies for Selected Dimer Motifs Observed in ${\bf 12}$ Crystal Structure^a	26
S21	Interaction Energies for Selected Dimer Motifs Observed in ${\bf 13}$ Crystal Structure^a	26
S22	Interaction Energies for Selected Dimer Motifs Observed in ${\bf VARGUR}$ Crys-	
	tal Structure ^{a}	27
S23	Interaction Energies for Selected Dimer Motifs Observed in ${\bf VARGOL}$ Crys-	
	tal Structure ^{a}	27
S24	Interaction energy between host-guest calculated by B3LYP-D3/6-31G** method	
	in Gaussian16	28
S25	The ${\bf S}$ distance for TBC6 molecule in the ${\bf 1}-{\bf 13}$ crystal structures	28

Structure	solvent	TBC6 [mg]	solvent [mL]	T $[\deg C]$
1	benzene	4.9	0.6	55
2	DCM	4.0	0.5	66
4	cyclohexane	4.0	0.5	25
5	toluene	4.2	0.4	25
6	methyl acetate	4.7	1.0	25
7	THF	10.6	1.2	66
9	anisole	9.4	0.5	50
10	n-heptane	10.0	0.8	55
11	ethyl acetate	4.2	1.0	70
12	DCM	5.1	4.0	30
13	DCM	3.2	4.0	30

Table S1: Crystallization condition summary

Crystallization

X-ray Diffraction Experiments

Structure solution and refinement details

Crystal structure 1 (benzene 1:3)

Crystal was a non-merohedral twin with c.a. 1:1 ratio. Component 2 is rotated by 180deg around [0.71 0.71 0.0] axis in the reciprocal space. One of the three benzene molecules is disordered over two position with occupancy factors of 0.53(1) and 0.47(1). As some bond distance in benzene ring with atom labels C79-C84 were too long, therefore we applied the AFIX66 constraint. In addition, one of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors 0.86(1) and 0.14(1). To ensure a proper shape of ADPs the ISOR, DELU and SIMU restraints and proper geometry the DFIX and DANG restraints were applied for disorder tert-butyl group. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95–0.99Å and Uiso(H) = 1.2–1.5 Ueq (parent atom). The highest density peak is located close to atom C83 in the disordered benzene ring.

	1_x6_benzene	3_x6_DCM_1_3	4_x6_cyclohexane	5_x6_toluene
Crystal data				
Chemical formula	$C_{66}H_{84}O_{6}3(C_{6}H_{6})$	$C_{66}H_{84}O_{6}3(CH_2Cl_2)$	$C_{66}H_{84}O_6C_6H_{12}$	$C_{66}H_{84}O_6C_7H_8$
Mr	1207.65	1228.1	1057.48	1065.46
Crystal system,	Triclinic, P-1	Monoclinic, $P21/c$	Monoclinic, $P21/n$	Monoclinic, $P21/n$
space group				
a, b, c (Å)	13.5391(8),	17.8792(10),	17.2109(4),	17.1817(6),
	14.7702(6),	19.6559(15),	18.2986(4),	18.7393(6),
	19.045(1)	18.9669(10)	19.6172(4)	19.4157(6)
$\alpha, \beta, \gamma \ (deg)$	80.680(4),	90, 96.732(5), 90	90, 94.521(2), 90	90, 95.843(3), 90
	72.393(5),			
	78.191(4)			
$V (Å^3)$	3532.8(3)	6619.6(7)	6158.9(2)	6218.9(3)
Ζ	2	4	4	4
Radiation type	$CuK\alpha$	$MoK\alpha$	$CuK\alpha$	$CuK\alpha$
$\mu \ (\mathrm{mm}^{-3})$	0.54	0.31	0.54	0.54
Crystal size (mm)	$0.32 \ge 0.12 \ge 0.08$	$0.36 \ge 0.12 \ge 0.05$	$0.16 \ge 0.10 \ge 0.08$	$0.1 \ge 0.09 \ge 0.04$
Data collection	I			
Diffractometer	SuperNova, Dual,	SuperNova, Dual,	SuperNova, Dual,	SuperNova, Dual,
	Cu at home/near,	Cu at zero, Atlas	Cu at zero, Atlas	Cu at zero, Atlas
	Atlas			
Absorption correc-	Multi-scan	Multi-scan	Multi-scan	Multi-scan
tion				
Tmin, Tmax	0.906, 1.000	0.52, 1.00	0.669, 1.000	0.896, 1.000
No. of measured,	23648, 23648, 17758	42673, 13524, 7357	19018, 19018, 11945	11419, 5095, 4242
independent and				
observed $[I > 2\sigma(I)]$				
reflections				
Rint	twin	0.119	twin	0.029
Θ_{max} (deg)	70.1	26.4	71.7	46.9
$(\sin \Theta/\lambda)$ max	0.61	0.625	0.616	0.473
$(Å^{-1})$				
Refinement				
${ m R}[{ m F2} > 2\sigma({ m F2})],$	0.046, 0.129, 1.03	0.119, 0.335, 1.06	0.065, 0.197, 1.05	0.065, 0.167, 1.23
wR(F2), S				
No. of reflections	23648	13520	19018	5095
No. of parameters	892	781	803	799
No. of restraints	60	35	77	6
$egin{array}{lll} \Delta ho_{max}, & \Delta ho_{min} \ ({ m e}/{ m \AA}^{-3}) \end{array}$	0.34, -0.36	0.74, -0.72	0.63, -0.42	0.38, -0.28

