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University of Helsinki, Department of Physics, PO Box 64, FI-00014 Helsinki,

Finland. E-mail: ari-pekka.honkanen@helsinki.fi

This supplementary material amends the main text by providing the mathematical

details for derived theoretical results.For a quick review of underlying assumptions in

the model and its special case applications, see Appendix A.

1. General Theory

1.1. Solving the deformation field of arbitrarily shaped toroidally bent crystal wafer

Consider an arbitrarily shaped thin anisotropic crystal wafer of thickness d presented

in Figure 1. We choose a Cartesian coordinate system (x, y, z) so that the origin of the

system coincides with the midplane of the wafer with the z-direction parallel to the

normal of the crystal surface. The displacement vector field ε due to two orthogonal
1 https://orcid.org/0000-0002-6822-3062
2 https://orcid.org/0000-0003-4506-8722

PREPRINT: A Journal of the International Union of Crystallography



2

torques acting on the wafer about the x- and y-axes is (Chukhovskii et al., 1994)

εx = (S11µx + S12µy)xz + (S51µx + S52µy)
z2

2
+ (S61µx + S62µy)

yz

2
(1)

εy = (S21µx + S22µy)yz + (S41µx + S42µy)
z2

2
+ (S61µx + S62µy)

xz

2
(2)

εz = −(S11µx + S12µy)
x2

2
− (S21µx + S22µy)

y2

2

− (S61µx + S62µy)
xy

2
+ (S31µx + S32µy)

z2

2
(3)

where Sij are components of the compliance matrix as used in the Voigt notation1.

For the subsequent mathematical convenience the torques µx and µy are scaled so

that they are presented in units of torque per unit length per the area moment of

inertia. The subscript of the scaled torques refers to direction along which the torque

primarily bends the crystal, not their axes (µx acts about the y-axis and µy about the

x-axis). The displacement vector field (1)–(3) applies for the case where the out-of-

plane deformation is sufficiently small to not cause significant stretching in the in-plane

directions and is thus called a pure bending solution (Chukhovskii et al., 1994).

When transverse (x, y) dimensions of the wafer are small compared to the toroidal

bending radii R1 and R2, the vertical (z) deflection ζ of the wafer can be approximated

by a paraboloidal surface

ζ(x, y) =

(
cos2 φ

R1
+

sin2 φ

R2

)
x2

2
− sin 2φ

(
1

R1
− 1

R2

)
xy

2
+

(
sin2 φ

R1
+

cos2 φ

R2

)
y2

2
(4)

where φ is the in-plane inclination of the bending radii with the Cartesian coordinate

axes x and y (clockwise-positive). Comparing Eq. (4) to Eq. (3), we see that under

the action of µx and µy the vertical deflection of the midplane (z = 0) wafer adopts a

paraboloidal shape approximating the toroidal bending (see Fig. 2).

In principle the problem could be inverted by fixing ζ by choosing R1, R2, and φ

and solving the torques µx and µy by equating Eqs. (3) and (4). When µx and µy

1 In the Voigt notation, a pair of indices ij is replaced with a single index m as follows: 11 → 1;
22 → 2; 33 → 3; 23, 32 → 4; 13, 31 → 5 and 12, 21 → 6. The compliance matrix S in the Voigt
notation is given in terms of the compliance tensor s so that Smn = (2 − δij)(2 − δkl)sijkl, where ij
and kl are any pairs of indices corresponding to m and n, respectively, and δ is the Kronecker delta.
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are known, the pure bending solution is completely known and thus can be used in

diffraction calculations. However, since there are two torques and three parameters

that define the shape and orientation of the deflection in z, the only two of R1, R2,

and φ can be chosen freely and the third one is determined by Sij . For example, in the

case of spherical bending R1 = R2 which means that the xy-term in Eq. (4) should

vanish. However, this requires that S61µx + S62µy = 0 in Eq. (3), which is not true in

the general case.

