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1 Generation of model data

2D System

To generate the two-dimensional model systems, in a first step a direct Monte Carlo (DMC)

simulation is run on a grid of 100× 100 unit cells. The simulation introduces an energy penalty

for neighbouring tiles that do not form [Hg(NH3)2]2+ molecules. The simulation uses periodic

boundary conditions and has a zero-energy exit criterion; i.e. it creates a structure with no

unmatched half-Hg atoms. From this starting structure, the 50 model structures described

in the text were then created using so-called ‘loop moves’, carried out as follows. First, the

orientation of one tile is flipped at random. Then the neighbouring tile is flipped to ‘repair’ the

broken [Hg(NH3)2]2+ molecule, leaving a new unpaired tile. This new unpaired tile is then again

flipped at random and repaired with the respective neighbouring tile. This continues until the

unpaired tile from the first flip is used to repair a [Hg(NH3)2]2+ molecule. The sample structures

were created from the initial structure by performing between 500 and 1000 consecutive random

loop moves. It is worth noting that the fractional populations of the various tile types were not

constrained to be exactly 0.25. In the simulated structures the compositions of these different

components vary slightly around the average value of 0.25.

The diffuse scattering in the hk-layer (−4 ≤ h, k ≤ 4 and 201 × 201 pixels) was calculated

using the DISCUS program.S1 Here, the diffuse scattering is calculated using lots of 4× 4 unit

cells and all lots of the generated sample structures were used in the calculation of the diffuse

scattering. Hence, the analysis performed will not account for correlations beyond the fourth

neighbour, which is justified considering the interaction model used in the model structure

generation and the analysis methods we apply to the model system. But at the same time note,

that this finite lot size effectively widens the observed pinch points, to a degree that is negligible

in the analysis we perform here.

3D System

As for the two-dimensional model system, each unit-cell contains one [Hg1/2–NH3]+ half-

molecule. To generate the model systems in a first step a DMC simulation is run on a 10×10×10

unit cell simulation box, that introduces an energy penalty for neighbouring half Hg atoms that

are not paired correctly. The simulation uses periodic boundary conditions and has a zero-energy
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exit criterion; i.e. it creates a structure with no unmatched half-Hg atoms. From this structure,

a bigger 40 × 40 × 40 unit cell structure is then created by aligning 4 × 4 × 4 of the smaller

model structures. 50 model structures are then created using the three dimensional equivalent

of the ‘loop moves’ discussed above for the two-dimensional system. The sample structures were

created from the initial structure by performing between 5 000 and 10 000 consecutive random

loop moves.

The diffuse scattering is calculated using a fast Fourier transform for subsitutional disorder

as described in Ref. S 2. Instead of atomic form factors the analogue complex molecular form

factors for each of the six orientations were used. The molecular form factors were orientationally

averaged for the rotation of the NH3 group around the Hg–N bond. For the resampling of the

diffuse intensity in reciprocal space the Lanczos resampling approach is taken and the parameters

m = 2 and m′ = 6 are chosen. Therefore correlations that are beyond the second shell of

neighbours are suppressed in the calculation which is justified given the used interaction model.

The diffuse scattering was calculated for a volume defined by −4 ≤ h, k, l ≤ 4 on a grid of

161× 161× 161 voxels.

The diffuse X-ray scattering that we observe in Figure 2(b) of the main text for the hk 1
2 -

layer and the 2D toy model in the hk-layer strongly resembles the diffuse scattering in the hk0

layer observed for the procrystalline solid ‘D3’ in the notation of Overy et al. in Ref. S 3 and

the simulation of pure occupational order in BZN ((Bi3/2Zn1/2)(Zn1/2Nb3/2)O7) simulated by

Withers et al. in Ref. S 4. In fact, the diffraction patterns are related to each other by a 45◦

rotation. BZN shows the conventional cubic, A2B2O6O′ pyrochlore structure, where the O′A2

lattice forms a network of corner connected tetrahedra. Each of these tetrahedra contains three

Bi and one Zn atom, creating the strict local ordering rule of the procrystalline solid ‘D3’. The

hk0 plane of diffuse scattering of these systems corresponds to a projection of the structure

along the z-axis which is shown on the left of Figure S1. The local ordering rule then implies

that two neighbouring tetrahedra are connected by sharing a Bi atom (one possible ordering

scheme is indicated by the red lines). This ordering scheme is identical to the ordering scheme

in our two-dimensional structural analogue (except for small form factor effects), if rotated by

45◦ as shown on the right of Figure S1. Hence, we expect the diffuse scattering to show identical

patterns, related by the same 45◦ rotation.

We observe the same diffuse scattering in the hk 1
2 -layer of our three-dimensional parent
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Figure S1: Projection of the O′A2 tetrahedra of the pyrochlore structure along the z-axis (left)

compared to our two-dimensional structural anaogue (right). The red line correspond to one real-

ization of the strict local ordering rule that connects neighbouring tetrahera by sharing one Bi atom

or connects the half Hg atoms in our toy model.

b

ac

v

v

structure. The hk0 layer corresponds to a projection of the structure along the z-axis. For

our system those [Hg1/2–NH3]+ with their axis along z are projected onto a single tile, which

essentially corresponds to adding an additional tile to our 2D model consisting of a single atom

in the centre.

