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Chapter S1

Methods

S1.1 X-ray data collection
Crystals used in the diffraction experiments were primarily obtained by recrystal-
lization from dichloromethane and n-pentane mixture, yielding clear large yellow
prism-like blocks, with well-formed faces (see Figure S1.2).

Figure S1.1: Labeling scheme of 2◦AP molecule. Hydrogen atoms inherit label
after closest carbon atom. Due to a presence of additional mirror plane, polymorph
α utilizes only labels from top half of the Figure (O1, C1–7, C14–18).
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Table S1.1: Refined component ratios, number of isolated and overlapping re-
flections, and twinning matrix for diffraction experiment performed on 2◦AP-δ in
20kbar. The second matrix corresponds to rotation by 180◦ around vector [1.00 0.00
-0.04] in reciprocal space or vector [1.00 0.00 0.01] in direct space, as given by
CrysAlisPro.

Twin
Refined

component
ratio

Isolated
reflections

Overlapped
reflections Twinning matrix

1 0.5769 9604 10301

 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000


2 0.4231 9494 10301

 0.9990 -0.0027 0.0098
-0.0002 -0.9984 -0.0008
-0.0749 0.0002 -1.0000



S4



Table S1.2: Orientation matrices and vectors perpendicular to diamond surface
(expressed in Cartesian x∗ and fractional h∗ coordinates) listed for all crystal sam-
ples utilized in performed diffraction experiments.

Experiment Orientation matrix DAC-perpendicular vector
—SERIES I—

2◦AP-α,
5kbar

 -0.07635 -0.00835 0.03859
-0.01825 -0.03679 -0.03154
0.06093 -0.02151 0.03894

 x∗ =
[
-0.76945 -0.19523 0.60813

]
h∗ =

[
-0.58863 -0.33777 0.73446

]
2◦AP-γ,
12kbar

 -0.07823 0.00800 -0.03858
-0.01892 0.03742 0.03142
0.06114 0.02192 -0.03954

 x∗ =
[
-0.77375 0.18281 -0.60654

]
h∗ =

[
-0.59277 0.32075 -0.73875

]
2◦AP-δ,
20kbar,
twin I

 -0.08263 0.00536 -0.03667
-0.01671 0.03679 0.03238
0.06030 0.02438 -0.04088

 x∗ =
[
-0.81009 0.12183 -0.57351

]
h∗ =

[
-0.61812 0.34213 -0.70772

]
2◦AP-δ,
20kbar,
twin II

 0.08251 0.01162 0.03675
0.01682 0.03807 -0.03236
-0.06016 0.01982 0.04088

 x∗ =
[

0.77660 0.26123 0.57328
]

h∗ =
[

0.60264 0.34529 0.71945
]

—SERIES II—

2◦AP-α,
8kbar

 -0.04669 -0.01341 -0.05278
-0.06775 0.03182 0.00693
0.05770 0.02683 -0.03458

 x∗ =
[
-0.46313 -0.30474 -0.83225

]
h∗ =

[
-0.29682 -0.44844 -0.84309

]
—SERIES III—

2◦AP-α,
2kbar

 -0.04052 -0.01815 0.05057
0.08389 0.00521 0.03170
-0.03042 0.03859 0.01964

 x∗ =
[
-0.41358 -0.42230 0.80661

]
h∗ =

[
-0.25313 -0.58984 0.76682

]
2◦AP-γ,
10kbar

 0.04235 0.01869 0.05118
-0.08640 -0.00538 0.03212
0.03067 -0.03949 0.01982

 x∗ =
[

0.41483 0.41941 0.80747
]

h∗ =
[

0.25098 0.58284 0.77286
]

2◦AP-γ,
13kbar

 0.04276 0.01883 0.05146
-0.08711 -0.00581 0.03217
0.03062 -0.03956 0.01943

 x∗ =
[

0.41289 0.41169 0.81242
]

h∗ =
[

0.24927 0.57539 0.77897
]
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Table S1.3: Data reduction and refinement details for 2◦AP-α.

Crystal data
Sum formula, Mr C20H14O2, 286.31
Crystal system orthorhombic
Symmetry information Pnma, Z=4, Z’=0.5
Crystal phase α α α α
Pressure \ GPa 0.00 0.25(10) 0.52(10) 0.78(10)
a \ Å 7.21024(18) 7.2462(11) 7.150(10) 7.0642(11)
b \ Å 16.4876(5) 16.536(3) 16.17(3) 16.220(2)
c \ Å 11.2792(3) 11.255(3) 11.288(9) 11.166(2)
γ \ ◦ 90 90 90 90
V \ Å3 1340.86(6) 1348.6(4) 1305(3) 1279.4(4)
Density \ g cm−3 1.418 1.410 1.457 1.486

