## IUCrJ

## Volume 8 (2021)

## Supporting information for article:

Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis

Pooja Asthana, Dhirendra Singh, Jan Skov Pedersen, Mikko J. Hynönen, Ramita Sulu, Abhinandan V. Murthy, Mikko Laitaoja, Janne Jänis, Lee W. Riley and Rajaram Venkatesan

## S1. Supplementary Results

## S1.1. Recombinant expression and purification of MtMce1A-1F proteins

Initially, the full length MtMce1A-1F were cloned and their expression in E. coli tested individually which showed that all the MtMce1A-1F individual proteins were successfully expressed. From these, MtMce1A, MtMce1B, MtMce1C and MtMce1F were selected for further purification trials as the expression for MtMce1D and MtMce1E was very low. Given that, all the Mce SBPs have N-terminal transmembrane domain, their solubility was assayed in buffers containing detergents such as DDM, Fos-choline-12 (FC-12) and Dodecyl nonaethylene glycol ether ( $\mathrm{C}_{12} \mathrm{E}_{9}$ ) as mentioned in the methods section. Among these MtMce1A, MtMce1C, and MtMce1F were purified in the presence of DDM, whereas MtMce1B was purified only in the presence of FC-12. The major peak for the eluted proteins were between 10 and 12 mL in a 24 mL Superdex $20010 / 300$ column. An additional 8 ml peak was observed, suggesting the presence of soluble aggregates even in the presence of detergents.

Subsequently, the transmembrane domain deleted constructs were generated for MtMce1A and, MtMce1B (MtMce1A $\mathrm{A}_{8-454}$ and MtMce1B29-346) to test if they could be purified without detergents. Surprisingly, even after deleting the transmembrane region, the proteins still required detergents for their purification (Fig. S3A). Also, as the expression of MtMce1E was very less, TM domain deleted construct was also made for MtMce1E (MtMce1E B7-390 ). Interestingly, the deletion resulted in enhanced expression of MtMce1E ${ }_{37-390}$ when compared to the full length MtMce1E. However, for this construct a combination of DDM and $\mathrm{C}_{12} \mathrm{E}_{9}$ detergent was needed in different steps to purify it further (Supplementary Table 3). The TM domain deleted MceA-F SBPs almost eluted in the same volume as the full length MtMce1A-1F proteins. As the deletion of TM domain did not preclude the use of detergent, it was not generated for MtMce1C. However, in case of MtMce1F recombinant protein expression, heavy degradation was observed. We predicted that the degradation could mainly be at the extended and unstructured tail domain. The tail domain of Mce1D is also long and has similarity with the tail domain of Mce1F. Therefore, transmembrane domain and tail domain deleted shorter constructs for MtMce1D (MtMce1D ${ }_{44-314}$ ) and MtMce1F (MtMce1F ${ }_{30-314}$ ) were generated and these constructs showed significantly less degradation (Fig. S3A). Intriguingly, even these constructs could be purified only in the presence of detergents.

## S1.2. Recombinant expression and purification of MtMce4A-4F proteins

In parallel, full-length MtMce4A-4F individual constructs were successfully generated in E. coli. Expression tests showed that the MtMce4F had the least expression. After initial detergent screening, MtMce4A, MtMce4C, MtMce4D and MtMce4F were purified in buffers containing the detergent DDM, whereas MtMce4B and MtMce4E required FC-12 for their purification. Gel filtration profile of MtMce4A, MtMce4C and MtMce4F showed that the aggregated protein peak ( 8 mL ) was well separated from protein-detergent peak ( $\sim 12 \mathrm{~mL}$ ). In case of MtMce4B, MtMce4D and MtMce4E the aggregated protein and protein-detergent complex (PDC) eluted together in one broad peak. MtMce4B, MtMce4D and MtMce4F showed heavy degradation on SDS PAGE (Fig. S3B). As similar degradation was also observed for MtMce1F, it is possible that also in MtMce4B, MtMce4D and MtMce4F the degradation could be in the unstructured tail domain.

## S1.3. Conformational changes in MtMce1A 36-148 and MtMce4A ${ }_{39-140}$

Comparison of the secondary structure content of MtMce4A $39-140$ calculated from the $C D$ spectrum with the crystal structure showed higher $\beta$ sheet content (39\%) in crystal than from the experimental CD spectra (28\%) data (Table S10). The result indicate that the protein is more structured in the crystallization condition and attain the MCE $\beta$-barrel fold. Interestingly, during thermal melting analysis when the temperature was gradually increased from $22^{\circ} \mathrm{C}$ to $92^{\circ} \mathrm{C}$, a broad shift in the peak was observed between $220-240 \mathrm{~nm}$ corresponding to increase in secondary structures (Fig. S9A). This also aligned with the BeStSel analysis, which showed an increase in the $\beta$-sheet content with increasing temperatures. The $\beta$-sheet content at $72{ }^{\circ} \mathrm{C}$ was slightly higher $(33 \%)$ indicating the unusual property of heat-induced conformational change of MtMce4A $39-140$. However, the data after $72{ }^{\circ} \mathrm{C}$ was not reliable due to poor fitting of the data at $190-200 \mathrm{~nm}$. Besides, the peak shift disappeared upon cooling of MtMce4A $39-140$ indicating the temperature dependent reversible nature of this conformational change (Fig. S9B).