The diffuse scattering in our model system is driven by the forbidden local 〈12 , 1
2 , 0〉 distances.

For X-ray scattering the Hg occupation dominates the diffuse scattering and the uniform diffuse

Laue scattering is modulated by a function that is proportional to

cos(π(h+ k)) + cos(π(h− k)) + cos(π(h+ l)) + cos(π(h− l)) + cos(π(k+ l)) + cos(π(k− l)), (1)

where the argument of the cosine function contains the product of the reciprocal space vector

h and the forbidden Hg-Hg vectors. This expression can be transformed to give

2 cos(πh) cos(πk) + 2 cos(πh) cos(πl) + 2 cos(πk) cos(πl). (2)

For the case that l = 1
2 , we have cos(πl) = 0 and the expression reduces to

2 cos(πh) cos(πk), (3)

which is identical to the function that modulated the diffuse Laue-scattering of our two-

dimensional model system, where 〈12 , 1
2〉 Hg-Hg vectors are forbidden. Hence, the disorder diffuse
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X-ray scattering in the hk 1
2 -layer of the three-dimensional parent structure and the hk-layer of

the two-dimensional toy-model are generated by the same modulation of the diffuse Laue in-

tensity. Therefore, the hk 1
2 -layer of the three-dimensional parent structure also resembles the

simulation of pure occupational order in BZN as simulated by Withers et al. in Ref. S4.
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2 2D Model System Refinement Details

Details of the mean-field refinement

The pair-interaction Hamiltonian of Equation (9) of the main text has to be Fourier transformed

for the mean-field approach:

J
(1,0)

(h, k) = j


e+2πih e+2πih 0 e+2πih

0 0 e+2πih 0

0 0 e+2πih 0

0 0 e+2πih 0

 . (4)

The pair-interaction Hamiltonians for the (−1, 0), (0, 1) and (0,−1) directions result from

symmetry considerations. This results in the complete Fourier transformed pair-interaction

Hamiltonian J(h, k):

J(h, k) = j


e+2πih + e−2πih e+2πih + e−2πik 0 e+2πih + e+2πik

e−2πih + e+2πik e+2πik + e−2πik e+2πih + e+2πik 0

0 e−i2πh + e−2πik e+i2πh + e−2πih e−i2πh + e+2πik

e−i2πh + e−2πik 0 e+i2πh + e−2πik e+i2πk + e−2πik

 . (5)

The refinement algorithm uses Equation (4) of the main text to calculate the diffuse scat-

tering intensity I(h, k) for a given j and the interaction matrix as stated in Equation (2). The

derivatives that are involved in the least-squares refinement were calculated numerically by

increasing j by 1%. The scale factor γ can be analytically calculated as:

γ =

∑
h,k Iexp(h, k)× I(h, k)∑

h,k I(h, k)2
. (6)

Model-agnostic mean-field refinement

The average symmetry of the system constrains the pair interactions: symmetry equivalent

configurations should yield the same energy penalty or gain. For the (1, 0)-neighbours the

following relations can be derived:
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j11 = j33, (7)

j21 = j32 = j34 = j41, (8)

j12 = j14 = j23 = j43, (9)

j24 = j42, (10)

j22 = j44. (11)

Figure S2: Neutron and X-ray diffuse scattering as calculated from the mean-field refinement with

j13 only is identical the the refinement shown in Figure 3 of the main text.

-4 4h

hk

X-ray

-4

4

-4 4h

k

hk

Neutron

Table S1: Model-agnostic refinement of the mean-field model for the seven different symmetry-

independent jxy, as compared to that of j of Equation (9) of the main text.

j11 j12 j13 j21 j22 j24 j31 j

Neutron

R (%) 47.8(2) 47.9(0) 13.4(7) 47.5(2) 42.1(1) 47.4(3) 47.9(3) 13.4(7)

βjxx −0.48(7) 0.00(0) −3.50(1) 0.33(3) −0.98(4) −0.50(3) −0.09(6) 1.75(0)

γ 1.28(0) 0.98(0) 0.29(0) 1.27(0) 1.19(0) 1.24(0) 1.29(0) 0.29(5)

X-ray

R (%) 27.2(5) 24.5(5) 14.6(1) 30.4(5) 26.0(5) 29.5(3) 25.7(8) 14.6(9)

βjxx −0.39(2) 0.39(1) −3.23(2) −0.16(5) −0.57(3) 0.48(5) 1.09(5) 1.62(1)

γ 1.90(0) 1.59(0) 0.42(1) 1.79(0) 1.74(0) 1.85(0) 1.75(0) 0.43(1)
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These equivalences result in the universal form of J
(1,0)

as given in Equation 10 of the main

text. The full parameters for each of the refinements are listed in Table S1. The neutron and

X-ray diffuse scattering of the refinement with j13 only are shown in Figure S2.