Table S2: XRD data colections for $\mathbf{1},\,\mathbf{3}{-5}$

]	6 x6 methyl acetate	7_x6_THF	9_x6_anisole	10 x6 nheptane
Crystal data		<u>'_~~</u> _	<u> </u>	10
Chemical formula Mr	$C_{66}H_{84}O_6C_3H_6O_2$ 1047.4	$C_{66}H_{84}O_6C_4H_8O_{1045.43}$	$C_{66}H_{84}O_6C_7H_8O_{1081.46}$	$C_{66}H_{84}O_6C_7H_{16}$ 1073.5
Crystal system,	Monoclinic, $P21/n$	Monoclinic, $P21/n$	Triclinic, P-1	Monoclinic, $P21/c$
space group				
a, b, c (Å)	17.0366(3), 18.4996(3),	17.1261(4),	14.1349(8),	16.2520(5),
	19.7620(3)	17.8832(4),	16.1763(11),	23.5373(7),
(1)		19.8489(5)	17.0355(10)	17.2102(4)
$\alpha, \beta, \gamma \; (deg)$	90, 94.288(2), 90	90, 93.914(2), 90	83.979(5),	90, 101.773(3), 90
			72.392(5),	
V (Å ³)	6210.96(18)	6064.9(2)	73.292(5) 3555.3(4)	6444.9(3)
Z (A)	4	4	2	0444.9(3)
Radiation type	CuKα	CuKα	MoKα	$CuK\alpha$
$\mu \ (\mathrm{mm}^{-1})$	0.56	0.56	0.06	0.5
Crystal size (mm)	0.20 x 0.13 x 0.09	0.24 x 0.15 x 0.11	0.2 x 0.17 x 0.1	0.24 x 0.13 x 0.05
Data collection				
Diffractometer	SuperNova, Dual, Cu at	SuperNova, Dual,	Xcalibur, Opal	SuperNova, Dua
	zero, Atlas	Cu at zero, Atlas	, r	Cu at home/near Atlas
Absorption correc-	Multi-scan	Multi-scan	Multi-scan	Multi-scan
tion				
Tmin, Tmax	0.881, 1.000	0.705, 1.000	0.841, 1.000	0.870, 1.000
No. of measured,	35347, 11386, 8785	21493, 21493, 14854	49801, 13019, 6833	37071, 12820, 6910
independent and				
observed $[I > 2\sigma(I)]$				
reflections	0.020	, ·	0.100	0.00
Rint	0.032	twin 77.1	0.102	0.06
$ \begin{array}{c} \Theta_{max} \; (\text{deg}) \\ (\sin \Theta/\lambda)_{max} \; (\text{\AA}^{-1}) \end{array} $	69.1 0.606	$77.1 \\ 0.632$	25.4 0.602	$74. \\ 0.62$
$\frac{(\sin O/\lambda)_{max}(A)}{\text{Refinement}}$	0.000	0.032	0.002	0.02
$R[F2 > 2\sigma(F2)],$	0.083, 0.238,1.07	0.079, 0.242, 1.08	0.143, 0.437, 1.36	0.066, 0.207, 1.04
$\frac{R[F2]}{wR(F2), S} = \frac{20(F2)J}{vR(F2), S}$	0.000, 0.200,1.07	0.013, 0.242, 1.00	0.140, 0.407, 1.00	0.000, 0.207, 1.04
No. of reflections	11386	21493	13019	1282
No. of parameters	825	874	762	80
No. of restraints	16	169	132	8
$\Delta ho_{max}, \Delta ho_{min}$ (e/Å ⁻³)	0.28, -0.48	0.47, -0.35	2.13, -0.87	0.71, -0.43

Table S3: XRD data collections for $\mathbf{6},\,\mathbf{7},\,\mathbf{9},\,\mathbf{10}$

	11_x6_ethyl_acetate	12_x6_DCM_1_4	13_x6_DCM_1_2
Crystal data	1		
Chemical formula	$C_{66}H_{84}O_{6}$	$\mathrm{C}_{66}\mathrm{H}_{84}\mathrm{O}_{64}(\mathrm{CH}_{2}\mathrm{Cl}_{2})$	$C_{66}H_{84}O_62(CH_2Cl_2)$
Mr	973.33	1313.03	1143.18
Crystal system,	Triclinic, P-1	Triclinic, P-1	Triclinic, P-1
space group			
a, b, c (Å)	9.5900(6), 18.199(7),	13.8727(6), 16.0717(6),	12.2610(7),
	18.547(8)	17.6177(6)	17.2425(11),
			17.4170(12)
$lpha,eta,\gamma~(deg)$	114.31(4), 91.36(2),	77.127(3), 66.915(4),	118.625(7),
	91.70(2)	76.404(3)	92.647(5),
(8 2)			98.062(5)
V (Å ³)	2946.5(19)	3474.5(3)	3172.8(4)
Z	2	2	2
Radiation type	Cu Ka	Cu Ka	Cu Ka
$\mu (\mathrm{mm}^{-1})$	0.53	3.34	2.08
Crystal size (mm)	0.67 x 0.07 x 0.02	0.15 x 0.13 x 0.1	0.3 x 0.2 x 0.1
Data collection			
Diffractometer	SuperNova, Dual, Cu	SuperNova, Dual, Cu	- , , ,
	at zero, Atlas	at zero, Atlas	Cu at zero, Atlas
Absorption cor-	Multi-scan	Multi-scan	Multi-scan
rection			
Tmin, Tmax	0.831, 1.000	0.599, 1.000	0.506, 1.000
No. of measured,	7563, 6064, 2856	40412, 13310, 10893	37155, 12208,
independent and			9900
observed $[I > 0.4]$			
$2\sigma(I)$] reflections	0.07		0.020
Rint $(1,)$	0.07	0.057	0.039
$\Theta_{max} (\text{deg})$	58.9	71.7	71.7
$(\sin \Theta/\lambda)$ max $(Å^{-1})$	0.556	0.616	0.616
. ,			
$\frac{\text{Refinement}}{\text{Refinement}}$	0 156 0 440 1 10	0.079.0.999.1.09	0.051.0149.1.09
$R[F2 > 2\sigma(F2)],$ wR(F2) = S	0.156, 0.440, 1.19	0.072, 0.222, 1.02	0.051, 0.142, 1.02
wR(F2), S No. of reflections	7000	19910	10000
No. of parameters	7289 694	13310 808	$\begin{array}{c} 12208 \\ 766 \end{array}$
No. of restraints	97	0	3
			0.31, -0.72
$\Delta \rho_{max}, \Delta \rho_{min}$	0.54, -0.40	0.94, -1.20	0.31, -0.72