Similar thermal melting analysis of MtMce1 $\mathrm{A}_{36-148}$ showed conformational change upon heating. The initial peak at 198 nm , shifted to a broader range of 205-230 nm when the protein was heated from $22^{\circ} \mathrm{C}$ to $92{ }^{\circ} \mathrm{C}$ (Fig. S8A). Moreover, the peaks at 210-230 nm were stable (not reversible) when the sample was recooled, whereas the peak between 205-210 nm disappeared during recooling (Fig. S8B). By visually looking at the spectra at $22^{\circ} \mathrm{C}$ and $92^{\circ} \mathrm{C}$, one can interpret that MtMce1A also attains more secondary structure upon heating as observed in MtMce4A39-140. Intriguingly, the deconvolution analysis (200-250 nm) of these peaks
for MtMce1 $A_{36-148}$ in both CDNN and BeStSel software suggested that only the spectra at $22{ }^{\circ} \mathrm{C}$ have higher $\beta$-sheet content and the $\beta$-sheet content reduced gradually upon heating. This overall indicates the challenges in the interpretation of $C D$ spectra of $\beta$-sheet rich proteins even with the best available programs. In any case, we can clearly see that both MtMce1 $\mathrm{A}_{36-148}$ and MtMce4 $\mathrm{A}_{39-140}$ undergoes conformational change upon heating. It is possible that in the purified conditions, both MtMce1 $\mathrm{A}_{36-148}$ and MtMce4A39-140 are in non-native conformations and MtMce4A $\mathrm{A}_{39-140}$ attains native conformation in the crystallization buffer.

## A1




MtMce1A LTMISARAGLVMDPGSKVTYNGVEIGRVDTISEVTRDGESAAKFIRDVDPRYIHLIPANV MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

GYTAEFSNVSGIRQGQFVRASGVEIGKVKAIHLVDGGRRVRVEFNID....RSVPLYQST SYYGQFTDSGGIHKGDRVRIAGLGVGTVEGIKIDG..DHIVVKFSIG....TNTI.GTES TVVAYFTQANALYVGDKVQIMGLPVGSIDKIEPAG. .DKMKVTFHYQ. . . .NKYKVPANA TIYVQMPDTLAINGNSRVMVADVWVGSIRAIKLKNWVAT..ITLSIK.... KDVTLPKNA TLKADLPASGG YYPTANVTYRGITIGKVTAVEPTDQGARVTM. .SIA....SNYKIPVDA


MtMce1A NADIKATTVFGGKYVSTTTPKN.PTKRRITPKDVIDVRS......VTTEINTIFQTLTST MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

TAQIRYSDLIGNRYVEIKRGEGKGANDLIPPGGLIPISRTS.... PALDLDALIGGFKPV RLAIRTDTILGRKVLEIEP.... RGAQALPPGGVIPVGQST.... TPYQIYDAFFDVTKA SAVILNPTLVASRNIQLEPPYR..GGPVIADNAVIPVERTQ....VPTEWDEIRDSVSHI TAKIGQTSLLGSQHVELAAPPD.PSPVPLKDGDTIPLKRSSAYPTTEQ.... TLASIATL SANVHSVSAVGEQYIDIVSTGA....... PGKYESSGQTITKGTVPSEIGPALDNSNRG
 160 170 180
 FRALDPA......KVNNIANALITVFQGQGGTINDILDQTAQLTSQIAERDQAIGEVVKN ASGWDIE...... TVKRSINVLSETVDQTYPHISAALDGVAKFSDTIGKRDEQITHLIAQ IDELGPTPEQPKGPFGEVIEAFADGLAGKGKQINTTLNSLSQALNALNEGRGDFFAVVRS LRGGGLV......NLEGIQQEINAIVTGRADQIRAFLGKLDTFTDELNQQRDDITRAIDS LAALPTE......KIGLIむDETAQAVGGLGPA $Q R L V D S T Q A I V G D E K T N I G D V N D I I E N$

A6
A7
MtMce1A lelelelele lelelelelelelelelelelelelelelelelelelel lel MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

MtMce1A LAATGDVYADAAPDLFDFTDSSVTTARTINAQQAETDSALLAAAGFGNTTADVFDRGGPY LNIVIDTTVKHRKEFDETVNNIENLITGLRNHSDQIAGGLAHISNGAGTVADLLAENRTL ANQVASILGDRSEQVDRLIVNAKTLIAAFNERGRAVDALIGNISAFSAQVQNLINDNPNL LALFVNALHQDDQQFVALNKNLAEFTDRLTHSDADLSNAIQQFDSLLAVARPFFAKNREV TNRLIAYVGGRSEVLNRVITDLPPLIKHFADKQELIINASDAVGRLSQSADQYLSAARGD SGPILDSQVNTGDQIERWARKUNNLAAQTATRDQNVRSILSQAAPTADEVNAVFSGVRDS

A8
MtMce1A

MtMce1A
MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F



MtMce1A

MtMce1A
MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

## MtMce1A

MtMce1A
MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

## MtMce1A

MtMce1A
MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F


```
...LPPIGLQAPQVPIPPPPPGPDVIPGPVPPTPAPVGAPLPA......EAGGGQ.
GSGTVQCNG.QQPNPCVYTPTSGPSAVYSPA...SGELVGPDGVKYAVANSSTTGDDGWK
```

GSGTVQCNG. QQPNPCVYTPTSGPSAVYSPA...SGELVGPDGVKYAVANSSTTGDDGWK

## MtMce1A

MtMce1A
MtMce1B
MtMce1C
MtMce1D
MtMce1E
MtMce1F

A13
$430 \quad$ elel
SLAPYNHMEVGSPY. . . . . . . . . . . . . . . .AVEYVWGRQVGDNTIN

......
 .....RPLPSGTYCKIPQDAQLQVRGARNIPCVDVLGKRAATPKEC..RSKDPYVPLGTN

PDFPAPLDVATSP..PNPDGPPPAPGLPIAGRPG......EVPPNVPGTPVPIPQE.APP


PWFGDPNQILTCPAPGARCDQPVKPGLVIPAPSINTGLNPAPADQVQGTPPPVSDPLQRP

Figure S1 Multiple sequence alignment of MtMce1A-1F. The secondary structure elements of the MCE domain are based on the crystal structure of MtMce4 $\mathrm{A}_{39-140}$ and the remaining domains are from secondary structure prediction.