The eigenvalues of Equation (5) of the main text are what drives the modulation in the

diffuse scattering. They can be calculated analytically for the different cases shown here. This

will be used here to illustrate that in fact the Hamiltonian of Equation (9) of the main text

and the refinement with j13 are equivalent. To substantiate this point we note first that the

eigenvalues for MJ(h, k) for Equation (9) of the main text are given as

0,− j
2
,
j

2
,
j

8
[exp(−2πih) + exp(2πih) + exp(−2πik) + exp(2πik)] . (12)

Similarly, the eigenvalues for the refinement with j13 are given as

0,
j13

4
,−j13

4
,−j13

16
[exp(2πi(2h+ k)) + exp(2πi(h+ 2k)) + exp(2πi(3h+ 2k)) + exp(2πi(2h+ 3k))] .

(13)

Hence the first three eigenvalues are identical for j13 = −2j and have identical eigenvectors,

while for the fourth eigenvalue that differs, the difference in the associated eigenvectors yields

an identical expression for Equation (5) of the main text. These equations also establish the

stability criterion in accordance with Equations (7) and (8) of the main text as

− 2 ≤ βj ≤ 2 (14)

and

− 4 ≤ βj13 ≤ 4, (15)

which are fulfilled by the refinements listed in Table S1.

Pair correlations for Warren–Cowley analysis

The Warren–Cowley refinement uses the first neighbour pair correlations only. The average

symmetry of the system constrains the pair correlations for the (1, 0)-neighbours in an identical

way to the relations established for the pair-interaction parameters in Equations (4)-(8). With

the constraint of the average structure—that each ‘tile’ is present in 25% of cases—this leads

to four symmetry-inequivalent pair-correlations that need to be refined. The refinements were

performed using the build-in fminsearch function in Matlab, introducing a penalty for pair-

correlations that are not in the range between 0 and 0.25. The refinement results are given
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in Table S2 along with the III → I probability that determines the percentage of correctly

matched bonds.

Table S2: Warren–Cowley-refined (1, 0) first neighbour pair correlations for X-ray and neutron

scattering in the two-dimensional model system. A pair-probability of 6.25% corresponds to random

disorder, while 25% corresponds to perfect order.

pair Neutron X-ray

I → I 2.56(5)% 5.6(9)%

I → II 6.66(12)% 7.9(4)%

II → I 2.67(6)% 0.1(3)%

II → II 16.6(3)% 15.4(16)%

III → I 21.90(12)% 19.2(14)%

Pair correlations for the RMC analysis

The symmetry-averaged pair probabilities from the RMC analysis are listed in Table S3 and

represented graphically in Figure S3.

Figure S3: Symmetry-averaged correlations of the RMC analysis. The occupation of the mercury

is depicted indicated by the grey scale shown on the right. (a) Neutron. (b) X-ray.
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Table S3: Symmetry-averaged pair probabilities from the RMC analysis for the two-dimensional

model system. A pair probability of 0.25 corresponds to a completely uncorrelated pair.

Neutron X-ray

I→I I→II I→III I→IV I→I I→II I→III I→IV

2̄2̄ 0.256(2) 0.245(1) 0.244(1) 0.256(1) 0.255(2) 0.248(2) 0.240(0) 0.257(2)

2̄1̄ 0.260(2) 0.278(1) 0.218(1) 0.244(1) 0.268(2) 0.262(1) 0.215(0) 0.255(2)

2̄0 0.308(2) 0.285(1) 0.121(1) 0.286(1) 0.305(1) 0.264(1) 0.166(1) 0.264(2)

2̄1 0.260(2) 0.244(1) 0.218(2) 0.278(1) 0.268(2) 0.256(2) 0.214(1) 0.262(1)

2̄2 0.255(1) 0.256(1) 0.244(0) 0.245(1) 0.255(1) 0.256(1) 0.241(0) 0.248(2)

1̄2̄ 0.242(1) 0.278(1) 0.242(0) 0.238(0) 0.239(1) 0.262(1) 0.257(0) 0.242(2)

1̄1̄ 0.211(1) 0.108(1) 0.397(0) 0.285(2) 0.219(1) 0.125(1) 0.343(1) 0.313(1)

1̄0 0.089(1) 0.076(0) 0.758(1) 0.077(0) 0.249(2) 0.193(1) 0.369(1) 0.190(1)

1̄1 0.210(2) 0.285(1) 0.397(0) 0.108(1) 0.219(1) 0.314(1) 0.343(2) 0.125(1)

1̄2 0.242(1) 0.238(2) 0.243(1) 0.278(1) 0.238(1) 0.241(2) 0.258(1) 0.262(1)

02̄ 0.244(1) 0.286(1) 0.237(1) 0.234(1) 0.256(0) 0.264(2) 0.243(3) 0.237(2)

01̄ 0.417(1) 0.077(0) 0.212(2) 0.295(0) 0.299(1) 0.190(1) 0.251(1) 0.261(1)

00 1.000(0) 0.000(0) 0.000(0) 0.000(0) 1.000(0) 0.000(0) 0.000(0) 0.000(0)