Table S4: XRD data collections for $\mathbf{11}-\mathbf{13}$

Crystal structure 3 (DCM 1:3)

One of the three DCM molecules is disordered over two position with occupancy factors of 0.72(1) and 0.28(1). This DCM molecule occupy void, that allows for a movement. Only two positions were refined, however restraints for C-Cl bond and Cl...Cl distance were applied to ensure proper geometry of the molecule. In addition, three of the six tert-butyl groups of the calixarene needed the DFIX and DANG restraints to ensure proper geometry. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O-H = 0.84Å, C-H = 0.95-0.99Å and Uiso(H) = 1.2-1.5 Ueq (parent atom). The highest density peak is located close to atom Cl6 in the disordered DCM molecule.

Crystal structure 4 (cyclohexane 1:1)

Crystal was a non-merohedral twin with major component of 0.70(1). Component 2 is rotated by 180deg around [0.0 0.0 1.0]. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95–0.99Å and Uiso(H) = 1.2–1.5 Ueq (parent atom). Three of the six tert-butylgroups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.65(1), 0,51(1), and 0.78(1), respectively. The highest density peak is located at atom C31. Disordered tertbutyl groups were refined with geometrical restraints (DFIX and DANG). The cyclohexane bond length was restrained to 1.54(1)Å.

Crystal structure 5 (toluene 1:1)

Two of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.61(1) and 0.79(1). The highest density peak is located at atom C31. Disordered tert-butyl groups were refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the SIMU and ISOR restraints were applied for disordered tert butyl groups. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O-H = 0.84Å, C-H = 0.95-0.99Å

and Uiso(H) = 1.2-1.5 Ueq (parent atom).

Crystal structure 6 (methyl acetate 1:1)

Methyl acetate molecule is disordered over two positions with occupancy factors 0.86(<1) and 0.14(<1). Similar geometry parameters were enforced by SADI restraints. In addition FLAT restraint for non-H atom for both conformations of methyl acetate was used. Three of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.61(<1), 0.51(<1) and 0.88(<1). The highest density peak is located at atom C31. Disordered tert-butyl groups were refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the SIMU and ISOR restraints were applied for disordered tert-butyl groups. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95–0.99Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Crystal structure 7 (THF 1:1)

Crystal was a non-merohedral twin with major component of 0.521(1). Component 2 is rotated by 180deg around [0.0 0.0 1.0]. THF molecule is disordered over two positions with occupancy factors 0.64(<1) and 0.14(<1). Geometry parameters were restrained with DFIX and DANG. As some ADPs were unstable during refinement, SIMU and DELU retraints were used. Four of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.61(<1), 0.86(<1), 0.76(<1), and 0.53(<1). The highest density peak is located at atom C8A. Disordered tert-butyl groups were refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the SIMU and DELU restraints were applied for disordered tert-butyl groups. The atom C63, C64, C65 were constrained to be identical with atom C63A, C64A and C65A, as non positively defined ADPs were observed for this tert butyl group. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95 - 0.99Å and Uiso(H) = 1.2 - 1.5 Ueq (parent atom).

Crystal structure 9 (anisole 1:1)

Anisole molecule is disordered over two positions with occupancy factors 0.91(<1) and 0.09(<1). Low quality of XRD data (low I/ σ and high Rint) unable to stable refinement of anisole molecule, therefore rigid body of anisole with AFIX 5 was used. As some ADPs were unstable during refinement, we applied two sets of EADP constraints for aromatic ring and methoxy group. The highest density peak is located at atom C67 of anisole molecule. Four of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.66(<1), 0.84(<1), 0.74(<1), and 0.68(<1). Disordered tert-butyl groups were refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the ISOR restraints were applied for disordered tert-butyl groups. Some atoms from disordered tert-butyl groups were constraint to have the same ADPs, as non positively definite ADPs were observed. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95-0.99Å and Uiso(H) = 1.2-1.5 Ueq (parent atom).

Crystal structure 10 (heptane 1:1)

Heptane molecule were refined with C-C distance restraint to 1.54Å. The highest density peak is located at atom C68 of heptane molecule. Three of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.49(<1), 0.53(<1), and 0.60(<1). Disordered tert-butyl groups were refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the ISOR, SIMU and DELU restraints were applied for disordered tert-butyl groups. Some atoms from disordered tert-butyl groups were constraint to have the same ADPs, as non positively definite ADPs were observed. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O-H = 0.84Å, C-H = 0.95-0.99Å and Uiso(H)

= 1.2-1.5 Ueq (parent atom).

Crystal structure 11 (ethyl acetate)

Weak diffraction from monocrystal resulted in low statistics (Rint=7.13% and I/ σ =6.7) and low completeness of 68%. One of the six tert-butyl groups of the calixarene reveals a twofold positional disorder with site occupancy factors for first position of 0.52(<1). Disordered tert-butyl group was refined with geometrical restraints (DFIX and DANG). As some ADPs parameters were unreasonable, the ISOR, RIGU restraints were applied for disordered tertbutyl group. Some atoms from disordered tert-butyl groups were constraint to have the same ADPs n(C8 and C8A), as non positively definite ADPs were observed. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O–H = 0.84Å, C–H = 0.95–0.99Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Crystal structure 12 (DCM 1:4)

Two of the four DCM molecules are disordered over two position with occupancy factors of 0.63(1) and 0.68(1). The DCM molecules were refined with restraints for C-Cl bond and Cl...Cl distance to ensure proper geometry of the molecule. In addition, two of the six tert-butyl groups of the calixarene reveals a two fold positional disorder with site occupancy factors for first position of 0.92(<1) and 0.812(<1). The tert-butyl groups were refined with DFIX and DANG restraints to ensure proper geometry. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O-H = 0.84Å, C-H = 0.95-0.99Å and Uiso(H) = 1.2-1.5 Ueq (parent atom).