MtMce4A
MtMce4A MtMce4B MtMce4C MtMce4D MtMce4E MtMce4F

A1
belelelelelelelelelele

B1
40
. . . . . . . . . . .MS. GGGSRRTSVRVAAALAGLMVGS䎟VLTYLSYTAAFTSTDTVTVSS MAGSG.VPSHRSMVIKVS . . . VFAVVMLLVA.AGLVVVFGD. . . . . .FRFGPTTVYHAT MLNRKPSSKHERDPLRTGIFGLVLVICVVLIA.F. . .GYSGL. . . . . .PFWPQGKTYDAY MMG . . . . . . . .RVAMLTGSRGLRYATVIALVA.ALVGGVYVL. . . . . . SSTGNKRTIVGY . . . . . . . . . . MN. RIWLRAIILTASSALLAGCQFGGINSLPLPGTAGHGEGAYSVTVE MIDR....... LA.KIQLSIFAVITV....ITLSVMAIFYLRLPA..TFGIGTYGVSAD


MtMce4A MtMce4B MtMce4C MtMce4D
MtMce4E
MtMce4F
PRAGLVMEKGAKVYYGIQVGKVIDISYSGNQAR...IKIAIDSGEMGFIPSAIVRIAG FTDASRIKAGQKVRIAGVPVGSVKAVKLNP..D..HSIDVAFAIDRSYTLYSSTRAVIRY FTDAGGITPGNSVYVSGIKVGAVSAVSLAG......NSAKVTFSVDRSIVVGDQSIAAIRT FTSAVGLYPGDQVRVLGVPVGEIDMIEPRS.... .SDVKITMSVSKDVKVPVDVQAVIMS MADVATLPQNSPVMVDDVTVGSVAGIVAVQRPDGSFYAAVKLDIDKNVLLPANAVAKVSQ FVAGGGLYKNANVTYRGVAVGRVESVGL. .NPNG. . .VTAHMRLNSGTAIPSNVTATVRS


MtMce4A
MtMce4B
MtMce4C
MtMce4D
MtMce4E
MtMce4F

NTIFGAKSVEFIPPKTPSP.KPISPNAHVAASQVLEVNTLFQSLIDLHKIDPIETNA. ENLVGDRFIEITSGPGE. . LRKIPPG..... GIINVAHTQPALDLDAILGGIRPVIKGFD DTILGERSIAAVPAGSG..KS..........tTIPLSRTTTPYTLNGVLQDIGRNANDLN PNLVAARFIQITPVYTG..GAVIPDN.....GRIDLDRTAVPVEWDEVKEGITRLAADLS tSLIGSLHVELAPPTDRPPTGRIVDG.... .SRITEANTDRFPTTEEVFSALGVVVNKGN VSAIGEQYIDUVPPEN.PSSTKむRNG. . . . FRIQRQNURIGQDVADULRQAETLIGSLG

MtMce4A
MtMce4B
MtMce4C
MtMce4D
MtMce4E
MtMce4F

A4
A5
$\begin{array}{cccc}\text { elelelelelelelel } 180 \\ 190 & 200 \\ 210\end{array}$
...........elelelel 170




## MtMce4A

## MtMce4A

MtMce4B
MtMce4C
MtMce4D
MtMce4E
MtMce4F


```
SGQ
```

AGPGPAPHQPAQPAPPPNDNGPPPPFTSWMPPGYPP..EPPQVPYPATIPPPPPPEGTGP

## MtMce 4 A

MtMce4A
MtMce4B
MtMce4C
MtMce4D
MtMce4E
APGAGPG..EHGGGG
PPGPAPGPQPQASGPAYTIYDQLSGAFADPAGGTGIFAPGMTGASSAENWVDLMRDPRQL

Figure S2 Multiple sequence alignment of MtMce4A-4F. The secondary structure elements of the MCE domain are from the crystal structure of $\mathrm{MtMce}^{2} \mathrm{~A}_{39-140}$ and the remaining domains are from secondary structure prediction.


Figure S3 SEC elution profiles of (A) selected individual MtMce1A-1F SBPs and (B) individual MtMce4A-4F SBPs on a 24 mL Superdex 200 10/300 column. The protein samples were analyzed on a $12 \%$ SDS-PAGE (inset).


Figure S4 SEC-MALS profile of Mce1 $\mathrm{A}_{36-148}$ (red), Mce1 $\mathrm{A}_{38-325}$ (blue), Mce1 $\mathrm{A}_{126-454}$ (green), and Mce $1 \mathrm{~A}_{38-454}$ (black). Mce1 $\mathrm{A}_{36-148}$ has a single scattering peak at $\sim 17.5 \mathrm{~mL}$. Whereas other Mce1A domains are purified in DDM showed two scattering peaks corresponds to protein-detergent complex (1214 mL ) and empty detergent micelle. All the samples were injected on a 24 mL Superdex 200 10/300 column.


Figure S5 SEC-MALS profile of Mce4A $39-140$ (red), Mce4A ${ }_{39-320}$ (blue), Mce4A ${ }_{121-400}$ (green), and Mce4A ${ }_{36-400}$ (black). Mce $4 \mathrm{~A}_{39-140}$ has a single scattering peak at $\sim 17.5 \mathrm{~mL}$. Whereas other Mce4A domains are purified in DDM showed two scattering peaks corresponds to protein-detergent complex ( $12-14 \mathrm{~mL}$ ) and empty detergent micelle. All the samples were injected on a 24 mL Superdex 200 10/300 column.


Figure S6 Native mass spectra of $\mathrm{MtMce}^{1} \mathrm{~A}_{36-148}$ at $5 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$ concentration in 20 mM ammonium acetate buffer, pH 6.8 .


Figure S7 Native mass spectra of $\mathrm{MtMce}_{\mathbf{4}} \mathrm{A}_{39-140}$ at $5 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$ concentration in 20 mM ammonium acetate buffer, pH 6.8 .


Figure $\mathbf{S 8}$ (A) CD spectra of MtMce1 $\mathrm{A}_{36-148}$ from $22^{\circ} \mathrm{C}$ to $92{ }^{\circ} \mathrm{C}$. (B) CD spectra of MtMce1 $\mathrm{A}_{36-148}$ from $92{ }^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$.