01 0.417(1) 0.295(1) 0.212(1) 0.076(0) 0.299(1) 0.261(1) 0.248(0) 0.193(1)

02 0.244(1) 0.234(0) 0.237(1) 0.285(1) 0.256(0) 0.237(1) 0.243(1) 0.264(1)

12̄ 0.242(1) 0.244(1) 0.258(1) 0.257(1) 0.238(1) 0.255(2) 0.255(1) 0.252(1)

11̄ 0.210(2) 0.285(2) 0.261(1) 0.244(2) 0.219(1) 0.313(1) 0.247(0) 0.221(2)

10 0.089(1) 0.295(0) 0.321(2) 0.295(1) 0.249(2) 0.261(1) 0.229(2) 0.261(1)

11 0.211(1) 0.244(2) 0.261(1) 0.285(1) 0.219(1) 0.221(2) 0.246(0) 0.314(1)

12 0.242(1) 0.257(1) 0.258(1) 0.244(1) 0.239(1) 0.251(2) 0.254(1) 0.256(2)

22̄ 0.255(1) 0.256(1) 0.244(1) 0.245(0) 0.255(1) 0.257(2) 0.245(0) 0.243(1)

22̄ 0.260(2) 0.238(0) 0.245(0) 0.257(1) 0.268(2) 0.242(2) 0.238(1) 0.251(2)

20 0.308(2) 0.234(1) 0.223(0) 0.234(0) 0.305(1) 0.237(2) 0.221(0) 0.237(1)

21 0.260(2) 0.257(1) 0.246(1) 0.238(2) 0.268(2) 0.252(1) 0.238(0) 0.241(2)

22 0.256(2) 0.245(0) 0.244(1) 0.256(1) 0.255(2) 0.243(1) 0.245(1) 0.256(1)
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Refinement times

The mean-field refinement and the Warren–Cowley refinement both use a least squares algorithm

and hence the total refinement times, which include necessary setup calculations, as well as the

calculation times per refinement cycle can be compared (see Table S4). Due to the short observed

refinement times our mean-field code was not heavily optimized for computation times. For the

RMC refinement, the observed refinement times were larger and the code was optimized for

faster calculations. In Table S4 we report the refinement time per RMC move as compared to

refinement time per cycle for the two other approaches. In all cases the refinement time was

shortest for the mean-field refinement.

Possible finite size effects

In two dimensional systems finite size effects can be significant even for ostensibly large super-

cells. In our model analysis we used 100 × 100 unit cells. To exclude the possibility of finite

size effects affecting the observed interactions and correlations in our analysis, we simulated

one system of 400 × 400 unit cells and a further system of 1000 × 1000 unit cells. For these

two different configuration sizes, we generated starting configurations by aligning either 4 × 4

or 10× 10 copies of our smaller systems, and then introduced additional disorder by running a

large number of loop moves on the resulting configuration (several times the number of tiles per

system). The resulting 2D diffuse X-ray scattering and 2D-∆PDF are shown in Figure S4 and

do not show any significant differences. From this observation we conclude that the correlations

we observe in our model data are not affected by possible finite size effects.

Table S4: Total refinement times, including setup calculations, and refinement times per cycle for

Warren–Cowley and mean filed refinement, and the refinement time per move for the RMC refinement

for the 2D toy model system.

mean-field Warren–Cowley RMC

Neutron X-ray Neutron X-ray Neutron X-ray

Total time (s) 0.35 13.89 12.39 15.48 27.17 27.79

Time per cycle/move (s) 0.09 0.09 0.06 0.06 0.005 0.005
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Figure S4: Evaluation of possible finite size effects for the two dimensional toy system. The diffuse

X-ray scattering (top row) and the resulting 2D-∆PDFs (bottom row) are compared to each other

for a system size of 100 × 100 unit cells (left), 400 × 400 unit cells (middle) and 1000 × 1000 unit

cells (right).
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3 3D Model System

Pair-interaction Hamiltonian

In the three-dimensional system, there are six possible orientations of the [Hg1/2(NH3)]+ half-

molecule. We denote as orientation I the half Hg at (1, 0.5, 0.5), orientation II the half Hg at

(0, 0.5, 0.5), orientation III the half Hg at (0.5, 1, 0.5), orientation IV the half Hg at (0.5, 0, 0.5),

orientation V the half Hg at (0.5, 0.5, 1) and orientation V I the half Hg at (0.5, 0.5, 0). As for

Equation (8) in the main text this results in the pair-interaction Hamiltonian for the (1,0,0)

direction:

J
(1,0,0)

=



j 0 j j j j

0 j 0 0 0 0

0 j 0 0 0 0

0 j 0 0 0 0

0 j 0 0 0 0

0 j 0 0 0 0


. (16)

The corresponding pair-interaction Hamiltonians for the (−1, 0, 0), (0,±1, 0) and (0, 0,±1)

directions are related by symmetry. Evaluating the mean-field stability criteria of Equation (8)

and (9) of the main text yields

− 3 ≤ βj ≤ 3, (17)

which is fulfilled by the parameters in our refinement (2.518(3) (neutron) and 2.959(10) (X-ray)).