Crystal structure 13 (DCM 1:2)

Two DCM molecules are disordered over two position with occupancy factors of 0.74(<1)and 0.89(<1). The DCM molecules were refined with restraints for C-Cl bond and Cl...Cl distance to ensure proper geometry of the molecule. Also ISOR restraint were applied to obtain reasonable ADPs. In addition, one of the six tert-butyl groups of the calixarene reveals a two fold positional disorder with site occupancy factors for first position of 0.81(<1). The tert-butyl groups were refined with DFIX and DANG restraints to ensure proper geometry. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O-H = 0.84Å, C-H = 0.95-0.99Å and Uiso(H) = 1.2-1.5 Ueq (parent atom). The highest density peak is located close to atom Cl1 in the disordered DCM molecule.

Crystal Framework Analysis

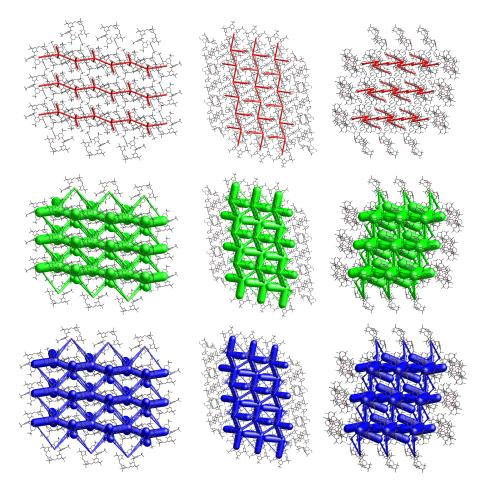


Figure S1: Energy frameworks generated for the **1** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

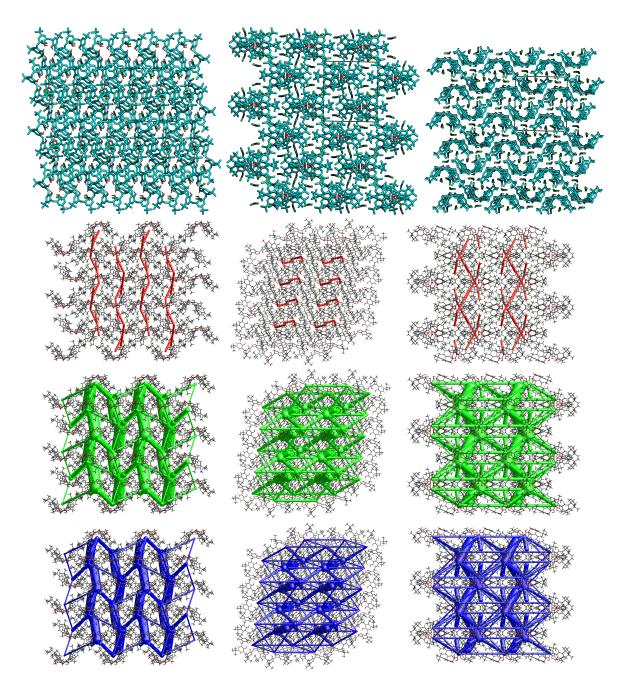


Figure S2: Energy frameworks generated for the **2** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

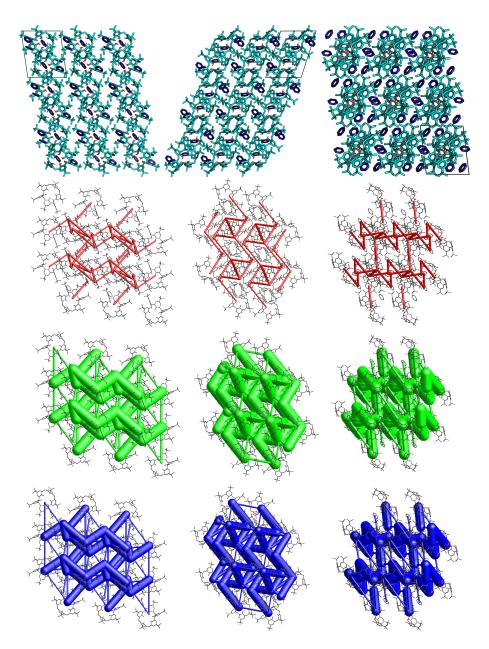


Figure S3: Energy frameworks generated for the **3** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

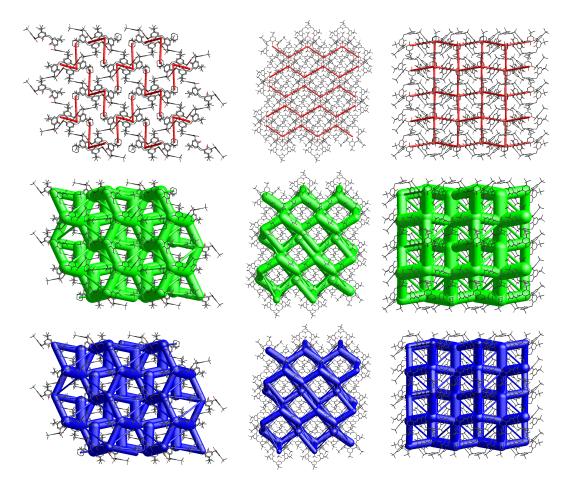


Figure S4: Energy frameworks generated for the **4** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S5: Interaction Energies for Selected Dimer Motifs (I-III) Observed in ${\bf 1}$ Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE} l	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}			
Ι	-14.2	-4.9	-73.3	38.7	-52.3			
Ι'	-17.6	-5.1	-73.3	46.9	-49.6			
Ι"	-7.8	-1.9	-26.4	11.3	-23.8			
II	-26.1	-10.4	-189.3	81.3	-138.0			
III	-25.1	-8.4	-167.1	83.9	-113.6			
^a E^{CE} represents the interaction energies computed with CrystaExplorer. E_{ele}^{CE} , E_{pol}^{CE} , E_{dis}^{CE} , E_{rep}^{CE} and E_{tot}^{CE} are the electro- static, polarization, dispersive, repulsive, and total interaction energies, respectively.								