The torques acting on the wafer in natura are imposed by the contact to the sub-

strate onto which the wafer is forced and can choose their axes of action freely to

conform the shape of the wafer to that of the substrate. Therefore we introduce an

additional degree of freedom to the pure bending solution by allowing the joint rota-

tion of µx and µy in plane, which is sufficient to allow R1, R2, and φ to be chosen

freely. The solution (1)–(3) assumes that µx and µy act about the fixed coordinate

axes x and y but mathematically the same effect can be achieved by introducing the

additional in-plane rotational degree of freedom α to Sij and φ instead. Combining

Eqs. (3) and (4) with well-known trigonometric identities, we thus need to find the

torques µx and µy and the in-plane rotation angle α so that the following equations

are fulfilled simultaneously:

S′
11µx + S′

12µy = −1

2

(
1

R1
+

1

R2

)
− 1

2

(
1

R1
− 1

R2

)
cos 2φ′ (5)

S′
21µx + S′

22µy = −1

2

(
1

R1
+

1

R2

)
+

1

2

(
1

R1
− 1

R2

)
cos 2φ′ (6)

S′
61µx + S′

62µy =

(
1

R1
− 1

R2

)
sin 2φ′ (7)

where S′
ij are the components of the rotated compliance matrix and φ′ = φ+ α.

To simplify the problem, we set φ = 0 i.e. we choose the orientation of the toroidal

surface so that the bending radii R1 and R2 are oriented parallel to the x- and y-axes,

respectively. This can be done without a loss of generality, since Sij can always be

IUCr macros version 2.1.10: 2016/01/28
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rotated in-plane so that relative orientation of the crystal directions to the toroidal

surface is kept fixed. Now solving µx and µy from Eqs. (5) and Eqs. (6) yields

µx =
(S′

12 − S′
22)(R1 +R2) + (S′

12 + S′
22)(R1 −R2) cos 2α

2(S′
11S

′
22 − S′

12S
′
12)R1R2

(8)

µy =
(S′

12 − S′
11)(R1 +R2)− (S′

12 + S′
11)(R1 −R2) cos 2α

2(S′
11S

′
22 − S′

12S
′
12)R1R2

(9)

where S′
12 = S′

21 based on the symmetry of S was used. Now, substituting the obtained

torques to Equation (7) leads to the condition

[
2(S′

12S
′
12 − S′

11S
′
22) sin 2α+

[
S′
61(S

′
22 + S′

12)− S′
62(S

′
11 + S′

12)
]
cos 2α

]
(R1 −R2)

=
[
S′
61(S

′
22 − S′

12) + S′
62(S

′
11 − S′

12)
]
(R1 +R2) (10)

The in-plane rotation angle α fulfilling the condition (10) can be solved by performing

a rotation to the compliance tensor s according to

s′ijkl =
∑

p,q,r,s

QipQjqQkrQlsspqrs (11)

where Q is the rotation matrix corresponding to the counterclockwise rotation by α

about z-axis that is given by

Q =


cosα − sinα 0

sinα cosα 0

0 0 1

 . (12)

Constructing the relevant components of the rotated compliance matrix S′ from s′ijkl

allows us to write the Eq. (10) in terms of S:

(Aα sin 2α+Bα cos 2α)(R1 −R2) = (Cα sin 2α+Dα cos 2α)(R1 +R2) (13)

where

Aα ≡ S66(S11 + S22 + 2S12)− (S61 + S62)
2 (14)

Bα ≡ 2 [S62(S12 + S11)− S61(S12 + S22)] (15)

Cα ≡ S66(S22 − S11) + S2
61 − S2

62 (16)

Dα ≡ 2 [S62(S12 − S11) + S61(S12 − S22)] . (17)
IUCr macros version 2.1.10: 2016/01/28
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Solving for α, we find

α =
1

2
atan

[
Dα(R1 +R2)−Bα(R1 −R2)

Aα(R1 −R2)− Cα(R1 +R2)

]
+

πn

2
, (18)

where n ∈ Z. The derivation of the obtained expression is based on the assumption

that at least either of S′
61 or S′

62 is non-zero. By examining the rotated components in

detail, we find that this assumption fails if the following conditions are simultaneously

true: S61 = S62 = 0, S11 = S22, and S11 + S22 − 2S12 − S66 = 0. These are fulfilled

by elastically isotropic materials and specifically oriented crystals e.g. cubic systems

with [111] or its equivalent directions parallel to z-axis. In such a case, Eq (7) reduces

to sin 2α = 0 which leads to α = πn/2. Since any valid α suits the purpose, we may

choose n = 0 for simplicity in both cases.