Model-agnostic refinement

For the model-agnostic refinement we need to consider which elements of the pair-interaction

Hamiltonian are symmetry equivalent. From symmetry and the nomenclature established in the

previous paragraph we derive:
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j11 = j22 (18)

j33 = j44 = j55 = j66 (19)

j13 = j14 = j15 = j16 = j32 = j42 = j52 = j62 (20)

j23 = j24 = j25 = j26 = j31 = j41 = j51 = j61 (21)

j34 = j43 = j56 = j65 (22)

j35 = j36 = j45 = j46 = j53 = j54 = j63 = j64. (23)

These equivalences bring us to the pair-interaction Hamiltonian in the most general form:

J
(1,0,0)

=



j11 j12 j13 j13 j13 j13

j21 j11 j23 j23 j23 j23

j23 j13 j33 j34 j35 j35

j23 j13 j34 j33 j35 j35

j23 j13 j35 j35 j33 j34

j23 j13 j35 j35 j34 j33


. (24)

For the model-agnostic refinement the resulting parameters are listed in Table S5.

Table S5: Model-agnostic refinement of the mean-field model for the eight different symmetry-

independent jxy for the 3D sample system.

j11 j12 j13 j21 j23 j33 j34 j35

Neutron

R (%) 27.3(0) 6.8(2) 23.5(1) 26.9(0) 27.2(0) 26.8(1) 26.8(0) 27.2(0)

βjxx −0.12(1) −5.00(0) 0.59(4) 0.59(3) 0.27(2) −0.22(11) 0.36(2) −0.23(2)

γ 1.17(0) 0.24(0) 1.00(0) 1.16(0) 1.15(0) 1.16(0) 1.16(1) 1.14(1)

X-ray

R (%) 18.4(2) 7.0(2) 15.7(1) 21.0(1) 22.2(1) 21.3(1) 22.6(1) 22.5(1)

βjxx −0.85(12) −4.91(0) 0.58(6) 1.26(4) 0.27(2) −0.30(1) 0.26(2) 8.23(0)

γ 8.30(11) 1.71(0) 6.66(1) 7.97(2) 8.24(2) 8.13(0) -0.19(2) 8.08(2)
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DMC simulation driven with the mean-field parameter

As for the 2D case we have driven a DMC simulation with the refined interaction parameter from

the mean-field analysis βj = 2.518 at a Monte Carlo temperature of 1. We used a simulation

box of 40 × 40 × 40 unit cells and the resulting configuration correctly matches 98.66% of the

tiles.

Warren–Cowley refinement

The diffuse scattering data as refined with the Warren–Cowley approach is compared to the

model data in Figure S5. As for the two-dimensional model system the average symmetry

dictates most of the pair-correlations and the refined five independent pair-probabilities for the

(1, 0, 0) neighbours are listed in Table S6. The refinement resulted in R =11.1(7)% for neutron

and R =8.7(4)% for X-ray scattering.

RMC analysis

The RMC analysis uses the same fast Fourier approach for the data calculation as described

above with the same rotational averaging of the molecular form factors. The simulation size of

the RMC box is 6 × 6 × 6 unit cells, due to the smaller system size m′ = 4 is chosen for the

Lanczos resampling. To save computational time the diffuse scattering for the RMC simulation

was calculated on a grid of 161×161×81 voxels for −4 ≤ h, k ≤ 4 and −4 ≤ l ≤ 0. This volume

still represents the full cubic symmetry, as only parts of reciprocal space are omitted that are

Table S6: Warren–Cowley-refined first neighbour (1, 0, 0) pair correlations for X-ray and neutron

scattering. 2.8% corresponds to complete random disorder, while 16.6% corresponds to complete

order.

pair Neutron X-ray

I → I 0.43(26)% 2.54(59)%

I → II 16.14(62)% 13.96(115)%

II → I 2.45(98)% 1.04(62)%

III → III 4.20(18)% 3.49(24)%

III → IV 2.32(31)% 2.64(15)%
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Figure S5: Neutron (a) and X-ray (b) diffuse scattering in selected layers for Hg(NH3)2Cl2. Top

half data as simulated from the model system, bottom half Warren–Cowley refinement.
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Figure S6: Neutron (a) and X-ray (b) diffuse scattering in selected layers for Hg(NH3)2Cl2. Top half

data as simulated from the model system, bottom half symmetry-averaged result of RMC refinement.
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redundant by centro-symmetry.

The RMC simulation was allowed to probe 4320 moves per simulation box which resulted

in R-vales of 16.1(2)% before and 15.3(2)% after symmetry averaging for neutron and 8.31(3)%

before and 7.36(3)% after symmetry averaging for X-ray scattering. The symmetry-averaged

diffuse scattering for a sample refinement is shown in Figure S6.