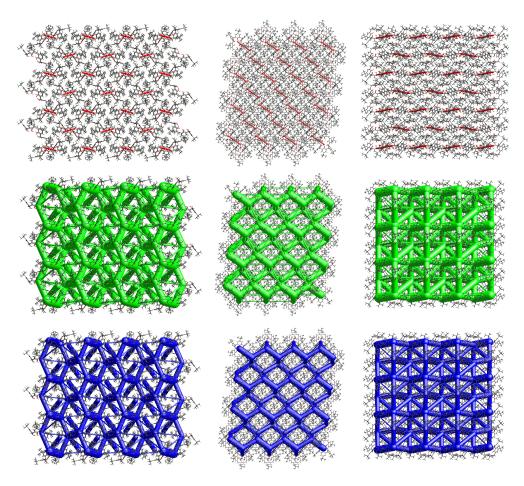


Figure S5: Energy frameworks generated for the **5** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S6: Interaction Energies for Selected Dimer Motifs (I-III) Observed in ${\bf 2}$ Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}					
Ι	-5.2	-1.3	-74.2	27.4	-50.8					
I'	-0.5	-0.3	-7.0	0.1	-6.9					
Ι"	0.7	-0.3	-6.2	0.0	-5.0					
II	-20.0	-9.9	-174.6	68.1	-128.9					
III	-26.2	-8.8	-165.8	82.1	-115.3					
^a E^{CE}	^a E^{CE} represents the interaction energies									
			CrystaEx							
E_{pol}^{CE}	$E, E_{dis}^{CE}, E_{dis}^{CE},$	E_{rep}^{CE}	and E_{tot}^{CI}	^E are t	the elec-					
trostatic, polarization, dispersive, repul-										
sive, and total interaction energies, respec-										
tivel	y.									

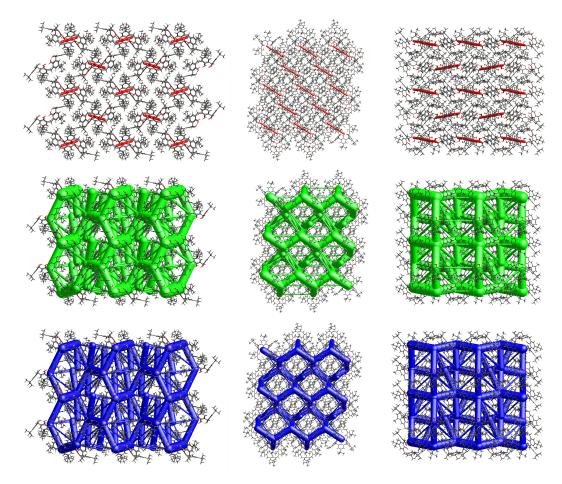


Figure S6: Energy frameworks generated for the **6** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S7: Interaction Energies for Selected Dimer Motifs (I-III) Observed in **3** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}					
Ι	-25.2	-7.5	-54.9	22.1	-62.1					
I'	-19.2	-7.7	-58.8	31.0	-52.3					
Ι"	-3.1	-2.1	-27.0	13.7	-17.7					
II	-18.1	-11.8	-158.6	55.2	-124.4					
^a E^{CE}	^a E^{CE} represents the interaction energies									
com	computed with CrystaExplorer. E_{ele}^{CE} ,									
$E_{pol}^{CE}, E_{dis}^{CE}, E_{rep}^{CE}$ and E_{tot}^{CE} are the electro-										
static, polarization, dispersive, repulsive,										
and total interaction energies, respectively.										

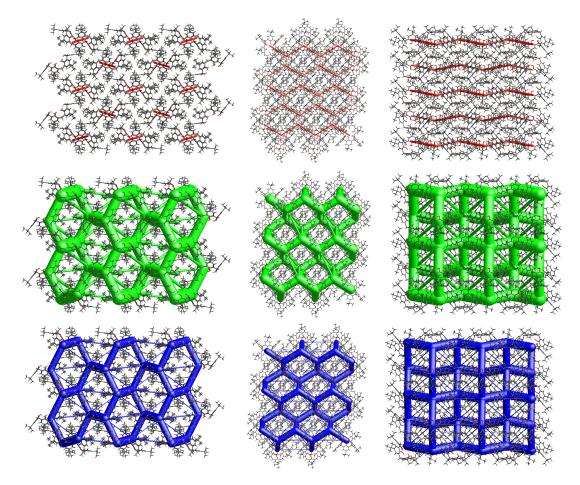


Figure S7: Energy frameworks generated for the **7** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S8: Interaction Energies for Selected Dimer Motifs (I-V) Observed in 4 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}					
Ι	-9.9	-3.3	-74.7	35.9	-50.4					
II	-22.0	-9.5	-186.7	79.2	-132.1					
III	-23.7	-10.9	-151.5	78.8	-103.8					
IV	-14.4	-5.2	-131.7	67.9	-81.6					
V	-2.7	-0.3	-32.6	14.8	-20.3					
^a E^{CE}	^a E^{CE} represents the interaction energies									
					$E_{ele}^{CE},$					
$E_{pol}^{CE}, E_{dis}^{CE}, E_{rep}^{CE}$ and E_{tot}^{CE} are the electro-										
static, polarization, dispersive, repulsive,										
and	and total interaction energies, respectively.									