Since the crystal does not rotate physically, we need to compensate the applied

in-plane rotation by rotating the coordinate system as well. This means the rotation

of the displacement vector ε′ = QT ε and replacement of the scalar coordinates by

x → x cosα+y sinα and y → y cosα−x sinα. Note that we do not apply the rotation

to the products S′
ijµk as these terms behave as constant scalars. Thus the components

of the displacement vector field in the pure bending solution [Eqs. (1)–(3)] for spherical

bending become

ε′x = −xz

R1
+
[
(S′

51µx + S′
52µy) cosα− (S′

41µx + S′
42µy) sinα

] z2
2

(19)

ε′y = − yz

R2
+
[
(S′

51µx + S′
52µy) sinα+ (S′

41µx + S′
42µy) cosα

] z2
2

(20)

ε′z =
x2

2R1
+

y2

2R2
+ (S′

31µx + S′
32µy)

z2

2
(21)

where the S′
ij , α, µx and µy are best calculated numerically using Eqs. (8), (9), (11)

and (18). Note that ε′z(x, y, 0) corresponds to the vertical deflection

ζ(x, y) =
x2

2R1
+

y2

2R2
(22)
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corresponding to φ = 0. Assuming the diffraction to take place in the xz-plane, the

partial derivatives needed for the diffraction calculations are

∂ε′x
∂x

= − z

R1

∂ε′z
∂x

=
x

R1

∂ε′z
∂z

= (S′
31µx + S′

32µy)z

∂ε′x
∂z

= − x

R1
+
[
(S′

51µx + S′
52µy) cosα− (S′

41µx + S′
42µy) sinα

]
z (23)

For the isotropic case2, the torques given by Eqs. (8) and (9) reduce to

µx = − E

1− ν2

(
1

R1
+

ν

R2

)
µy = − E

1− ν2

(
ν

R1
+

1

R2

)
(24)

and thus the partial derivatives of ε′ become

∂ε′x
∂x

= − z

R1

∂ε′x
∂z

= − x

R1

∂ε′z
∂x

=
x

R1

∂ε′z
∂z

=
ν

1− ν

(
1

R1
+

1

R2

)
z (25)

The partial derivatives (23) can be used as a deformation term in the Takagi-Taupin

equations (Takagi, 1962; Taupin, 1964; Takagi, 1969) to estimate the intensity of X-

rays diffracted by the crystal as a function of incident wavelength or incidence angle

aka the diffraction curve of a bent crystal due to a particular set of crystalline planes

of toroidally bent crystals. However, the pure bending solution Eq. (23) alone is inad-

equate as it fails to explain the diffraction curves of SBCAs with a large surface area

(Verbeni et al., 2009; Honkanen et al., 2014; Rovezzi et al., 2017). This is because,

in addition to pure bending strain, the flat crystal wafer is also stretched and com-

pressed in the transverse (in-plane) directions in order to fit on a spherical surface.

These deformations affect the d-spacing i.e. the separation of the diffracting Bragg

planes due to non-zero Poisson ratio and thus the resolution function of the SBCA.

In the scope of linear elasticity, the total strain tensor is ε̃ij = ε′ij + uij , where in

addition to the pure bending strain ε′ij we include the stretching component uij . In

what follows, a theoretical foundation for solving uij is presented.
2 The non-zero components are S′

11 = S′
22 = S′

33 = 1/E, S′
12 = S′

21 = S′
13 = S′

31 = S′
23 = S′

32 = −ν/E,
and S′

44 = S′
55 = S′

66 = 2(1 + ν)/E

IUCr macros version 2.1.10: 2016/01/28
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According to Hooke’s law, the components of the strain tensor due to stretching uij

are connected to the stretching stress tensor σij via

uij =
∑
k,l

sijklσkl (26)

where sijkl is the compliance tensor. Using the Voigt notation to convert the fourth-

order compliance tensor to a matrix, Equation (26) gives the following relations

uxx = S11σxx + S12σyy + S16σxy (27)

uyy = S21σxx + S22σyy + S26σxy (28)

uxy =
1

2
(S61σxx + S62σyy + S66σxy) . (29)