Data collection
Temperature 100.00(11) 293.4(5) 295.4(6) 289(10)
Radiation type micro-focus sealed X-ray tube
Wavelength \ Å 0.71073 0.71073 0.71073 0.71073
Absorption correction Empirical multi-scan (SCALE3 ABSPACK)
µ \ mm−1 0.091 0.090 0.093 0.095
Tmin 0.816 0.01456 0.26651 0.07503
Tmax 1.000 1.00000 1.00000 1.00000
Diffractometer Rigaku Oxford Diffraction SuperNova
Resolution \ Å 0.5509 0.7248 0.7390 0.7392
Reflections: measured 77511 18918 13312 23014

independent 4492 1577 1409 1436
observed 2997 853 845 804

h range [−13, 13] [−9, 9] [−8, 8] [−9, 9]
k range [−30, 30] [−19, 22] [−21, 21] [−21, 21]
l range [−20, 20] [−13, 13] [−13, 12] [−13, 12]
Rint 0.0949 0.1567 0.0719 0.1095
Rsigma 0.0620 0.1159 0.0727 0.0971
Completeness to 0.83Å 99.8% 92.8% 91.8% 90.5%

Refinement
R1 0.0759 0.1329 0.0932 0.1350
R1 (I > 2σ) 0.0374 0.0547 0.0341 0.0561
wR2 0.0616 0.1352 0.0602 0.1529
wR2 (I > 2σ) 0.0554 0.1080 0.0487 0.1229
GooF 0.9394 1.0221 0.9283 1.0348
No. of parameters 172 129 173 129
No. of restraints 0 0 0 0
∆ρmax \ eÅ−3 0.4887 0.5950 0.3988 0.5899
∆ρmin \ eÅ−3 -0.5380 -0.7652 -0.3837 -0.5589
∆ρrms \ eÅ−3 0.1086 0.1352 0.0951 0.1343
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Table S1.4: Data reduction and refinement details for 2◦AP-γ and 2◦AP-δ.

Crystal data
Sum formula, Mr C20H14O2, 286.31
Crystal system orthorhombic monoclinic
Symmetry information Pn21a, Z=4, Z’=1 P1121/a, Z=4, Z’=1
Crystal phase γ γ γ δ
Pressure \ GPa 0.97(10) 1.16(10) 1.30(10) 2.03(10)
a \ Å 7.0300(9) 7.0202(15) 6.9714(16) 6.8697(19)
b \ Å 16.147(2) 16.0775(18) 16.139(5) 15.960(2)
c \ Å 11.1214(19) 11.1610(16) 11.072(3) 11.1099(18)
γ \ ◦ 90 90 90 95.074(17)
V \ Å3 1262.4(3) 1259.7(4) 1245.7(6) 1205.8(15)
Density \ g cm−3 1.506 1.510 1.527 1.567

Data collection
Temperature 293(2) 295.4(9) 294(2) 295.4(4)
Radiation type micro-focus sealed X-ray tube
Wavelength \ Å 0.71073 0.71073 0.71073 0.71073
Absorption correction Empirical multi-scan (SCALE3 ABSPACK)
µ \ mm−1 0.096 0.096 0.098 0.100
Tmin 0.06286 0.08017 0.35833 0.50558
Tmax 1.00000 1.00000 1.00000 1.00000
Diffractometer Rigaku Oxford Diffraction SuperNova
Resolution \ Å 0.7170 0.7400 0.7134 0.7356
Reflections: measured 32750 20057 29293 28843

independent 3030 2639 2962 4304
observed 1829 1520 1503 1532

h range [−9, 9] [−8, 7] [−9, 9] [−8, 8]
k range [−21, 21] [−14, 14] [−13, 13] [−21, 21]
l range [−13, 13] [−21, 20] [−21, 21] [−14, 14]
Rint 0.1033 0.1248 0.1402 0.1529
Rsigma 0.1039 0.1233 0.1468 0.2781
Completeness to 0.83Å 93.4% 93.0% 93.3% 92.5%

Refinement
R1 0.1323 0.1502 0.1895 0.2303
R1 (I > 2σ) 0.0652 0.0753 0.0895 0.0813
wR2 0.1616 0.1997 0.2627 0.1843
wR2 (I > 2σ) 0.1388 0.1626 0.2190 0.1556
GooF 1.022 0.992 1.007 0.868
No. of parameters 202 202 202 203
No. of restraints 1 1 1 0
∆ρmax \ eÅ−3 0.245 0.276 0.347 0.282
∆ρmin \ eÅ−3 -0.259 -0.339 -0.339 -0.297
∆ρrms \ eÅ−3 0.058 0.076 0.072 0.074
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a) b)

c)

Figure S1.2: Crystal specimen of 2◦AP-α used in 3rd series of HP experiments,
a) without and b) with its faces highlighted. c) A potency heatmap for 2◦AP-α/γ from
main text, with orientations corresponding to highlighted faces marked using large
symbols. Orientations achieved in 3rd series of experiments, marked with rhombi �,
lie between {100} and {011} on the map. Such placement required balancing the
crystal on the edge connecting faces (100) and (011) using epoxy glue.
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S1.2 Space group choice
New-found high-pressure crystal phases 2◦AP-γ and 2◦AP-δ were initially described
in space groups #33 (Pna21) and #14 (P21/c) in their standard settings. For the
sake of consistency this choice was changed for non-standard space group settings
for new polymorphs. Individual 2◦AP molecules were placed in the same region
of unit cell in all 8 solved structures. A comparison of unit cells in standard and
selected space group settings was presented in Table S1.5.