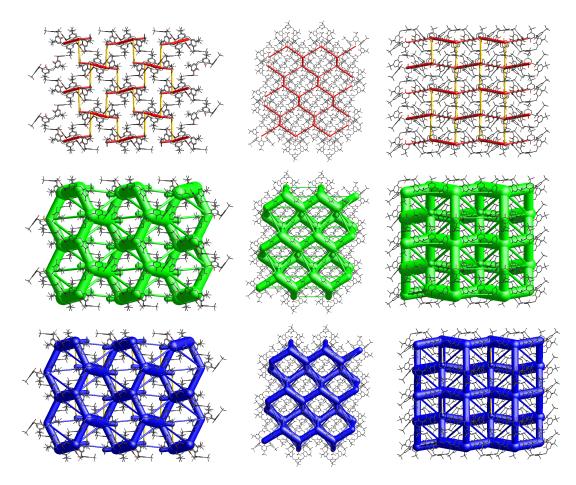


Figure S8: Energy frameworks generated for the 2 crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S9: Interaction Energies for Selected Dimer Motifs (I-V) Observed in 5 Crystal Structure^a

I	-6.7	-4.6	-71.6	01.0	
			-11.0	31.6	-48.7
II	-25.5	-10.7	-187.4	78.1	-138.6
III	-14.6	-8.0	-137.8	53.2	-101.1
IV	-13.1	-5.8	-126.2	61.3	-81.1
V	-2.3	-0.2	-30.9	13.1	-19.6
E_{pol}^{CE} static	buted , E_{dis}^{CE} , c, pola	with C E_{rep}^{CE} and E_{rep}^{CE}	he interactive interaction interaction E_{tot}^{CE} in the dispersion of the energies of th	plorer. are the sive, re	e electro- epulsive,



Figure S9: Energy frameworks generated for the **9** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S10: Interaction Energies for Selected Dimer Motifs (I-V) Observed in 6 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-4.5	-2.6	-47.1	11.7	-39.3
II	-18.7	-9.2	-168.7	47.4	-138.4
III	-13.4	-7.7	-133.6	39.2	-107.3
IV	-8.2	-5.1	-115.6	36.2	-86.5
V	-5.4	-0.2	-38.4	23.2	-21.4
E_{pol}^{CE} trost	puted E_{dis}^{CE} , E_{dis}^{CE} , tatic, p and tot	with C_{rep}^{CE} olariza	CrystaEx	plorer. E are f	the elec- e, repul-

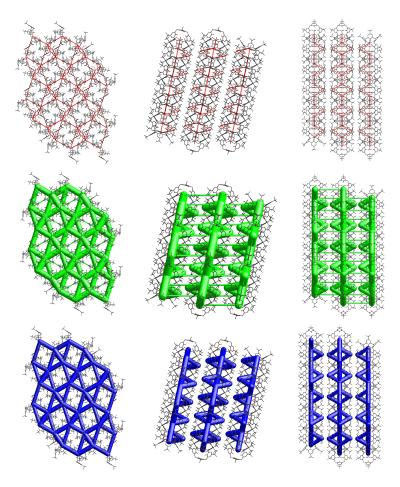


Figure S10: Energy frameworks generated for the **10** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S11: Interaction Energies for Selected Dimer Motifs (I-V) Observed in 7 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-7.4	-3.5	-56.8	14.3	-49.4
II	-20.0	-9.9	-184.4	70.1	-136.1
III	-16.4	-8.4	-143.7	50.8	-110.4
IV	-7.3	-5.5	-121.5	37.7	-89.9
V	-1.7	-0.2	-33.4	10.2	-23.7
E_{pol}^{CE} trost	puted C , E_{dis}^{CE} , tatic, p and tot	with C E_{rep}^{CE} olariza	CrystaEx and E_{tot}^{CI} tion, dis	plorer. ^E are t spersive	the elec-

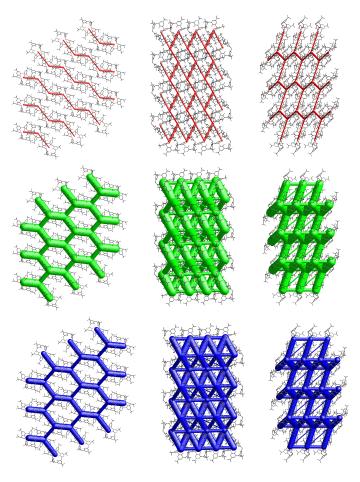


Figure S11: Energy frameworks generated for the **11** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S12:	Interaction	Energies	for	Selected	Dimer	Motifs	(I-V)	Observed	\mathbf{in}	8	Crystal
$Structure^{a}$											

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}			
Ι	-22.9	-6.8	-76.6	48.8	-57.1			
II	-32.0	-10.1	-194.4	98.8	-134.2			
III	-17.1	-8.2	-149.0	57.6	-110.4			
IV	-9.2	-5.5	-127.2	54.8	-83.2			
V	-2.1	-0.4	-32.2	12.4	-21.4			
^a E^{CE} represents the interaction energies computed with CrystaExplorer. E_{ele}^{CE} ,								
computed with CrystaExplorer. E_{ele}^{CE} , E_{pol}^{CE} , E_{dis}^{CE} , E_{rep}^{CE} and E_{tot}^{CE} are the electro- static, polarization, dispersive, repulsive, and total interaction energies, respectively.								