The resulting symmetry-averaged pair-probabilities for the first shells of neighbours are listed

in Table S7 for neutron and in Table S8 for X-ray diffuse scattering. The pair-probabilities, which

are not listed, can be derived by symmetry relations.
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Table S7: Symmetry-averaged pair probabilities from the RMC analysis for the three-dimensional

model system for neutron diffuse scattering. A pair probability of 0.166 corresponds to a completely

uncorrelated pair.

vector I→I I→II I→III I→IV I→V I→VI

2̄00 0.124(7) 0.188(4) 0.172(6) 0.172(6) 0.172(6) 0.172(6)

2̄10 0.164(7) 0.164(4) 0.162(7) 0.170(6) 0.169(6) 0.172(6)

2̄11 0.171(4) 0.156(5) 0.169(6) 0.170(5) 0.165(5) 0.168(4)

2̄21̄ 0.160(6) 0.166(5) 0.169(7) 0.166(4) 0.169(5) 0.171(6)

2̄20 0.171(7) 0.165(7) 0.165(6) 0.164(7) 0.167(6) 0.167(6)

2̄21 0.160(6) 0.166(5) 0.166(6) 0.170(5) 0.169(6) 0.168(4)

2̄22 0.166(5) 0.167(5) 0.164(5) 0.169(5) 0.165(5) 0.169(6)

1̄00 0.064(4) 0.118(7) 0.204(5) 0.204(5) 0.204(5) 0.204(5)

1̄10 0.154(4) 0.159(5) 0.160(6) 0.223(5) 0.151(5) 0.152(5)

1̄11 0.165(5) 0.172(4) 0.170(4) 0.159(5) 0.178(5) 0.157(5)

1̄21̄ 0.164(8) 0.159(6) 0.165(5) 0.175(5) 0.172(6) 0.164(7)

1̄20 0.159(7) 0.170(6) 0.162(7) 0.165(6) 0.172(8) 0.173(5)

1̄21 0.165(6) 0.159(6) 0.169(6) 0.170(6) 0.165(5) 0.172(7)

1̄22 0.163(4) 0.165(3) 0.171(6) 0.166(6) 0.169(6) 0.166(6)

000 1.000(0) 0.000(0) 0.000(0) 0.000(0) 0.000(0) 0.000(0)

010 0.224(4) 0.152(5) 0.204(5) 0.028(3) 0.195(5) 0.197(4)

011 0.153(4) 0.162(5) 0.152(5) 0.191(5) 0.151(5) 0.190(4)

021̄ 0.180(8) 0.164(7) 0.169(6) 0.153(5) 0.162(6) 0.173(5)

020 0.143(6) 0.162(5) 0.172(6) 0.195(5) 0.162(4) 0.165(6)

021 0.177(7) 0.164(7) 0.172(6) 0.156(4) 0.172(8) 0.158(6)

022 0.158(6) 0.164(3) 0.167(6) 0.172(5) 0.167(6) 0.171(7)

100 0.064(4) 0.822(3) 0.028(3) 0.028(3) 0.028(3) 0.028(3)

110 0.154(4) 0.228(3) 0.223(5) 0.014(2) 0.191(5) 0.190(4)

111 0.165(5) 0.153(4) 0.157(5) 0.183(5) 0.159(5) 0.183(5)

121̄ 0.164(8) 0.179(8) 0.170(5) 0.162(4) 0.154(5) 0.172(7)

120 0.159(7) 0.144(6) 0.170(6) 0.208(5) 0.162(6) 0.158(6)

121 0.165(6) 0.179(8) 0.168(4) 0.157(5) 0.172(6) 0.158(4)

122 0.163(4) 0.158(7) 0.168(4) 0.170(6) 0.169(5) 0.171(6)

200 0.124(7) 0.098(3) 0.195(5) 0.195(5) 0.195(5) 0.195(5)

210 0.164(7) 0.154(4) 0.165(6) 0.208(5) 0.156(4) 0.153(5)

211 0.171(4) 0.165(4) 0.175(5) 0.157(5) 0.170(6) 0.162(4)

221̄ 0.160(6) 0.164(7) 0.170(5) 0.170(7) 0.170(6) 0.166(6)

220 0.171(7) 0.153(6) 0.164(7) 0.169(6) 0.172(5) 0.171(7)

221 0.160(6) 0.164(7) 0.166(4) 0.172(6) 0.166(6) 0.171(6)

222 0.166(5) 0.163(5) 0.169(6) 0.167(5) 0.169(5) 0.167(6)

S18



Table S8: Symmetry-averaged pair probabilities from the RMC analysis for the three-dimensional

model system for X-ray diffuse scattering. A pair probability of 0.166 corresponds to a completely

uncorrelated pair.

vector I→I I→II I→III I→IV I→V I→VI

2̄00 0.119(6) 0.158(5) 0.181(5) 0.181(5) 0.181(5) 0.181(5)

2̄10 0.167(8) 0.160(4) 0.159(6) 0.180(7) 0.166(6) 0.168(8)

2̄11 0.174(9) 0.158(7) 0.165(6) 0.166(6) 0.167(5) 0.170(6)