Figure S9 (A) CD spectra of MtMce4A $39-140$ from $22{ }^{\circ} \mathrm{C}$ to $72{ }^{\circ} \mathrm{C}$. (B) CD spectra of MtMce $4 \mathrm{~A}_{39-140}$ from $92^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$.


Figure S10 Comparison of SEC-MALS of Mce4A ${ }_{39-140}$ in three different conditions: Mce4A ${ }_{39-140}$ in purification buffer ( 50 mM MOPS, $350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, pH 7.0) in blue, Mce4 $\mathrm{A}_{39-140}$ in crystallization buffer ( 0.1 M MES; 0.7 M ammonium sulfate, pH 6.0 ) in red, and $\mathrm{Mce}^{2} \mathrm{~A}_{39-140}$ in crystallization buffer heated up to $50^{\circ} \mathrm{C}$ in black.


Figure S11 The structure-based sequence aligment of all the known Mce SBP structures (EcMlaD, AbMlaD, EcPqiB1-3, and EcLetB1-7) with the MtMce4A ${ }_{39-140}$. The alignment was generated using matchmaker (chimera). The $\beta$-strands and $\alpha$-helices are highlighted in green and yellow, respectively. The PLL loop is highlighted in blue box.


Figure S12 (A) Structural superposition of MtMce4A ${ }_{39-140}$ (pink) with the MCE domain of EcPqiB1-3, $5 \mathrm{UVN}\left(\mathrm{EcPqiB}_{1}\right.$; orange, $\mathrm{EcPqiB}_{2}$; yellow, $\mathrm{EcPqiB}_{3}$; green) monomers. (B) Structural overlap of MtMce4A ${ }_{39-140}$ (pink) with the MCE domain of EcLetB1-7, 6V0C (EcLetB ${ }_{1}$; cyan, EcLetB ${ }_{2}$; green, EcLetB $_{3}$; yellow, EcLetB $_{4}$; peach, EcLetB $_{5}$; gray, EcLetB $_{6}$; purple, and EcLetB ${ }_{7}$; orange) monomers.


Figure $\mathbf{S 1 3}$ (A) The pair distance distribution function, $\mathrm{P}(\mathrm{r})$ curves of MtMce1 $\mathrm{A}_{38-454}$, MtMce1 $\mathrm{A}_{38-325}$ and MtMce1 $A_{126-454 .}(\mathbf{B})$ The $\mathrm{P}(\mathrm{r})$ curves of MtMce4A ${ }_{36-400}$, MtMce4 $\mathrm{A}_{39-320}$ and MtMce4A $\mathrm{A}_{121-400}$. The $\mathrm{P}(\mathrm{r})$ curve of (C) MtMce1 A ${ }_{36-148}$ and (D) MtMce4A 39-140 .
(A)

(B)


Figure S14 (A) SAXS scattering comparison of PDC (black) and empty detergent micelle (red) of MtMce1 $\mathrm{A}_{38-454 \text {. (B) SAXS scattering comparison of PDC (black) and empty detergent micelle (red) of }}$ MtMce4A $36-400$.
(A) MtMce1A $\mathrm{A}_{38-325}$

Extended
Coiled-coil

(B)

Extended


Coiled-coil


Figure S15 (A) The extended (left) and coiled-coil (right) model of MtMce1 $\mathrm{A}_{38-325 \text {. (B) }}$ (Be fit of experimental SAXS data with the proposed models of MtMce1 $\mathrm{A}_{38-325}$.
(A) MtMce4A $39-320$

Extended

(B)

Extended

Coiled-coil


Figure S16 (A) The extended (left) and coiled-coil (right) model of MtMce4A 39-320. (B) $^{\text {(B) The fit of }}$ experimental SAXS data with the proposed models of MtMce4A ${ }_{39-320}$.
(A) MtMce4A ${ }_{121-400}$
(D) Extended



Coiled- coil


Figure S17 (A) The extended and coiled-coil models of MtMce4A $\mathrm{A}_{121-400 .}$ (B) The fit of experimental SAXS data with the proposed models of MtMce4A 121-400.
(A) MtMce1 $\mathrm{A}_{126-454}$
(B) Extended


Figure S18 (A) The extended and coiled-coil models of MtMce1 $\mathrm{A}_{126-454 .}$. (B) The fit of experimental SAXS data with the proposed models of MtMce1 $\mathrm{A}_{126-454 .}$

Table S1 List of primers for MtMce1A-1F constructs

| Construct Name | Primers |
| :---: | :---: |
| MtMce1A-FP- <br> Nco1 | 5' TGT ACC ATG GCA ACG ACG CCG GGG AAG CTG AAC 3' |
| MtMce1A-RP- <br> Xho1 | 5' CCA GCT CGA GTA ATG GGT TGA TCG TGT TAT CCC CTA CCT G 3' |
| MtMce1B-FP- <br> Nco1 | 5' CAC GCC ATG GCA AAA ATC ACT GGA ACC GTC GTC AAA CTC 3' |
| MtMce1B-RP- <br> Xho1 | 5' TCC ACT CGA GTA ATT GCG GCG TGC ACC TAC CCG 3' |
| MtMce1C-FP- <br> Nco1 | 5' GTG CCC ATG GCA AGA ACG CTG GAA CCA CCC AAC 3' |
| MtMce1C-RP- <br> Xho1 | 5' AAG AGA GCT CTA AAT TCT CGC TAC CTC CCG TCA CGC C 3' |
| MtMce1D-FP- <br> Nco1 | 5' AGG TCC ATG GCA TTG AGC ACC ATC TTT GAT ATC CGC 3' |
| MtMce1D-RP- <br> Xho1 | 5' CAG CAC TCG AGT AAT TGA CCC CCT CCT GCC TCA G 3' |
| MtMce1E-FP- <br> Nco1 | 5' AGG ACC ATG GCA ATG AGC GTG CTG GCG CGG AT 3' |
| MtMce1E-RP-Hind III | 5' ATG AAA GCT TTA AGC ACT GGC GAT TTC CCC TTT CTA CCA GCG G 3' |
| MtMce1F-FP- <br> Nco1 | 5' CAG CAC TCG AGT AAT TGA CCC CCT CCT GCC TCA G 3' |
| MtMce1F-RP- <br> Xho1 | 5' TCG GAA GCT TTA AGC TGG CCG GCG CCA GCA TCT C 3' |
| MtMce1A38-454 FP- <br> Nco1 | 5' ATA CCC CAT GGC ACG CGG GGA GTT CAC 3' |