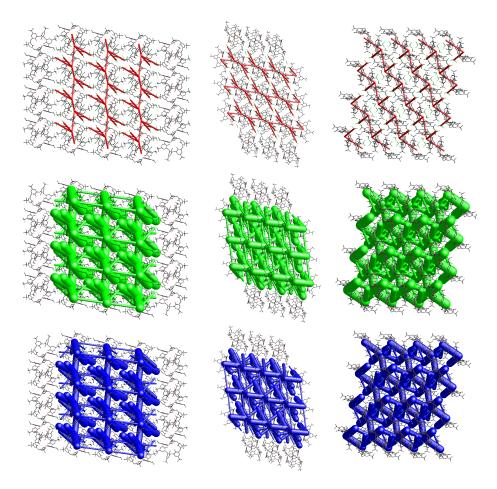


Figure S12: Energy frameworks generated for the **12** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S13: Interaction Energies for Selected Dimer Motifs (I-V) Observed in **UWIVUS** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-19.1	-6.5	-76.6	43.1	-57.9
II	-20.3	-8.9	-178.5	68.3	-132.0
III	-19.8	-7.0	-141.1	65.8	-98.5
IV	-10.2	-5.0	-117.7	49.8	-79.3
V	-1.4	-0.2	-27.8	8.8	-19.4
E_{pol}^{CE} trost	representation E_{i}^{CE} , E_{dis}^{CE} , tatic, p and tot	sents the sents the sents the constant E_{rep}^{CE} olarization of the sentence of the sent	he inter- CrystaEx and E_{tot}^{C} tion, dis	action plorer. E are the spersive	energies E_{ele}^{CE} , the elec- e, repul- s, respec-

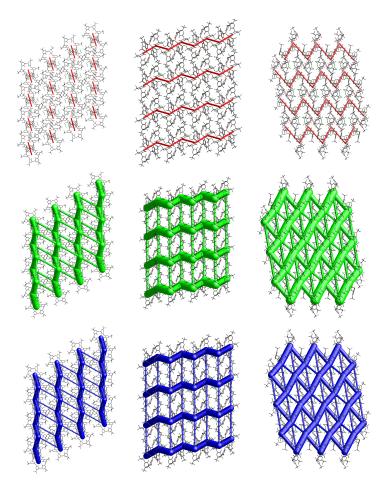


Figure S13: Energy frameworks generated for the **13** crystal. Line thickness indicates the interaction energy value (the thicker the line the greater the energy). In rows electrostatic energy (red), dispersion energy (green), and total energy (blue). Views are presented along the [100] axis (1st column), [010] axis (2nd column) and [001] axis (3rd column))

Table S14:	Interaction	Energies f	for Selected	l Dimer	Motifs	(I-V)	Observed in	UWIWAZ
Crystal Str	$ucture^a$							

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}			
Ι	-42.4	-7.8	-86.6	131.2	-19.9			
II	-20.5	-26.9	-179.9	73.1	-141.2			
III	-5.6	-28.1	-127.2	80.8	-61.7			
IV	-10.0	-5.0	-118.3	48.5	-80.7			
V	-1.5	-0.1	-25.1	10.7	-15.5			
	^a E^{CE} represents the interaction energies							
com	puted	with C	CrystaEx	plorer.	$E_{ele}^{CE},$			
$E_{pol}^{CE}, E_{dis}^{CE}, E_{rep}^{CE}$ and E_{tot}^{CE} are the electro-								
static, polarization, dispersive, repulsive,								
and	and total interaction energies, respectively.							

Table S15: Interaction Energies for Selected Dimer Motifs (I-V) Observed in **KENBUA** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}			
Ι	-15.2	-3.7	-56.7	49.3	-29.0			
II	-17.2	-15.6	-158.5	54.3	-126.6			
III	-25.4	-9.4	-120.9	35.4	-112.2			
IV	-15.7	-5.7	-119.3	60.3	-78.3			
V	-1.6	-0.1	-22.0	7.2	-15.9			
^a E^{CE}	^a E^{CE} represents the interaction energies							
com	puted	with C	[rystaEx]	plorer.	E_{ele}^{CE} ,			
$E_{pol}^{CE}, E_{dis}^{CE}, E_{rep}^{CE}$ and E_{tot}^{CE} are the electro-								
static, polarization, dispersive, repulsive,								
and	total in	teractio	n energie	es, resp	ectively.			

Table S16: Interaction Energies for Selected Dimer Motifs (I-V) Observed in **LODNIB** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}			
Ι	-5.3	-1.1	-38.2	19.8	-24.5			
II	-21.4	-7.6	-162.1	55.3	-127.7			
III	-16.1	-13.3	-134.7	50.2	-105.7			
IV	-8.2	-4.9	-107.9	41.4	-75.3			
V	-1.2	-0.1	-20.0	6.3	-14.2			
^a E^{CE} represents the interaction energies computed with CrystaExplorer. E_{ele}^{CE} , E_{pol}^{CE} , E_{dis}^{CE} , E_{rep}^{CE} and E_{tot}^{CE} are the electro- static, polarization, dispersive, repulsive,								
and	and total interaction energies, respectively.							

Table S17: Interaction Energies for Selected Dimer Motifs Observed in 9 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι",	-6.1	-3.0	-44.2	17.7	-33.6
V	-4.0	-0.8	-42.1	18.8	-27.3
VI	7.8	-12.1	-161.8	68.1	-90.5
VII	-20.2	-7.2	-167.6	71.1	-118.6
VII	-17.0	-6.4	-161.8	68.5	-111.7
^a E^{CE} com E^{CE}_{pol} stati	representation representatio representation representation representation repres	with C E_{rep}^{CE} and E_{rep}^{CE}	CrystaEx	plorer. are the sive, re	e electro- epulsive,

Table S18: Interaction Energies for Selected Dimer Motifs Observed in 10 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}		
I",	-4.2	-2.0	-58.2	23.0	-39.5		
IV	-13.7	-5.8	-130.4	62.2	-84.7		
IV	-10.0	-3.7	-109.3	52.1	-68.9		
V	-1.2	-0.4	-26.7	13.2	-14.8		
VI	3.7	-15.8	-142.0	51.7	-92.6		
^a $E^{CE'}$ represents the interaction energies							
			rystaExp				
E_{pol}^{CE}	E_{pol}^{CE} , E_{dis}^{CE} , E_{rep}^{CE} and E_{tot}^{CE} are the elec-						
trostatic, polarization, dispersive, repul-							
sive, and total interaction energies, re-							
spectively.							