2̄21̄ 0.161(7) 0.166(7) 0.169(5) 0.168(8) 0.168(5) 0.167(6)

2̄20 0.170(7) 0.164(6) 0.165(4) 0.164(5) 0.168(5) 0.169(6)

2̄21 0.163(5) 0.166(7) 0.166(5) 0.166(6) 0.167(7) 0.173(7)

2̄22 0.167(7) 0.166(7) 0.168(6) 0.166(6) 0.163(6) 0.168(7)

1̄00 0.320(11) 0.037(2) 0.161(5) 0.161(5) 0.161(5) 0.161(5)

1̄10 0.165(6) 0.155(4) 0.141(5) 0.240(7) 0.148(7) 0.151(7)

1̄11 0.169(8) 0.169(5) 0.171(7) 0.158(5) 0.174(5) 0.160(6)

1̄21̄ 0.168(7) 0.160(7) 0.167(5) 0.170(7) 0.171(7) 0.164(8)

1̄20 0.160(7) 0.166(7) 0.159(6) 0.174(5) 0.170(5) 0.171(6)

1̄21 0.169(7) 0.160(7) 0.165(6) 0.167(6) 0.163(3) 0.176(7)

1̄22 0.164(7) 0.169(5) 0.167(6) 0.165(6) 0.167(7) 0.168(7)

000 1.000(0) 0.000(0) 0.000(0) 0.000(0) 0.000(0) 0.000(0)

010 0.147(4) 0.190(4) 0.161(5) 0.116(6) 0.191(8) 0.195(7)

011 0.154(8) 0.164(5) 0.151(7) 0.190(6) 0.148(7) 0.192(6)

021̄ 0.178(7) 0.168(8) 0.166(6) 0.162(5) 0.156(6) 0.171(6)

020 0.151(8) 0.170(8) 0.181(5) 0.179(6) 0.159(4) 0.159(6)

021 0.180(6) 0.168(8) 0.168(8) 0.157(6) 0.170(5) 0.157(7)

022 0.155(5) 0.166(5) 0.169(6) 0.171(7) 0.168(5) 0.171(6)

100 0.320(1) 0.214(3) 0.116(6) 0.116(6) 0.116(6) 0.116(6)

110 0.165(6) 0.175(5) 0.240(7) 0.037(4) 0.190(6) 0.192(6)

111 0.169(8) 0.160(5) 0.160(6) 0.175(7) 0.158(5) 0.178(4)

121̄ 0.168(7) 0.186(7) 0.166(6) 0.159(6) 0.146(5) 0.176(7)

120 0.160(7) 0.156(6) 0.180(7) 0.191(5) 0.156(6) 0.157(7)

121 0.169(7) 0.186(7) 0.170(6) 0.161(6) 0.171(7) 0.143(5)

122 0.164(7) 0.157(7) 0.173(7) 0.170(7) 0.168(5) 0.169(7)

200 0.119(6) 0.164(7) 0.179(6) 0.179(6) 0.179(6) 0.179(6)

210 0.167(8) 0.149(3) 0.174(5) 0.191(5) 0.157(6) 0.162(5)

211 0.174(9) 0.170(6) 0.170(7) 0.161(6) 0.167(6) 0.159(6)

221̄ 0.161(7) 0.169(7) 0.166(6) 0.166(4) 0.170(7) 0.168(7)

220 0.170(7) 0.149(5) 0.164(5) 0.176(5) 0.171(7) 0.171(6)

221 0.163(5) 0.169(7) 0.168(8) 0.166(5) 0.165(6) 0.169(7)
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Refinement times

As for the two-dimensional toy system, we report the total refinement times, including setup

calculations, and refinement times per cycle for the Warren–Cowley and mean filed refinement,

and the refinement time per move for the RMC refinement in Table S9.

Table S9: Total refinement times, including setup calculations, and refinement times per cycle for

Warren–Cowley and mean filed refinement, and the refinement time per move for the RMC refinement

for the 3D system.

mean-field Warren–Cowley RMC

Neutron X-ray Neutron X-ray Neutron X-ray

Total time (s) 517.4 636.0 2377.7 1208.4 3822.2 4647.2

Time per cycle/move (s) 4.23 4.16 3.42 3.52 0.87 1.11
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4 Stability against missing data

Supplementary data for the 2D model system

Mean-field refinement

The mean-field refinement yielded the parameters as shown in Table S10. For both X-ray and

neutron scattering data, the mean-field refinement gives very similar results to the complete data

set refinement when fitting only a 10 degree wedge of the data or punching the data around

the Bragg reflections. The refinement for the one-dimensional h0-cut is less stable and leads to

larger uncertainties in the refinement.

Table S10: Parameters of the mean-field analysis in the two-dimensional model system with limited

data ranges. R-values are only evaluated on the given section of the data. The missing data input

is shown in Figure 7 of the main text.

neutron X-ray

Bragg h0 10 Deg. Bragg h0 10 Deg.