| MtMce1A $\mathrm{A}_{38-454}$ RP- <br> Xho1 | 5' CCA GCT CGA GTA ATG GGT TGA TCG TGT TAT CCC CTA CCT G 3' |
| :---: | :---: |
| MtMce1B29-346 FP- <br> Nco1 | 5' GTG ACC ATG GCA CAG ATG CGC TTC GAC CGG AC 3' |
| MtMce1B29-346 RPXho1 | 5' TCC ACT CGA GTA ATT GCG GCG TGC ACC TAC CCG 3' |
| MtMce1D44-314 FP | 5'- CTC TCC ATG GCA CTG ACG AAC AAC ACG GTG GTC GCC -3' |
| MtMce1退-314 RP | 5' GGT ACT CGA GGT TAA TGT TCG CCG CCA GCG TC 3' |
| MtMce1E 37-390 $^{\text {FP }}$ | 5'CTACTGAGAATCTTTATTTTCAGGGCGCCATGTCCAATGTGGCGATCCCCGG3' |
| MtMce1E 37-390 $^{\text {RP }}$ | 5’ GTGGTGGTGGTGGTGCTCGAGTAAGCACTGGCGATTTCCCC 3' |
| MtMce1F30-314 FP | 5' CTG GTC CAT GGC ACG AAT TCC GAG TCT GGT GGG TAT CGG GC 3' |
| MtMce F $_{30-314} \mathrm{RP}$ | 5' GAA TAC TCG AGC GCC GGC GCG AGC GGC -3' |
| MtMce1 A $_{36-148} \mathrm{FP}$ | 5’ CTTTATTTTCAGGGCGCCATGGCACAGTTTCGCGGGGAGTTCACG-3' |
| MtMce1 A $_{36-148} \mathrm{RP}$ | 5' GTGGTGGTGGTGGTGCTCGAGCTCGGTGGTCACCGACCGTACGTCG-3' |
| MtMce1A 126-454 $^{\text {FP }}$ | 5' CTTTATTTTCAGGGCGCCATGGCA CCGAAAAACCCGACAAAGAGGCGG 3' |
| MtMce1 $\mathrm{A}_{126-454} \mathrm{RP}$ | 5' GTGGTGGTGGTGGTGCTCGAG TAA TGG GTT GAT CGT GTT ATC CCC TAC C 3 ' |
| MtMce1A A38-325 $^{\text {FP }}$ | 5' CTT TAT TTT CAG GGC GCC ATG GCA CGC GGG GAG TTC ACG CCC AAG3' |
| MtMce1A 38-325 $^{\text {RP }}$ | 5' GTG GTG GTG GTG GTG CTC GAG TGA GTT CGT CCT CAG CGA GTA GCC G $3^{\prime}$ |

Table S2 List of primers for MtMce4A-4F constructs

| Construct Name | Primers |
| :---: | :---: |
| MtMce4A-FP-Nco1 | 5' CAG ACC ATG GGG TCC GGC GGC GGA TCT CGA C 3' |
| MtMce4A-RP-Xho1 | 5' GAG CCT CGA GTA AGA AGT CGT CCC GTT CCG CGA ACG 3' |
| MtMce4B-FP-Nco1 | 5' CTT CCC ATG GCG GGC TCG GGC GTT CCC 3' |
| MtMce4B-RP-Xho1 | 5' ACT TCT CGA GCA ATT TAG CAA AGG CGC ACC TCC CCT TGC 3' |
| MtMce4C-FP-Nco1 | 5' GGA GCC ATG GCA TTG CTA AAT AGG AAG CCA AGT AGC 3' |
| MtMce4C-RP-Xho1 | 5' ACC CCT CGA GTA ACG GCG ACT TCG GTC TGA 3' |
| MtMce4D-FP-Nco1 | 5' ACC GCC ATG GCA GTG ATG GGC CGG GTC GCC ATG 3' |
| MtMce4D-RP-Xho1 | 5' CAG ACT CGA GTA ATC CGC CGC CCC CAT GCT CGC CCG 3' |
| MtMce4E-FP-Nco1 | 5' TGG GCC ATG GCA AAC CGA ATC TGG TTG CGC GCC 3' |
| MtMce4E-RP-Hind III | 5' GTC CAA GCT TCA ACT GTC CCG ACG CCG TAC CGG GTG 3' |
| MtMce4F-FP-Nco1 | 5' AGG GCC ATG GCA ATG ATC GAC CGA CTC GCC AAG 3' |
| MtMce4F-RP-Xho1 | 5' TCT GCT CGA GCA ACA GCT GCC TCG GAT CGC GC 3' |
| MtMce 4 $_{36-400} \mathrm{FP}$ | 5' GTG ACC ATG GCA CAG ATG CGC TTC GAC CGG AC 3' |
| MtMce4A ${ }_{36-400} \mathrm{RP}$ | 5' TCC ACT CGA GTA ATT GCG GCG TGC ACC TAC CCG 3' |
| MtMce4A ${ }_{39-140} \mathrm{FP}$ | 5' TTATTTTCAGGGCGCCATGGCCTCTACGGACACCGTCACGGTAT 3' |
| MtMce $4 \mathrm{~A}_{39-140} \mathrm{RP}$ | 5' GTGGTGGTGGTGGTGCTCGAG CTC AAG CTG TAC CTG AGA CGC C 3' |
| MtMce4A ${ }_{121-400} \mathrm{FP}$ | 5' TATTTTCAGGGCGCCATGGCCAAGACGCCGTCGCCCAAGCCG 3' |
| MtMce4A ${ }_{121-400} \mathrm{RP}$ | 5' GTGGTGGTGGTGGTGCTCGAGGAAGTCGTCCCGTTCCGCGAAC 3' |
| MtMce4A39-320 FP | 5' TTATTTTCAGGGCGCCATGGCCTCTACGGACACCGTCACGGTAT 3' |
| MtMce4A39-320 RP | 5' GTGGTGGTGGTGGTGCTCGAG CAA CAC GAA GCT CGA CGA GGT G 3' |
| MtMce4A ${ }_{32-1400} \mathrm{FP}$ | 5' AGAATCTTTATTTTCAGGGCGCCATGGCC GGT GCG CCG TCG TAC ACC TAT CC 3 ' |
| MtMce4A ${ }_{321-400} \mathrm{RP}$ | 5'-GTGGTGGTGGTGGTGCTCGAGGAAGTCGTCCCGTTCCGCGAAC 3' |