Table S1.5: Standard and selected unit cell setting for 2◦AP-α, γ and δ.

Standard setting Selected setting
SG #62 P 21

n
21
m

21
a

SG #62 P 21
n

21
m

21
a

2◦AP-α unit cell 7× 16× 11Å unit cell 7× 16× 11Å
principal axis c principal axis c
SG #33 Pna21 SG #33 Pn21a

2◦AP-γ unit cell 7× 11× 16Å unit cell 7× 16× 11Å
principal axis c principal axis b
SG #14 P121

c
1 SG #14 P1121

a

2◦AP-δ unit cell 16× 11× 7Å unit cell 7× 16× 11Å
principal axis b principal axis c

One difficult task at hand was to identify the polymorph γ and subsequently
choose the appropriate space group while solving collected datasets. As mentioned
in the main text, space groups Pnma and Pn21a feature exactly the same extinctions
rules, while strong similarity between both crystal structures makes any distinction
based on intensity statistics surprisingly hard. Nonetheless it can be proved that an
additional polymorph between orthorhombic 2◦AP-α and monoclinic 2◦AP-δ exists
and crystal structures collected in the pressure range between approximately 9 and
18 kbar cannot be well described using only Pnma or P1121/a symmetry.

An overview of selected data reduction and refinement statistics have been pre-
sented in Table S1.6. When investigating the phase transition one’s first instinct
would suggest looking at sharp changes in unit cell parameters. While they are very
clear in transition to monoclinic crystal system of δ, the trend for a, b, c and V as
a function of pressure shows no clear shift or even kink visible (see S4.2, full dots).

Normalized intensity statistic < |E2 − 1| > should assume value of 0.968 in
idealized centrosymmetric and 0.736 in idealized non–crentrosymmetric space group.
Since Pnma is centrosymmetric while Pn21a is not, we could expect high value of the
statistic for 2◦AP-α and low for 2◦AP-γ. In seven datasets featuring orthorhombic
cell from Table S1.6 the value of < |E2 − 1| > is consistently close to its upper
theoretical limit without regard for presence or absence of inversion center. This
most probably stems from the fact, that the tilt of 2◦AP molecule leading to the
loss of my mirror plane can occur in either direction, resulting in a sample which
is twinned, with twin law mimicking the former my mirror plane, as well as from
the coexistence of the traces of δ alongside γ phase, contaminating the intensities of
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low-resolution reflections. We can see a slight decrease between 0.78 and 0.97 kbar,
however such a small difference could not be a deciding factor while choosing correct
symmetry.

Merging statistic Rint is not more useful. Its value is consistently lower for Pn21a
compared to Pnma, as the extinction rules for both groups are the same, while in
the latter more reflections are being averaged due to higher point group symmetry
(m2m versus mmm).

Only in direct space we can see discrepancy between crystal structure of 2◦AP-α
and 2◦AP-γ. In first four datasets the R-factors remain similar between data solved
in Pn21a and Pnma. They are expectedly better for lower symmetry setting, but
the difference is not very large. That is, unless we look at datasets 5–7, where a sharp
increase of R-factors in Pnma is observed. While crystal structure of 2◦AP-α can
be well-described in the space group of 2◦AP-γ (as Pn21a is sub-group of Pnma),
the reverse is not true and results in R1 > 15% and wR2 > 35% in those cases.

The differences in GooF between Pnma and Pn21a are, again, not large. How-
ever, their values tend to be closer to unity whenever a correct space group is chosen.
Datasets 1–4 feature too many independent parameters when solved in Pn21a, while
datasets 5–7 have too little free parameters when solved in Pnma.

Finally, for crystal structures solved in space group Pn21a we can monitor the
numerical value of 2◦AP molecule rotation around axis z, "side-tilt", which consti-
tutes the biggest difference between α and γ, as discussed in section 3.3 of main
text. This value is fixed by symmetry to 0 in space group Pnma, relatively close
to 0 in four datasets incorrectly solved in Pn21a, and much further from 0 in three
datasets which should not be described in Pnma. This tilt appears suddenly some-
where around 9kbar, and shows a clear need for distinguishing separate polymorph
γ, acting as a missing link between known 2◦AP-α and skew monoclinic 2◦AP-δ.
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Table S1.6: Selected data reduction and independent atom model refinement statis-
tics for seven datasets which feature orthorhombic unit cell.