βj 1.669(6) 1.3(5) 1.527(12) 1.54(10) 0.4(5) 0.9(2)

Scale 3.83(6) 9(3) 5.3(12) 5.2(11) 20.0(10) 13(10)

R (%) 16.4(9) 11(6) 14(7) 19.6(11) 14(2) 21.5(9)

RMC refinement

The resulting correlations of the RMC analysis with missing data are visualized in Figure S7

with the same colour scale as used in Figure 3(c) of the main text. The correlations clearly show

that the RMC approach fails to identify the local ordering principle for all attempts for the

X-ray scattering, while for neutron scattering it seems to be relatively robust against missing

data around the Bragg reflections.

S21



Figure S7: Symmetry-averaged correlations of the RMC analysis with missing data. The occupation

of the mercury is depicted indicated by the identical grey scale to Figure 3 of the main text and the

input data is the same as shown in Figure 7 of the main text. (a,c,d) Neutron. (b,e,f) X-ray.
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Warren–Cowley refinement

The pair-probabilities as refined by the Warren–Cowley approach are listed in Table S11. In

a similar fashion to the mean-field refinement, the Warren–Cowley approach can identify the

dominating local pair correlation. The resulting R-values are also listed in Table S11.

Table S11: Warren–Cowley refined first neighbour (1, 0) pair correlations for neutron and X-ray

scattering and missing data sets. The last row gives the resulting R-values of the refinements.

Neutron X-ray

pair Bragg 10deg 1D Bragg 10deg 1D

I → I 2.36(12)% 5.12(99)% 5.85(307)% 2.67(83)% 4.17(17)% 1.22(19)%

I → II 6.77(07)% 7.34(18)% 8.01(389)% 9.40(79)% 7.29(22)% 8.05(18)%

II → I 0.47(03)% 0.02(13)% 0.02(5)% 0.37(19)% 0.01(7)% 3.91(12)%

II → II 17.19(31)% 10.22(105)% 8.73(182)% 15.50(82)% 15.51(55)% 3.53(21)%

III → I 21.68(1)% 19.839(118)% 19.11(305)% 22.24(96)% 20.80(23)% 17.04(27)%

R 22.72(2)% 11.5(4)% 11.1(4)% 12.6(6)% 13.1(5)% 5.9(5)%

Model-agnostic refinement for 2D missing data

For the two-dimensional system and the restricted data input it was also tried to run the model-

agnostic refinement. The results are presented in Figure S8. For all situations that are presented

the fit with j13 yields significantly better results than with the other jxy. Hence, even with

severely limited data coverage the mean-field approach is still capable of identifying the correct

pair-interaction model.
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Figure S8: Model-agnostic refinement for the two-dimensional models system and missing data

input. The labels of the interaction parameters jxy correspond to the labels of Equation (10) of the

main text. Neutron (N) scattering in blue, X-ray (X) scattering in magenta.

j11 j12 j13 j21 j22 j24 j31
0%

R

50%
N Bragg
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Missing data in 3D refinements

In a very similar fashion to the 2D refinements with missing data discussed in the main text,

the 3D data were refined with the mean-field approach and the pair-interaction Hamiltonian in

Equation 16. Four different situations were tested:

1. A chunk around the Bragg reflections was missing.

2. A 10 degree cone was taken out of the data.

3. Only the hk0-layer was provided.

4. Only the hk0.5-layer was provided.

The results for this refinement approach are listed in Table S12. The results reproduce the

results from the two-dimensional model system: The mean-field approach is able to reliably

fit the interaction model, even when the data is restricted to one layer in reciprocal space.

This suggests that the approach as presented here could e. g. be exploited to analyse zone axis

patterns from electron diffraction experiments.
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Table S12: R-values, βj and γ refined with the mean-field approach and the pair-interaction

Hamiltonian in Equation 16 for the three dimensional case with missing data.

Neutron X-ray

R (%) βj γ R (%) βj γ

Bragg 6.77(22) 2.52(3) 2.43(1) 6.48(23) 2.45(0) 2.77(2)

10 deg cone 6.98(20) 2.60(6) 2.10(3) 7.17(3) 2.47(0) 2.78(0)

hk0-layer 6.20(33) 3.39(1) 2.17(0) 4.45(40) 2.12(1) 4.66(1)

hk0.5-layer 8.86(45) 2.63(0) 1.78(2) 8.76(43) 2.52(1) 2.32(4)
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F. J. (2004) J. Solid State Chem. 177, 231-244.

S25


	ro5031coversheet.word_sup_1
	ro5031sup2
	Generation of model data
	2D System
	3D System

	2D Model System Refinement Details
	Details of the mean-field refinement
	Model-agnostic mean-field refinement
	Pair correlations for Warren–Cowley analysis
	Pair correlations for the RMC analysis
	Refinement times
	Possible finite size effects

	3D Model System
	Pair-interaction Hamiltonian
	Model-agnostic refinement
	DMC simulation driven with the mean-field parameter
	Warren–Cowley refinement
	RMC analysis
	Refinement times

	Stability against missing data
	Supplementary data for the 2D model system
	Model-agnostic refinement for 2D missing data
	Missing data in 3D refinements

	References