Table S3 List of buffers used in SEC purification

| Protein Name | Buffer |
| :---: | :---: |
| MtMce4A, MtMce4C, <br> MtMce4D | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, 1 mM $\beta$-ME, pH 8.0 |
| MtMce4B, MtMce4E, <br> MtMce4F | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, $5 \mathrm{mM} \mathrm{FC-12} ,1 \mathrm{mM} \beta-\mathrm{ME}, \mathrm{pH} 8.0$ |
| MtMce4A $36-400$, <br> MtMce4A $121-400$, | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$-ME, pH 8.0 |
| MtMce4A ${ }_{39}$-320 | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$-ME, pH 8.5 |
| MtMce4A ${ }_{39-140}$ | 50 mM MOPS, $350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, pH 7.0 |
| MtMce1 $\mathrm{A}_{36-148}$ | 50 mM TRIS, $350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, pH 8.5 |
| MtMce1A ${ }_{38-325}$ | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$-ME, pH 7.5 |
| MtMce1A ${ }_{126-454}$ | 50 mM Tris, $350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5mM DDM, 1 mM $\beta$-ME, pH 7.5 |
| MtMce1 $\mathrm{A}_{38-454}$ | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5mM DDM, $1 \mathrm{mM} \beta$-ME, pH 8.0 |
| MtMce1B29-346 | 20 mM Hepes, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 15 mM Fos Choline-12, $1 \mathrm{mM} \beta$ ME, pH 7.0 |
| MtMce1C, MtMce1D44-314 | 50 mM Tris, $300 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$-ME, pH 8.0 |
| MtMce1E ${ }_{37-390}{ }^{*}$ | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 0.05 \%$ C12E9, $1 \mathrm{mM} \beta$-ME, pH 8.0 |
| MtMce1F30-314 | 50 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, $5 \mathrm{mM} \mathrm{DDM} ,1 \mathrm{mM} \beta$-ME, pH 8.0 |
| Lysis buffers for all the purified constructs in DDM and FC-12 had 25 mM of the respective detergents, along with protease inhibitor, lysozyme, DNase and RNase. <br> *The lysis buffer had 25 mM DDM in this case. |  |

Table S4 SAXS structural parameters for MtMce1A and MtMce4A soluble domains (MtMce1A ${ }_{36-148,}$ and MtMce4A $39-140$ )

|  | MtMce1 ${ }_{\text {36-148 }}$ | MtMce4A $39-140$ |
| :---: | :---: | :---: |
| Beamline | B21, DLS, UK | B21, DLS, UK |
| Beam size ( $\mu \mathrm{m}$ ) | 250x250 | 250x250 |
| Detector | Pilatus 2M | Pilatus 2M |
| Wavelength ( $\AA$ ) | 1.00 | 1.00 |
| Camera length (m) | 4.014 | 4.014 |
| Protein concentration ( $\mathrm{mg} \mathrm{mL}^{-1}$ ) | 2.0 | 1.0 |
| Volume injected ( $\mu \mathrm{L}$ ) | 30 | 30 |
| Buffer used | 50mM Tris, $350 \mathrm{mM} \mathrm{NaCl}, 10 \%$ Glycerol, pH 8.5 | 50mM MOPS, 350 mM NaCl , 10\% Glycerol, pH 7.0 |
| Buffer subtraction | SCATTER | SCATTER |
| Primary analysis | PRIMUS | PRIMUS |
| Ab-initio shape | DAMMINN | DAMMINN |
| Atomic structure modelling | Robetta | Crystal structure+ Robetta |
| 3-D representation | PyMOL | PyMOL |
| Guinier and $\mathrm{P}(\mathrm{r})$ analysis |  |  |
| $\mathrm{I}(0) \mathrm{cm}^{-1}$ | 0.023 | 0.01 |
| $\mathrm{Rg}_{\mathrm{g}}(\AA)$ | 21.2 | 20.76 |
| q range ( $\AA$ ) |  |  |
| qRg max | 1.29 | 1.29 |
| $\mathrm{D}_{\max }(\mathrm{A})$ | 87 | 80 |
| $\chi^{2}$ (total estimate from GNOM) | 0.59 | 0.71 |
| Porod volume, $\mathrm{V}_{\mathrm{p}}\left(\AA^{3}\right)$ | 28759 | 22236 |
| Molecular mass derived from $Q_{p}$, MoW, $\mathrm{V}_{\mathrm{c}}$, size \& shape (kDa) | 11.13, 11.60, 15.44, 19.9 | 10.03, 10,30, 14.22, 16.37 |
| DAMMIN parameters |  |  |
| Symmetry, anisotropy assumption | P1 unknown | P1 unknown |


| $\chi^{2}$ | 1.26 | 1.104 |
| :--- | :--- | :--- |
| Atomistic modelling |  | Elongated and compact |
| Model used | Elongated and compact |  |
| Fit | $4.2,14.0$ | $2.0,10.0$ |
| $\chi^{2}$ | SASDJU9 | SASDJV9 |
| SASBDB accession codes |  |  |