In Eqs.(27)–(29) we have assumed σxz = σyz = σzz = 0, since the external forces

required to bend a thin plate are small compared to the internal stresses and can thus

be omitted at this stage. For an isotropic crystal, the relations simplify to

uxx =
σxx − νσyy

E
uyy =

σyy − νσxx
E

uxy =
1 + ν

E
σxy, (30)

where E is Young’s modulus and ν is Poisson’s ratio.

The transverse components of uij are given by Eq. (14.1) in (Landau et al., 1986)[p.

51] as follows

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∂ζ

∂xi

∂ζ

∂xj
, (31)

where ui are the components of the displacement vector due to stretching and ζ is the

vertical displacement of the wafer. The possible values of i and j are now restricted to

the in-plane directions x and y. The strain tensor must fulfil the equilibrium condition∑
k ∂σik/∂xk = 0 which is ascertained if we write the σij as a function of χ = χ(x, y),

also known as the Airy stress function, so that

σxx =
∂2χ

∂y2
, σxy = − ∂2χ

∂x∂y
, σyy =

∂2χ

∂x2
. (32)
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We are now set to find uij which we will achieve by minimising the relevant ther-

modynamic potential, that is, the Helmholtz energy (Amenzade, 1979)[pp. 72]. The

Helmholtz energy density f for the mechanical deformation is given by

f =
1

2

∑
k,l

ε̃klσ̃kl (33)

where the total stress tensor σ̃kl is related to the total strain tensor ε̃kl via Hooke’s

law. Generally we can divide ε̃kl and σ̃kl to sums of two components ε̃kl = (εkl)1+(εkl)2

and σ̃kl = (σkl)1 + (σkl)2 where the respective components are connected by Hooke’s

law. Integrating over the volume of the wafer thus gives the Helmholtz energy

F = F1 + F2 +
1

2

∫
dV

∑
k,l

[
(εkl)1(σkl)2 + (εkl)2(σkl)1

]
(34)

where

Fi =
1

2

∫
dV

∑
k,l

(εkl)i(σkl)i. (35)

In the general case, the cross-term in Eq. (34) is non-zero. However, if we assume that

• (σkl)i = 0 when k or l = z

• (εkl)1 (and thus (σkl)1) is proportional to z for all k, l

• (εkl)2 (and thus (σkl)2) is independent of z for all k, l

then the cross-term vanishes and the total energy F = F1 + F2. If the wafer is thin

i.e its thickness is much smaller than its in-plane dimensions, then the external forces

needed to deflect the wafer in z-direction are much smaller than the internal stresses

and thus (σzl)i = (σkz)i = 0 for all k, l. We can also assume that strains and stresses

due to in-plane stretching have very little z-dependence in a thin wafer. Finally, since

in the absence of stretching component the deformation of the crystal is described by

the pure bending solution, we know that the non-stretching component has to be at

least approximately linear in z; any higher order terms can be considered negligible.

We thus conclude that for a thin crystal the Helmholtz energy F can be written as

sum of two separate components F1 and F2.
IUCr macros version 2.1.10: 2016/01/28
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Since we already know that the pure bending solution is the answer in absence of

stretching, we know that it minimizes F1 and thus we can focus solely on the other

component F2. Dropping out the subscript for simplicity, the stretching energy can

be written as

F =
d

2

∫
Ω
dΩ
∑
k,l

uklσkl =
d

2

∫
Ω
dΩ

(
uxxσxx + 2uxyσxy + uyyσyy

)
, (36)

where the integration goes over the crystal surface Ω. Substituting Eqs.(27)–(29), we

obtain

F =
d

2

∫
Ω
dΩ

(
S11σ

2
xx+S22σ

2
yy+S66σ

2
xy+2S12σxxσyy+2S16σxxσxy+2S26σyyσxy

)
, (37)

which in the isotropic case simplifies to

F =
d

2E

∫
Ω
dΩ

[
σ2
xx + 2(1 + ν)σ2

xy + σ2
yy − 2νσxxσyy

]
. (38)