Polymorph α α α α γ γ γ
Pressure \ GPa 0.00 0.25 0.52 0.78 0.97 1.16 1.30
a \ Å 7.21024 7.2462 7.150 7.0642 7.0300 7.0202 6.9714
b \ Å 16.4876 16.536 16.17 16.220 16.147 16.0775 16.139
c \ Å 11.2792 11.255 11.288 11.166 11.1214 11.1610 11.072
< |E2 − 1|> 1.052 1.054 1.075 1.039 0.945 1.010 0.941
in Pnma:
Rint 0.0949 0.1567 0.0719 0.1095 0.1048 0.1323 0.1514
R1 0.0921 0.1376 0.1057 0.1410 0.2172 0.2204 0.2480
R1 (I > 2σ) 0.0547 0.0627 0.0499 0.0640 0.1632 0.1572 0.1820
wR2 0.1506 0.1700 0.1292 0.1818 0.3876 0.3707 0.5439
wR2 (I > 2σ) 0.1385 0.1393 0.1100 0.1495 0.3662 0.3456 0.5260
GooF 1.029 0.997 0.980 1.025 1.088 1.080 1.845
Pna21:
Rint 0.0915 0.1517 0.0691 0.1058 0.1033 0.1248 0.1402
R1 0.0903 0.1360 0.1067 0.1629 0.1323 0.1502 0.1895
R1 (I > 2σ) 0.0513 0.0592 0.0488 0.0770 0.0652 0.0753 0.0895
wR2 0.1380 0.1612 0.1340 0.2807 0.1616 0.1997 0.2627
wR2 (I > 2σ) 0.1246 0.1295 0.1119 0.1974 0.1388 0.1626 0.2190
GooF 0.983 0.986 0.947 0.971 1.022 0.992 1.007
2◦AP side-tilt 0.322(17)◦ 0.41(7)◦ 0.36(7)◦ 0.58(12)◦ 4.38(4)◦ 5.03(7)◦ 4.31(7)◦
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S1.3 Deposition
Structures mentioned in this paper were deposited as individual entries within Cam-
bridge Structural Database. [Groom et al., 2016] The deposition numbers assigned
to all discussed final models: 4 structures of 2◦AP-α (one in low temperature and
three under high pressure), 3 structures of 2◦AP-γ and a structure of 2◦AP-δ solved
using twinned diffraction data, were assigned deposition numbers CCDC 2096512–
2096519. Exact numbers for each structure have been presented in Table S1.7.

Table S1.7: CCDC deposition numbers of crystal structures investigated in these
studies, sorted by crystal phase and exerted pressure.

Polymorph Pressure Temperature CCDC deposition number
2◦AP-α 0.00 GPa 100K 2096512

0.25 GPa room temperature 2096513
0.52 GPa room temperature 2096514
0.78 GPa room temperature 2096515

2◦AP-γ 0.97 GPa room temperature 2096516
1.16 GPa room temperature 2096517
1.30 GPa room temperature 2096518

2◦AP-δ 2.03 GPa room temperature 2096519
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Chapter S2

Structure description

S2.1 Phase transitions

Figure S2.1: Schematic representation of three consecutive unit cells of 2◦AP-α
(top), 2◦AP-γ (middle), and twinned 2◦AP-δ (bottom) as seen from z. Fragments
characteristic for each crystal phase have been colored dark blue, sky blue and green,
respectively. Twinning during the γ → δ transition can be explained via collapse of
two domains of orthorhombic 2◦AP-γ (represented here by left- and right-most unit
cell) in different directions.
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Chapter S3

Lattice interactions

Figure S3.1: Cluster of molecules observed in 2◦AP-α, γ and δ along x.
In agreement with methodology utilized during Crystal Explorer calculations
[M. J. Turner et al., 2017], only molecules with contacts shorter then 3.8Å to cen-
tral molecule (colored gray, marked with ∗) were included. Moieties were colored and
numbered according to interaction shared with central molecule in 2◦AP-α. Label
suffixes were introduced whenever same-interactions in α split to sub-types in lower
symmetric γ or δ. Further description and energy of interactions was presented in
Tables S3.1 and S3.2.

The energy of interactions was estimated using CrystalExplorer version 17.5.
[M. J. Turner et al., 2017, Turner et al., 2014]
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Table S3.1: Additional description of interactions present in 2◦AP-α, γ and δ,
visualized in Figure S3.1 and further evaluated in Table S3.2.

dominating interacting or symmetry relation in
interaction closest atoms α γ δ

Interaction 1© π · · · π, C –H · · · π C18–H18A· · · π
az, 21x az azC24–H24A· · · π

Interaction 2© short C –H · · · O C10–H10· · ·O1
1, 21y 21y 1O4· · ·H4–C4

Interaction 3© π · · · π C7· · ·C16 az, 21x az az

Interaction 4© dispersive C6–H6· · ·C18
tz tz tzC8–H8· · ·C24

Interaction 5© dispersive C18–H18C· · ·C10
nx, 21z nx 21zC24–H24B· · ·C4

Interaction 6© long C –H · · · O C18–H18C· · ·O4
1, 21y 21y 1C24–H24B· · ·O1

Table S3.2: Energy of interactions found in 2◦AP at investigated pressure points.
Listed values were calculated in Crystal Explorer and expressed in kJmol−1. Equiva-
lence of selected interactions was marked using either vertical alignment or by linking
equivalent interactions with a vertical curve. In agreement with methodology utilized
during Crystal Explorer calculations, only interactions with paths shorter then 3.8Å
were included. Visualization and further description of interactions was presented
in Figure S3.1 and Table S3.1.