Table S5 SAXS structural parameters for MtMce1A domains (MtMce1A ${ }_{38-454}$, MtMce1A $A_{126-454,}$, and MtMce1 $\mathrm{A}_{38-325}$ )

|  | MtMce1 ${ }_{38-454}$ | MtMce1A ${ }_{126-454}$ | MtMce1A ${ }_{38-325}$ |
| :---: | :---: | :---: | :---: |
| Beamline | B21, DLS, UK | B21, DLS, UK | B21, DLS, UK |
| Beam size ( $\mu \mathrm{m}$ ) | $250 \times 250$ | $250 \times 250$ | $250 \times 250$ |
| Detector | Pilatus 2M | Pilatus 2M | Pilatus 2M |
| Wavelength ( $\AA$ ) | 1.00 | 1.00 | 1.00 |
| Camera length (m) | 4.014 | 4.014 | 4.014 |
| SEC-SAXS column | Superdex 200 <br> increase 3.2/300 | Superdex 200 <br> increase 3.2/300 | Superdex 200 <br> increase 3.2/300 |
| Protein concentration ( $\mathrm{mg} \mathrm{mL}^{-1}$ ) | 5 | 5.2 | 6.0 |
| Volume injected ( $\mu \mathrm{L}$ ) | 55 | 55 | 55 |
| Flow rate (mL min ${ }^{-1}$ ) | 0.075 | 0.15 | 0.06 |
| Buffer used | 50 mM Tris, 500 mM $\mathrm{NaCl}, 10 \%$ Glycerol, 5mM DDM, 1 mM $\beta-$ ME, pH 8.0 | 50mM Tris, 350 mM Nacl, 10\%glycerol, 5 mM DDM, 1mM $\beta$ ME, pH 7.5 | 50mM Tris, 500 mM $\mathrm{NaCl}, 10 \%$ Glycerol, 5mM DDM, $1 \mathrm{mM} \beta$ ME, pH 7.5 |
| Buffer subtraction | SCATTER | SCATTER | SCATTER |
| Primary analysis | PRIMUS | PRIMUS | PRIMUS |
| Ab-initio shape | - | - | - |
| Atomic structure modelling | Swiss-model, iTasser | Swiss-model, iTasser | Swiss-model, iTasser |
| 3-D representation | PyMOL | PyMOL | PyMOL |
| Guinier and P(r) analysis |  |  |  |
| $\mathrm{I}(0) \mathrm{cm}^{-1}$ | 0.15 | 0.18 | 0.07 |
| $\mathrm{Rg}_{\mathrm{g}}(\AA)$ | 52.8 | 54.86 | 45.82 |
| qR $\mathrm{R}_{\mathrm{g}}$ max | 1.29 | 1.29 | 1.29 |
| $\mathrm{D}_{\max }(\mathrm{A})$ | 216 | 220 | 175 |
| $\chi^{2}$ (total estimate from GNOM) | 0.63 | 0.62 | 0.67 |


| R factor analysis |  |  |  |
| :---: | :---: | :---: | :---: |
| R factor $=\frac{\sum\left\|I\left(q_{i}\right)-I_{\text {model }}\left(q_{i}\right)\right\|}{\sum I\left(q_{i}\right)}$ <br> (Extended model, coiled-coil) | 1.2 \%, 1.3 \% | 1.5 \%, 2.2 \% | 1.0 \%, 0.9 \% |
| Weighted R factor= $\left(\frac{\sum\left(I\left(q_{i}\right)-I_{\text {model }}\left(q_{i}\right)\right)^{2} / \sigma\left(I\left(q_{i}\right)\right)^{2}}{\sum I\left(q_{i}\right)^{2} / \sigma\left(I\left(q_{i}\right)\right)^{2}}\right)^{0.5}$ <br> (Extended model, coiled-coil) | 1.9 \%, 2.4 \% | 2.3 \%, 3.3 \% | 1.9 \%, 1.6 \% |
| SASBDB accession codes | SASDK32 | SASDK22 | SASDJZ9 |

Table S6 SAXS structural parameters for MtMce4A domains (MtMce4A $\mathrm{A}_{36-400}$, $\mathrm{MtMce} 4 \mathrm{~A}_{121-400}$, and MtMce4A ${ }_{39-320}$ )

|  | MtMce4A ${ }_{36-400}$ | MtMce4A ${ }_{121-400}$ | MtMce4A ${ }_{39-320}$ |
| :---: | :---: | :---: | :---: |
| Beamline | B21, DLS, UK | B21, DLS, UK | B21, DLS, UK |
| Beam size ( $\mu \mathrm{m}$ ) | 250x250 | 250x250 | 250x250 |
| Detector | Pilatus 2M | Pilatus 2M | Pilatus 2M |
| Wavelength ( $\AA$ ) | 1.00 | 1.00 | 1.00 |
| Camera length ( m ) | 4.014 | 4.014 | 4.014 |
| SEC-SAXS column | Superdex 200 increase 3.2/300 | Superdex 200 increase 3.2/300 | Superdex 200 increase 3.2/300 |
| Protein concentration ( $\mathrm{mg} \mathrm{mL}^{-1}$ ) | 5 | 5 | 5 |
| Volume injected ( $\mu \mathrm{L}$ ) | 55 | 55 | 55 |
| Flow rate ( $\mathrm{mL} \mathrm{min}{ }^{-1}$ ) | 0.075 | 0.15 | 0.06 |
| Buffer used | 50 mM Tris, 500 mM $\mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$ ME, pH 8.0 | 50 mM Tris, 500 mM $\mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$ ME, pH 8.0 | 50 mM Tris, 500 mM $\mathrm{NaCl}, 10 \%$ Glycerol, 5 mM DDM, $1 \mathrm{mM} \beta$ ME, pH 8.5 |
| Buffer subtraction | SCATTER | SCATTER | SCATTER |
| Primary analysis | PRIMUS | PRIMUS | PRIMUS |
| Ab-initio shape | - | - | - |
| Atomic structure modelling | Mce4A39-140 Crystal structure, iTasser | Mce4A39-140 Crystal structure, iTasser | Mce4A39-140 Crystal structure, iTasser |
| 3-D representation | PyMOL | PyMOL | PyMOL |
| Guinier and P(r) analysis |  |  |  |
| $1(0) \mathrm{cm}^{-1}$ | 0.20 | 0.17 | 0.17 |
| $\mathrm{Rg}_{\mathrm{g}}(\mathrm{A})$ | 57.35 | 50.26 | 47.54 |
| qRg max | 1.29 | 1.29 | 1.29 |
| $\mathrm{D}_{\max }(\mathrm{A})$ | 215 | 190.88 | 181.90 |
| $\chi^{2}$ (total estimate from GNOM) | 0.51 | 0.68 | 0.69 |