The deformation field can be now found by minimizing F in terms of χ, i.e., we

need to find χ so that the functional derivative δF/δχ = 0. While we could try to

solve the problem using the Euler-Lagrange equations, we may utilize the fact that

the dimensions of the crystals are small compared to the bending radii R1,2. Therefore

we may write the ansatz in powers of x/R1 and y/R2 and truncate the series after a

few lowest-order terms. The F is then minimized in terms of the expansion coefficients

Ck. Since F is quadratic in terms of χ and thus in terms of Ck, the problem of solving

the Euler-Lagrange equations is thus reduced to a finite linear system ∂F/∂Ck = 0.

Taking the partial derivatives of Eq. (37), we find

∂kF = d

∫
Ω
dΩ

[
(S11∂kσxx + S12∂kσyy + S16∂kσxy)σxx

+(S12∂kσxx + S22∂kσyy + S26∂kσxy)σyy

+(S16∂kσxx + S26∂kσyy + S66∂kσxy)σxy
]

(39)

IUCr macros version 2.1.10: 2016/01/28



10

where a shorthand ∂k ≡ ∂/∂Ck has been used. For the isotropic crystal the equations

simplify to

∂kF =
d

E

∫
Ω
dΩ

[
(∂kσxx − ν∂kσyy)σxx + (∂kσyy − ν∂kσxx)σyy +2(1+ ν)(∂kσxy)σxy

]
.

(40)

In addition, we need to impose two constraints to the energy minimization to include

the toroidal bending and the requirement that the integrated contact force at the

wafer–substrate interface acting on the wafer vanishes. First, for the toroidal bend-

ing we need to find the relationship between χ and the vertical displacement ζ. As

presented in Appendix B, by combining Eqs. (27)–(29), (31), and (32), we obtain the

following partial differential equation

D4χ =

(
∂2ζ

∂x∂y

)2

− ∂2ζ

∂x2
∂2ζ

∂y2
, (41)

where

D4 ≡ S11
∂4

∂y4
+ (2S12 + S66)

∂4

∂x2∂y2
+ S22

∂4

∂x4
− 2S16

∂4

∂x∂y3
− 2S26

∂4

∂x3∂y
. (42)

Substituting the toroidal displacement ζ(x, y) = x2/2R1 + y2/2R2 into Eq. (41), we

thus obtain

D4χ = − 1

R1R2
, (43)

which in the isotropic case simplifies to

∇4χ = − E

R1R2
. (44)

In addition, since contact force P per unit area, as given in Appendix C, between

the wafer and substrate is the only external force acting on the wafer, we require that

its integral over the surface has to vanish in order the wafer to stay stationary i.e.

P = −d

(
σxx
R1

+
σyy
R2

)
. (45)

IUCr macros version 2.1.10: 2016/01/28
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Thus the integrated contact force Fc required to vanish over the wafer–substrate inter-

face is

Fc = −d

∫
Ω
dΩ

(
σxx
R1

+
σyy
R2

)
= 0. (46)

Limiting the expansion of χ up to the fourth-order, Equations (43) and (46) can be

imposed to the energy minimization by defining a new functional L = F+λ1fc+λ2Fc

where λ1,2 ∈ R are the Lagrange multipliers, Fc is given by Eq. (46) and the constraint

fc = D4χ+
1

R1R2
= 0. (47)

The stretching energy thus minimized by finding the set of values {Ck, λ1, λ2} that

solve the linear system 
∂L
∂Ck

= 0

∂L
∂λ1,2

= 0
(48)

thus determining χ which further fully determines the stress and strain fields via

Eqs. (26) and (32) needed for the X-ray diffraction calculations as detailed in Sec-

tion 1.2. In the case of expansions of χ higher than fourth order, additional linear

relations of Ck need to be added to the system to ensure that the constraint (47)

holds for all x and y.