Crystal phase α α α α γ γ γ δ

Pressure \ GPa 0.00 0.25 0.52 0.78 0.97 1.16 1.30 2.03
Interaction 1© -62.7 -62.2 -62.8 -64.4 -63.6 -63.5 -62.6 -63.2
Interaction 2a©

-27.1 -26.0 -27.0 -27.0 -27.4 -27.8 -27.9
-28.8

Interaction 2b© -27.3
Interaction 3© -21.4 -21.2 -22.0 -22.3 -22.5 -22.5 -22.7 -23.6
Interaction 4© -10.2 -10.2 -10.4 -11.0 -11.5 -11.2 -11.7 -11.6
Interaction 5a© -9.8 -9.5 -10.2 -10.1
Interaction 5b©

-8.1 -8.2 -9.0 -9.5 -9.9) -10.0) -10.1) -11.2)
Interaction 5c© -10.1)
Interaction 5d© -9.8 -9.5 -10.2 -11.2
Interaction 6a©

-8.7 -8.9 -9.2 -10.1 -10.2 -10.5 -10.1
-11.6

Interaction 6b© -8.8
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Chapter S4

Theoretical calculations

A series of theoretical calculations in varying pressure conditions was performed
for each reported crystal phase in CRYSTAL17 [Dovesi et al., 2018]. Dispersion
corrected DFT calculations utilized B3LYP hybrid functional and 6-31G** basis
set, the combination of which has already proved to give reliable results for pyrene
derivatives during earlier work. Strict convergence criteria for Coulomb and Ex-
change sums were applied (10−7, 10−7, 10−7, 10−7, 10−29).

At first an attempt to perform a series of calculations using EOS routine already
implemented in CRYSTAL was made. [Erba et al., 2014] This approach firstly opti-
mizes input structure at 0 kbar, after which it limits the volume of resulting crystal
(by 15% here, as defined by user) and then performs multiple optimization steps in
ever-increasing volume. In case of 2◦AP this approached failed, as the structure of
2◦AP-δ in high-pressure conditions would not converge when using low-pressure co-
ordinates as a starting point – the molecules would instead tilt in the other direction,
leading to a non-physical geometry and lack of convergence.

In order to avoid comparing results obtained in different way, three series of
calculations (one for each polymorph) in decreasing volume conditions were prepared
manually instead. Firstly, the volume of each unit cell at 0 kbar was estimated.
Then an optimization for 85% of V0 was performed, but instead of importing atomic
coordinates from the ambient-pressure calculations, they were taken directly from
XRD model instead. Using this approach, crystal structures of all three polymorphs
at high pressure could be obtained without any issues. Afterwards, the volume was
gradually increased (in 2%V0 steps), and an optimization was performed at each
volume step up to 105%V0. Values of unit cell volume and total crystal energy at
resulting 11 points were fit to a Vinet equation of state [Vinet et al., 1987] using
the Levenberg-Marquardt algorithm in custom Python script. In case of α and
γ, obtained results were in good agreement with the outcome of the automated
procedure. Visualization and detailed results of the fit were presented in Figure
S4.1 and Table S4.1.

Out of three structures discussed in this text, only specimen of 2◦AP-α were
obtained from multitude of performed crystallization attempts. This can be seen
as somewhat puzzling in the context of calculations, as they suggest the α phase to
feature the lowest stability out of three measured polymorphs, even in low pressure
domain. 2◦AP-δ and 2◦AP-γ were estimated to be 1 – 2 kJmol−1 more stable at
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Figure S4.1: Summary of fitting optimized crystal structures to Vinet equation of
state [Vinet et al., 1987]. Left: fit energy of polymorphs relative to 2◦AP-α expressed
as a function of pressure. Right: total energy of unit cell as a function of its volume.

0 GPa and 2 – 4 kJmol−1 more stable at 4 GPa. It should be, however, noted
that the calculations were performed at 0 Kelvin and assuming no thermal motions.
Although including thermal motion is expected to notably influence the final results,
it was deemed excessive for the scope of this work. The discord between calculations
and experiment might also suggest a low kinetic stability of γ and δ, which would
somewhat explain the instability of δ’s 85%V0 optimization as discussed above.