| R factor analysis |  |  |  |
| :---: | :---: | :---: | :---: |
| R factor $=\frac{\sum\left\|I\left(q_{i}\right)-I_{\text {model }}\left(q_{i}\right)\right\|}{\sum I\left(q_{i}\right)}$ <br> (Extended model, coiled-coil) | 1.6 \%, 2.5 \% | 2.0 \%, 2.3 \% | 4.3 \%, 1.8 \% |
| Weighted R factor $\left(\frac{\sum\left(I\left(q_{i}\right)-I_{\text {model }}\left(q_{i}\right)\right)^{2} / \sigma\left(I\left(q_{i}\right)\right)^{2}}{\sum I\left(q_{i}\right)^{2} / \sigma\left(I\left(q_{i}\right)\right)^{2}}\right)^{0.5}$ <br> (Extended model, coiled-coil) | 3.6 \%, 3.4 \% | 5.4 \%, 4.2 \% | 3.6 \%, 2.3 \% |
| SASBDB accession codes | SASDJW9 | SASDJX9 | SASDJY9 |

Table S7 Percent identity matrix for MtMce1A-1F created by Clustal Omega

| MtMce1A-1F |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | MtMce1A | MtMce1B | MtMce1C | MtMce1D | MtMce1E | MtMce1F |
| MtMce1A | 100.00 | 17.07 | 18.11 | 20.15 | 16.76 | 18.88 |
| MtMce1B | 17.07 | 100.00 | 21.52 | 18.64 | 17.77 | 16.13 |
| MtMce1C | 18.11 | 21.52 | 100.00 | 20.67 | 20.68 | 20.31 |
| MtMce1D | 20.15 | 18.64 | 20.67 | 100.00 | 17.63 | 18.41 |
| MtMce1E | 16.76 | 17.77 | 20.68 | 17.63 | 100.00 | 18.32 |
| MtMce1F | 18.88 | 16.13 | 20.31 | 18.41 | 18.32 | 100.00 |

Table S8 Percent identity matrix for MtMce4A-4F created by Clustal Omega

## MtMce4A-4F

|  | MtMce4A | MtMce4B | MtMce4C | MtMce4D | MtMce4E | MtMce4F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MtMce4A | 100.00 | 17.27 | 15.36 | 19.27 | 18.69 | 21.43 |
| MtMce4B | 17.27 | 100.00 | 19.55 | 22.65 | 16.16 | 17.54 |
| MtMce4C | 15.36 | 19.55 | 100.00 | 28.39 | 19.86 | 16.38 |
| MtMce4D | 19.27 | 22.65 | 28.39 | 100.00 | 17.03 | 20.11 |
| MtMce4E | 18.69 | 16.16 | 19.86 | 17.03 | 100.00 | 24.14 |
| MtMce4F | 21.43 | 17.54 | 16.38 | 20.11 | 24.14 | 100.00 |

Table S9 Secondary structure content of MtMce1A and MtMce4A domains

|  | Helix | Anti-Parallel <br> $\beta$-strand | Parallel $\boldsymbol{\beta}$-strand | $\boldsymbol{\beta}$-turn | Random coil |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MtMce1A $36-148$ | $2.3 \%$ | $40.6 \%$ | $3.7 \%$ | $13.5 \%$ | $39.9 \%$ |
| MtMce1A $38-325$ | $27.9 \%$ | $13.3 \%$ | $9.8 \%$ | $18.0 \%$ | $33.7 \%$ |
| MtMce1A $126-454$ | $30.6 \%$ | $11.7 \%$ | $8.8 \%$ | $17.6 \%$ | $30.6 \%$ |
| MtMce1A $38-454$ | $38.3 \%$ | $8.5 \%$ | $7.2 \%$ | $16.3 \%$ | $25.7 \%$ |
| MtMce4A $39-140$ | $6.7 \%$ | $24.2 \%$ | $3.9 \%$ | $13.2 \%$ | $52 \%$ |
| MtMce4A $39-320$ | $28.0 \%$ | $12.8 \%$ | $9.9 \%$ | $17.9 \%$ | $34.8 \%$ |
| MtMce4A $121-400$ | $33.8 \%$ | $10.5 \%$ | $7.8 \%$ | $17.1 \%$ | $26.8 \%$ |
| MtMce4A $36-400$ | $37.5 \%$ | $8.3 \%$ | $7.1 \%$ | $25.6 \%$ |  |

Table S10 Secondary structure comparison of MtMce4A ${ }_{39-140}$ in solution and crystal structure

|  | In solution | Crystal structure |
| :--- | :---: | :---: |
| alpha-Helix (distorted) | 6.70 | 4.10 |
| $\beta$-strands (parallel and | 28.10 | 39.04 |
| Anti-parallel) |  |  |
| $\beta$-turn | 13.20 | 8.90 |
| Others | 52.00 | 47.95 |