Table S19: Interaction Energies for Selected Dimer Motifs Observed in 11 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
II	-24.8	-9.5	-170.1	80.9	-119.0
III	-8.8	-5.1	-114.5	52.1	-73.2
VII	-26.4	-8.6	-198.5	111.6	-120.9
VIII	-24.1	-7.8	-184.6	110.8	-106.1
IX	-5.0	-3.5	-63.1	16.0	-51.2
	puted	with C	CrystaEx	plorer.	energies $E_{ele}^{CE},$
					e electro-
	, 1		, 1	,	epulsive,
and	total in	teractio	on energi	ies, resp	ectively.

Table S20: Interaction Energies for Selected Dimer Motifs Observed in 12 Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-26.9	-9.1	-59.5	34.0	-59.4
I'	-19.1	-6.9	-55.2	26.3	-52.4
Ι"	-2.6	-1.3	-19.7	7.7	-15.0
I",	-5.9	-1.7	-11.0	3.1	-14.6
II	-18.0	-10.9	-164.8	53.3	-130.7
III	-16.7	-9.2	-158.0	50.2	-124.6
^a E^{CE}	⁷ repres	sents tl	ne intera	action	energies
			rystaEx		
E_{pol}^{CE}	$E, E_{dis}^{CE},$	E_{rep}^{CE} and	nd E_{tot}^{CE} :	are the	electro-
stati	ic, pola	rization	n, disper	sive, re	epulsive,
and	total in	teractio	n energie	es, resp	ectively.

Table S21: Interaction	Energies for Selected	Dimer Motifs Observ	ed in 13 Crystal Structure ^{<i>a</i>}
10010 021. 111001000101	Billergies for Sciected	Differ filoting Obber (ea m io erystar strattare

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-22.8	-8.0	-52.5	28.9	-52.3
I"'	-13.5	-6.3	-41.4	22.4	-37.1
II	-10.4	-8.7	-139.1	35.9	-112.4
VI	-20.8	-6.3	-92.0	44.2	-72.4
VII	-16.2	-7.7	-165.5	58.8	-123.1
^a E^{CE}	repres	sents t	he intera	action	energies
com	puted ·	with C	CrystaEx	plorer.	$E_{ele}^{CE},$
E_{pol}^{CE}	$E, E_{dis}^{CE},$	E_{rep}^{CE}	and E_{tot}^{CI}	E are t	the elec-
trost	tatic, p	olariza	tion, dis	spersive	e, repul-
sive,	and to	tal inte	raction e	nergies	, respec-
tivel	y.				

Table S22: Interaction Energies for Selected Dimer Motifs Observed in **VARGUR** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
					-54.1
			-49.5		-42.5
II	-15.2	-7.9	-149.6	50.4	-110.2
VII	-3.5	-1.3	-61.2	23.0	-40.8
IX	-3.8	-2.6	-48.7	16.7	-35.9

^a E^{CE} represents the interaction energies computed with CrystaExplorer. E_{ele}^{CE} , E_{pol}^{CE} , E_{dis}^{CE} , E_{rep}^{CE} and E_{tot}^{CE} are the electrostatic, polarization, dispersive, repulsive, and total interaction energies, respectively.

Table S23: Interaction Energies for Selected Dimer Motifs Observed in **VARGOL** Crystal Structure^a

motif	E_{ele}^{CE}	E_{pol}^{CE}	E_{dis}^{CE}	E_{rep}^{CE}	E_{tot}^{CE}
Ι	-20.7	-7.5	-49.5	16.0	-57.5
I'	-15.2	-8.1	-49.6	50.4	-55.2
II	-15.2	-8.1	-149.5	50.4	-115.2
III	-4.2	-5.4	-99.5	24.9	-77.2
VI	-4.3	-4.1	-61.6	10.1	-54.4
VII	-17.5	-7.8	-186.5	75.6	-129.6
^a E^{CE}	repres	sents tl	he intera	action	energies
com	puted ·	with C	CrystaEx	plorer.	E_{ele}^{CE} ,
E_{pol}^{CE}	$E, E_{dis}^{CE},$	E_{rep}^{CE}	and E_{tot}^{CI}	^E are t	the elec-
trost	tatic, p	olariza	tion, dis	persive	e, repul-
sive,	and to	tal inter	raction e	nergies	, respec-
tivel	у.				

Table S24: Interaction energy between host-guest calculated by B3LYP-D3/6-31G** method in Gaussian16

Guest	Eint [kJ/mol]
Cyclohexane	-36.4
Benzen	-42.6
Toluene	-41.2
Cl2C=CCl2	-46.9
\mathbf{SCS}	-46.0
PhCl	-38.2
PhBr	-37.0
Methyl acetate	-42.0
THF	-41.2
Dichloromethane	-53.3
Pyridine	-40.3
Acetonitrile	-32.3

Structure	Solvent	CH2CH2 Labels	\mathbf{S}	$\sigma(\mathbf{S}$
1	benzene	C22 C55	4.884	0.003
2	pyridine 1:3	C22 C55	4.89	0.004
3	DCM 1:3	C22 C55	4.264	0.00
4	cyclohexane	C44 C11	4.878	0.00
5	toluene	C22 C55	4.883	0.00
6	methyl acetate	C11 C44	4.864	0.00
7	THF	C22 C55	4.823	0.00
8	pyridine 1:1	C11 C44	4.767	0.00
9	anisole	C22 C55	5.240	0.00
10	n-heptane	C22 C55	4.802	0.00
11	_	C22 C55	4.71	0.0
12	DCM 1:4	C22 C55	4.608	0.00
13	DCM 1:2	C33 C66	5.109	0.00

Table S25: The ${\bf S}$ distance for TBC6 molecule in the ${\bf 1-13}$ crystal structures