1.2. Calculation of the diffracted X-ray intensities

In conjunction with the pure bending strain field, the transverse stretching part

has a significant contribution to the X-ray diffraction properties of the crystal due to

the reactive strain perpendicular to the diffractive crystal planes mediated by the off-

diagonal elements of the compliance matrix, which is also known as the Poisson effect.

According to Hooke’s law [Eq. (26)], these components in terms of the transverse

IUCr macros version 2.1.10: 2016/01/28
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stretching stress are

uxz =
1

2
(S41σxx + S42σyy + S46σxy) (49)

uyz =
1

2
(S51σxx + S52σyy + S56σxy) (50)

uzz = S31σxx + S32σyy + S36σxy. (51)

For the isotropic case, the components uxz and uyz vanish and the remaining one

reduces to

uzz = −ν(uxx + uyy)

1− ν
= − ν

E
(σxx + σyy) (52)

In principle, the calculated total strain field of the pure bending and stretching com-

ponents can be directly used as a deformation term in the Takagi-Taupin equations

but it is computationally a daunting task for a three-dimensional macroscopic crystal.

However, as shown previously in (Honkanen et al., 2016), the problem can be substan-

tially reduced by solving the diffraction curve from the Takagi-Taupin equations using

the depth-dependent bending strain ε′ij and convolving the resulting curve with the

contribution due to the stretching strain uij which is assumed to be constant in the

diffraction domain of any single ray. Assuming that the incidence angle of the X-rays

are fixed and the wavelength is varied, the mean wavelength λ of the pure bending

diffraction curve is changed due to uij by an amount ∆λ according to Eq. (11) of

(Honkanen et al., 2016):

∆λ

λ
=

∂(u · ĥ)
∂s‖

+
∂(u · ĥ)
∂s⊥

cot θB (53)

where u is the displacement vector corresponding to the stretching strain tensor uij ,

s‖ and s⊥ are directions parallel and perpendicular to the reciprocal lattice vector h

(ĥ = h/|h|) and θB is the Bragg angle, as presented in Figure 2 of the main text.

Assuming that the diffraction takes place in the xz-plane, Eq. (53) can be written in

IUCr macros version 2.1.10: 2016/01/28
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terms of photon energy E = hc/λ as

∆E
E

= −∂uz
∂z

cos2 ϕ−
(
∂ux
∂z

+
∂uz
∂x

)
sinϕ cosϕ− ∂ux

∂x
sin2 ϕ

−
[
∂uz
∂x

cos2 ϕ+

(
∂ux
∂x

− ∂uz
∂z

)
sinϕ cosϕ− ∂ux

∂z
sin2 ϕ

]
cot θB, (54)

where the asymmetry angle ϕ is measured between z-axis and h, clockwise-positive.

Since the strain is assumed to be constant in the volume of interest, the components

of the displacement vector can be written as

ux = u(0)x + u(1)x x+ u(2)x z uz = u(0)z + u(1)z x+ u(2)z z (55)

where u(i)x and u
(i)
z are constants with respect to x and z. Taking the partial derivatives

of ux and uz and comparing to uij = (∂iuj + ∂jui)/2 (note that the term containing

derivatives of ζ can be omitted as it is of the second order), we find that

ux = u(0)x + uxxx+ u(2)x z uz = u(0)z + (2uxz − u(2)x )x+ uzzz. (56)

Since the bottom of the wafer is in contact with the substrate, this means that uz = 0

at the wafer-substrate interface for every x. Therefore we find that u
(2)
x = 2uxz and

thus the partial derivatives of ux and uz are

∂ux
∂x

= uxx
∂ux
∂z

= 2uxz
∂uz
∂x

= 0
∂uz
∂z

= uzz. (57)

Substituting these into Eq. (54) thus allows us to write the energy shift in terms of

the strain tensor:

∆E
E

=− uzz cos
2 ϕ− 2uxz sinφ cosϕ− uxx sin

2 ϕ

+
[
(uzz − uxx) sinϕ cosϕ+ 2uxz sin

2 ϕ
]
cot θB (58)

which in the symmetric Bragg case simplifies to

∆E
E

= −uzz. (59)
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The diffraction (or resolution) curve of the whole crystal wafer is then obtained by

calculating the distribution ρ∆E of energy shifts∆E over the surface and convolving the

resulting distribution with the depth-dependent Takagi-Taupin curve solved for the

pure bending solution Eq. (23). How to use the Takagi-Taupin theory for diffraction

calculations is explained elsewhere e.g. in (Gronkowski, 1991) and will not be pursued

further in this work.