Table S4.1: Detailed results of fitting theoretically optimized bulk structures of
2◦AP-α, γ and δ to Vinet equation of state. [Vinet et al., 1987]

Structure 2◦AP-α 2◦AP-γ 2◦AP-δ
V0 \ Å3 1244.7682460755 1238.2703872981 1239.2221600955
E0 \ AU -3682.7133282350 -3682.7163436187 -3682.7144480839
B0 \ GPa 17.2483403125 17.2906185135 17.7739121193
B′0 \ 1 8.0922209551 8.9723515596 8.4508494643
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Figure S4.2: Evolution of 2◦AP experimental (full circles) and optimized (empty
circles) unit cell parameters with pressure. Polymorphs α, γ and δ are represented
using dark blue, sky blue and green markers, respectively. Predicted values of pressure
at which phase transitions occurs were marked using vertical lines.
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Chapter S5

Completeness

S5.1 Generating potency maps
An overview of methodology used by Hikari to calculate potency and generate its
maps have been presented in Section 2.3 of the main text. Unless the calculations
are performed for a specific crystal, the program assumes a large unit cell with
parameters a = b = c = 20Å, α = β = 90◦ and γ = 90◦ (120◦ in hexagonal lattice).
For crystals belonging to trigonal system, a hexagonal setting is used.

Choosing large unit cell in direct space populates the reciprocal space with more
lattice points. This effectively increases numerical precision, and subsequently limits
effects associated with multiple reflections entering / leaving the available region at
the same time, which otherwise would be visible as "ripples" on the map. Since
such behaviour makes the maps more smooth, it is desirable for the purpose of
discerning general trends, rather than exactly calculating obtainable completeness
for specifically defined conditions (as described below).

Prediction of potency for a single orientation such as the one performed for 2◦AP
in Table 2 of main text are the simplest type of estimation performed by Hikari,
as they require only one – known – orientation and are performed for a constant
unit cell, wavelength and resolution. In this approach a ratio between number of
experimental and theoretically-possible reflections can be compared to obtain not
only potency, but also applicable completeness. Other types of calculations require
more though put into their design.

An example of non-trivial Hikari routine is presented on Figure 3 of the main
text. There, the software was used to estimate the reciprocal space coverage in
various experimental conditions. As such, its function was limited to a (very slow)
numerical integration. The Figure and associated data have been obtained using
the following steps:

1. Prepare a list of Θ angles of interest (close to 0◦, equal 10◦, 20◦...);

2. Make an evenly spaced list of DAC opening angles (0◦ to 90◦ every 1◦);

3. For each Θ and opening angle, estimate average potency in point group 1;

4. For each Θ visualize the potency as a function of opening angle.
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Two further applications of Hikari requiring their own sophisticated routine are
violin distribution plots and potency maps, examples of which are presented below on
Figures S5.1 – S5.6. The violin plots are prepared based on distribution of potency
calculated for a series of 50’000 orientation points each. Crystal orientations are
selected in the following way: firstly four special orientations [100], [010], [001] and
[111] are considered, as they correspond to maximal and minimal potency in multiple
laue classes; then the 49’996 remaining points are selected quasi-uniformly from the
unit sphere using an appropriate Fibonacci lattice. [González, 2010]

The approach warrants that each region of the sphere is equally represented.
However, it is important to note that crystals are rarely spherical, and the Miller
indices of their faces usually are small integers. Therefore, while predicting optimal
experimental set-up for an experiment, one should not rely on the violin plots, but
rather dedicated potency maps.

The potency maps require a different set of orientations than violin plots to be
calculated. Both tools used to visualize the data (matplotlib and gnuplot) require
the heatmaps to be probed uniformly in the selected reference frame. The "heat"
of each point represents potency at a given orientation. Since here the heatmap
is prepared in spherical coordinates, sample orientations have to be probed every
θ = 1◦ and ϕ = 1◦ around selected axis z. As this latitude–longitude lattice offers
coverage which is very anisotropic and over-represented on the poles, it is not used
to calculate overall completeness statistics presented on violin plots, as discussed
above.

A quick overview of available potency in the form of a "cheat sheet" for Mo Kα/
Ag Kα and opening angles of 35◦/55◦ have been presented on pages S22–S28. Each
page contains visualisation of completeness as a function of crystal orientation for
all laue classes, in a form of a violin plot and associated potency maps. Descriptive
statistics of presented plots are present in Table S5.1.

Finally, it can be argued that potency maps generated for monoclinic crystal
system are incomplete, as not octant, but rather a quarter of sphere is necessary
in order to represent all unique orientations in reciprocal space. However, due to a
high ∞/mm symmetry of available region in reciprocal space, the potency in this
crystal system in a function of angle between orientation-vector and y only. Hence,
only an octant of sphere is presented for simplicity and consistency. Similarly, while
some of the other maps contain redundant information, e.g. all orientations in Laue
class m3̄m could be presented on 1/48th of the sphere instead of the octant, the
investigated area have been kept constant for the sake of consistency.
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Table S5.1: Descriptive statistics for potency distribution as a function of sample orientation for
all 11 Laue classes. Calculated based on four datasets used to obtain violin distribution plots in the
main text (Figure 4), as discussed above. Rows q1 – q3 contain quartiles, while row "std" standard
deviation of the distribution.