Formally ρ∆E(ε) for a particular energy shift ε is obtained by summing all the

surface elements dΩ whose energy shift ∆E = ε i.e.

ρ∆E(ε) ∝
∫
Ω
dΩ δ(∆E − ε) (60)

where δ is the Dirac delta function and ∆E = ∆E(x, y) is understood to be a function

of position. Similarly, for rocking curve measurements with a monochromatic beam,

the shifts in the diffraction angle are

∆θ =−
(
uzz cos

2 ϕ+ 2uxz sinϕ cosϕ+ uxx sin
2 ϕ
)
tan θB

+ (uzz − uxx) sinϕ cosφ+ 2uxz sin
2 ϕ (61)

which in the symmetric Bragg case simplifies to

∆θ = −uzz tan θB. (62)

Note that Eq. (62) ceases to be valid near θB = π/2 since it is based on the first order

Taylor expansion. The corresponding distribution as a function of shift angle α is

ρ∆θ(α) ∝
∫
Ω
dΩ δ(∆θ − α). (63)

The contribution of energy or angular shifts to the resolution in the respective scan

domains can be estimated by calculating the standard deviation of the appropriate

distribution.

Usually changes in both E and tan θB are minute during scans which means that

they can be considered constants. Thus the distributions of ∆E and ∆θ differ only by
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a multiplicative factor. Therefore, for the sake of brevity, only the derivation of the

∆E distributions is presented in the following section.

2. Important special cases

In this section we apply the general framework to derive a few important results

that are especially relevant considering current trends in the contemporary instru-

ment design. Transverse stretching strain and stress fields due to toroidal bending are

derived for circular and rectangular wafers of elastically anisotropic materials, due to

their prevalent use in the crystal analyser. In addition, their isotropic counterparts are

derived and analysed separately to obtain simplified models for better understanding

of anisotropic models and quick analytical estimation of various diffraction properties.

In derivations special attention is put on the spherical bending for three reasons:

1) most of the current state-of-the-art TBCA:s belong to this subclass, 2) availability

of the experimental diffraction curves, and 3) it is less complicated to derive the

more general toroidal models through examining the spherical bending. The last point

becomes evident when we examine the energy minimization constraints. By denoting

R ≡ R1 = R2, the first constraint [Eq. (47)] becomes

fc = D4χ+
1

R2
= 0, (64)

from which the toroidal case can be fully recovered if we replace the spherical bending

radius with the geometrical mean of the toroidal bending radii i.e. R →
√
R1R2.

Therefore the only real difference between the toroidal and spherical bending may

arise from the second, contact force constraint of Eq. (46). However, it turns out that

in the cases examined in the following, a solution obtained from minimizing the energy

using only the first constraint fulfils automatically also the second one. Therefore, it

is sufficient to find a solution using the spherical case and to show that it leads to a

vanishing contact force in the toroidal case.
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2.1. Isotropic circular wafer

Consider a spherically bent, isotropic circular crystal wafer with the diameter L and

bending radius R. As per to the general approach, we could use a truncated series

in terms of x/R and y/R as an ansatz for the sought-after χ. However, since the

physical system possesses the perfect radial planar symmetry, we can also find the

exact solution to the problem with relative ease.

The formal solution to spherical constraint Eq. (44) is the sum of the general solu-

tion to the homogeneous biharmonic equation ∇4χ0 = 0 and any special solution

to nonhomogeneous equation. In polar coordinates (r, φ) the general solution to the

homogeneous biharmonic equation is known as the Michell solution (Michell, 1899).