1̄

2/
m

m
m
m

4/
m

4/
m
m
m

3̄ 3̄m 6/
m

6/
m
m
m

m
3̄

m
3̄m

Mo Kα, sin θ/λ = 0.6Å−1 (Θ ≈ 25◦)
35◦ opening angle
mean 27.95 44.48 59.43 67.40 77.47 64.49 76.90 78.78 84.02 94.68 96.35
std 0.04 6.21 9.63 8.41 11.55 5.56 12.07 9.96 13.05 4.68 4.95
min 27.68 27.55 29.75 30.14 29.41 28.06 27.49 30.15 29.17 69.73 67.83
q1 27.92 41.30 52.19 62.18 71.81 65.62 69.67 74.86 79.09 92.37 95.24
q2 27.95 47.52 60.05 70.63 79.52 66.25 79.47 82.41 87.74 96.15 98.46
q3 27.97 49.22 67.87 74.37 86.28 66.75 86.61 86.10 93.49 98.26 99.53
max 28.21 50.02 74.05 75.64 93.19 69.51 95.38 87.49 98.58 99.74 100.00

Mo Kα, sin θ/λ = 0.6Å−1 (Θ ≈ 25◦)
55◦ opening angle
mean 58.97 78.29 87.55 94.47 95.81 95.91 96.04 96.68 96.16 100.00 99.99
std 0.04 9.89 8.70 6.23 7.04 7.20 7.48 6.66 7.29 0.03 0.05
min 58.68 58.27 59.00 59.82 58.30 58.61 57.30 59.70 57.69 99.24 98.93
q1 58.94 69.99 82.27 92.99 95.20 96.19 95.89 96.94 95.95 100.00 100.00
q2 58.97 79.74 89.80 96.41 99.10 99.13 99.87 99.98 99.96 100.00 100.00
q3 59.00 87.78 94.35 98.62 99.95 99.60 100.00 100.00 100.00 100.00 100.00
max 59.12 90.75 99.47 99.62 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Ag Kα, sin θ/λ = 0.6Å−1 (Θ ≈ 20◦)
35◦ opening angle
mean 34.71 53.33 67.65 76.42 84.11 75.84 85.12 86.48 88.92 98.24 98.52
std 0.04 7.75 10.29 9.06 11.36 7.19 12.30 10.43 12.53 2.69 2.88
min 34.30 34.23 36.32 36.87 35.85 35.06 34.27 36.92 35.60 81.07 78.89
q1 34.69 47.90 60.76 70.51 78.88 77.10 79.32 83.80 84.87 97.66 98.53
q2 34.72 57.05 68.09 79.17 86.74 78.23 88.07 90.10 93.81 99.43 99.87
q3 34.74 59.70 76.04 84.22 92.56 78.91 94.70 93.77 97.69 99.92 100.00
max 35.16 60.94 84.66 86.09 98.52 82.43 100.00 95.39 100.00 100.00 100.00

Ag Kα, sin θ/λ = 0.6Å−1 (Θ ≈ 20◦)
55◦ opening angle
mean 64.61 82.97 90.83 96.78 97.11 97.23 97.09 97.56 97.11 100.00 100.00
std 0.04 9.59 7.82 5.28 5.86 5.93 6.14 5.38 6.02 0.00 0.00
min 64.47 63.96 64.47 65.38 63.73 64.32 62.88 65.21 63.03 100.00 100.00
q1 64.59 74.97 86.13 96.78 97.58 98.08 97.77 98.40 97.61 100.00 100.00
q2 64.62 84.10 93.21 98.73 99.90 99.99 100.00 100.00 100.00 100.00 100.00
q3 64.64 91.87 97.08 99.75 100.00 100.00 100.00 100.00 100.00 100.00 100.00
max 64.76 95.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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m

m
m
m

4/
m

4/
m
m
m
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m

6/
m
m
m
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m
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2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.1: Potency maps to sinθ/λ = 0.6Å−1 for Mo Kα and 35◦ opening angle. Tics every 10◦.
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2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.2: Potency maps to sinθ/λ = 0.6Å−1 for Mo Kα and 55◦ opening angle. Tics every 10◦.
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2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.3: Potency maps to sinθ/λ = 0.6Å−1 for Ag Kα and 35◦ opening angle. Tics every 10◦.
S24



2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.4: Potency maps to sinθ/λ = 0.6Å−1 for Ag Kα and 55◦ opening angle. Tics every 10◦.
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The following pages S27 and S28 contain potency maps which are quite different
from other examples given in this work. It came to our attention that some re-
searchers prefer not to interfere with crystal orientation and place samples on faces
which warrant low potency, as such orientation allows a high coverage of specific
reflection families: axes (h00, 0k0, 00l) and planes (0kl, h0l, hk0) which contain
information about extinctions.

While high coverage of mentioned special elements is indeed important, it can be
achieved even for slightly angled sample, especially if the aperture of Anvil Cell is
large. Attentive sample placement in Laue classes 3̄m, 6/mmm, m3̄ and m3̄m can
increase completeness of collected data from 30–70% to 100% while preserving full
coverage of mentioned axes and planes even assuming Molybdenum Kα radiation
and 35◦ opening angle (abbreviated to "oa" below).

In order to show crystal orientations which preserve good coverage of special
elements, special axes potency maps (page S27) and planes potency maps (page
S28) have been prepared. These maps show the coverage of special regions using
three color channels, one for each region: red for h00/0kl, green for 0k0/h0l and
blue for 00l/hk0. Total potency maps can be used in conjection with axes/planes
potency maps to warrant both high overall completeness of data and good coverage
of special positions.
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2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.5: Axis potency maps to sinθ/λ = 0.6Å−1 for Mo Kα and 35◦ oa. Tics every 10◦.
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2/m

mmm 4/m 4/mmm

3̄ 3̄m1 6/m

6/mmm m3̄ m3̄m

Figure S5.6: Plane potency maps to sinθ/λ = 0.6Å−1 for Mo Kα and 35◦ oa. Tics every 10◦.
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S5.2 Reading potency maps
Potency maps can be essentially used in two ways: either to check what completeness
is available using given sample orientation, or to find an orientation which warrants
satisfactory completeness. Both applications are fairly simple and have been shortly
introduced in the main text, yet they will be discussed below in more detail.

Let’s assume a certain diffraction experiment has been performed - the crystal
has been already placed within DAC and experimenter is interested in potency of
this orientation or would like to slightly affect sample placement. In such a case,
the face on which crystal has been placed has given Miller indices (hkl). If the face
was natural the indices should be reducible to whole numbers, but if the sample was
artificially tilted, crooked or cut, h, k and l might end up being any real numbers.
In any case the Miller indices of diamond-perpendicular face can be calculated using
UB orientation matrix:

(hkl)T = (UB)−1

1
0
0

 (S5.1)

While Miller indices are a natural way to interpret crystal faces in crystallography
and mineralogy, crystal face with given (hkl) will be angled differently to internal
symmetry elements in various crystals. Thus, the potency maps are prepared in
cartesian coordinates. In order to obtain the Cartesian coordinates of a vector
normal to the face (hkl), the unit cell vectors must be considered:

x∗ =
[
a∗ b∗ c∗

]
(hkl)T = A∗(hkl)T (S5.2)

After obtaining the vector x∗ it is the most convenient to normalize it and use
simple trigonometric relations to localize it on the potency map. For example, let’s
assume an orthorhombic crystal of 2◦AP (cell parameters a ≈ 7Å, b ≈ 16Å, c ≈ 11Å)
has been placed in DAC on face with Miller indices (011̄). This fact could have been
observed by trained eye of experimenter or calculated using UB matrix. Vector
normal to (011̄) can be then obtained by:

x∗ =

 1
7

0 0
0 1

16
0

0 0 1
11

 0
1
−1

 =

 0
1
16

− 1
11

 ≈ 0.11 ∗

 0
0.57
−0.82

 (S5.3)

Now we can use vector x∗ to find the completeness on relevant map for Laue
class mmm. Firstly, since our map shows completeness only for positive values of x,
y and z, lets notice that faces (011̄) and (011) (and thus directions

[
0 1

16
− 1

11

]
and

[
0 1

16
1
11

]
) are equivalent. Since in our case x = 0, x∗ will point somewhere

between axes Y∗ and Z∗, on the right edge of the map. As 0.57/0.82 ≈ 0.7, we
can expect x∗ to point slightly below the midpoint of this right edge; to be exact
tan−1(0.57/0.82) ≈ 35◦ from axis Y∗ towards axis Z∗, signaling potency of ≈ 50%
for Mo Kα radiation and DAC with lower aperture.

The opposite process, finding best orientation for given crystal is done using the
same equations, but going the other way. The highest potency for Laue Class mmm
can be obtained for x∗ =

[
1 1 1

]
. In order to translate it into (hkl) indices, one

has to multiply x∗ by inverse of matrix A∗ and reduce the result to whole numbers.
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S5.3 Opening angle
The definition of opening angle in community is unregulated and thus use of this term
can be inconsistent. Some authors define opening angle α as angle between vector
normal to diamond’s surface and a limiting vector which glides along metal body of
DAC (purple line on Figure S5.7a). Then its value tends to be close to 35◦ and can
theoretically vary between 0 and 90◦. Others use the term to describe maximum
value of 2θ obtainable in diffraction experiment, in which case typical and maximum
α equal 70 and 180◦, respectively. In this paper we use the term "opening angle"
or "single opening angle" to express the first value, while terms "double opening
angle" or occasional "aperture" are designated to express the second.

a)

b)

c)

Figure S5.7: Double opening angle 2α as it appears in a) direct and b) reciprocal
space. Definition of α used in this paper is more practical during the description
of reciprocal spacefor example if α > Θ, then the available disc is trimmed due to
experimental resolution constraint (orange outline on b)). c) It is worth noting that
"real" experimental opening angle can deviate from the nominal DAC value if the
gasket is too thick or lies too close to the sample.
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