For a radially symmetric problem, the solution is required to be independent of φ so

the Michell solution simplifies to χ0 = A0r
2+B0r

2 ln r+C0 ln r, where A0, B0 and C0

are coefficients to be determined. A special solution to Eq. (44) is χ1 = −Er4/64R2,

which is easy to see by substitution. Thus the complete radially symmetric solution

to Eq. (44) is

χ = χ0 + χ1 = − E

64R2
r4 +A0r

2 +B0r
2 ln r + C0 ln r. (65)

The coefficients are can now be found by minimizing the stretching energy. However,

the task can be further simplified by examining the components of stress. Since σij

are given by the second derivatives of χ, we can set B0 = C0 = 0; otherwise we would

obtain diverging components of the stress tensor at r = 0 owing to the logarithmic

terms in χ. Thus from Eq. (32), we obtain

σxx = − E

16R2
(x2+3y2)+2A0, σxy =

E

8R2
xy, σyy = − E

16R2
(3x2+y2)+2A0. (66)

Considering the constraints of minimization, we note that the spherical bending is

already enforced by the chosen form of χ, so we do not have to include the constraint

(47) into the linear system (48) explicitely. Furthermore, we choose to neglect the
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contact force constraint (46) for now, thus reducing the linear system to a single

equation:
∂F
∂A0

= 0. (67)

Substituting ∂σxx/∂A0 = ∂σyy/∂A0 = 2 and ∂σxy/∂A0 = 0 to Equation (40), the

condition becomes∫
Ω
dΩ σxx + σyy =

∫ 2π

0
dφ

∫ L/2

0
dr r

(
4A0 −

E

4R2
r2
)
= 0, (68)

where the prefactor 2d(1−ν) has been dropped out. Carrying out the integration, the

stretching energy is found to be minimized when

A0 =
EL2

128R2
. (69)

Substituting (69) back to (66), we thus obtain

σxx =
E

16R2

(
L2

4
− x2 − 3y2

)
, σxy =

E

8R2
xy, σyy =

E

16R2

(
L2

4
− 3x2 − y2

)
.

(70)

Substituting these into the Equations (30) and (52), we obtain the following non-zero

components of the strain tensor:

uxx =
1

16R2

[
(1− ν)

L2

4
− (1− 3ν)x2 − (3− ν)y2

]
(71)

uyy =
1

16R2

[
(1− ν)

L2

4
− (1− 3ν)y2 − (3− ν)x2

]
(72)

uxy =
1 + ν

8R2
xy (73)

uzz =
ν

4R2

(
x2 + y2 − L2

8

)
(74)

Now, as per the discussion in the beginning of the current section, we now attempt to

generalise the solution to the toroidal bending by a trivial substitution R →
√
R1R2.

According to Eq. (45), the contact force between the wafer and the substrate per unit

area is thus

P =
Ed

16R2
1R

2
2

[
(3R1 +R2)x

2 + (R1 + 3R2) y
2 − (R1 +R2)

L2

4

]
. (75)
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Integrating P over the surface of the wafer results in zero net force which means

that the previously omitted constraint (46) is in fact fulfilled by the solution obtained

without its explicit inclusion. We therefore conclude that the solution, even though

derived for a spherical bending, is valid also for the toroidal case.3

The symmetry considered, it is convenient to give the components of the stress

tensor in the cylindrical coordinates as well. Since the stress and strain tensors are

second-rank contravariant tensors, they transform as

T ′
ij =

∑
k,l

∂x′i
∂xk

∂x′j
∂xl

Tkl (76)

where T ′
ij are the components in the new coordinate system {x′i} and Tkl are the

components in the old system {xk}. Therefore in cylindrical coordinates4

T ′
rr = cos2 φTxx + 2 sinφ cosφTxy + sin2 φTyy (77)

T ′
rφ = − sinφ cosφTxx + (cos2 φ− sin2 φ)Txy + sinφ cosφTyy (78)

T ′
φφ = sin2 φTxx − 2 sinφ cosφTxy + cos2 φTyy (79)

T ′
rz = cosφTxz + sinφTyz (80)

T ′
φz = − sinφTxz + cosφTyz (81)

T ′
zz = Tzz. (82)

Thus we obtain

σrr =
E

16R2

(
L2

4
− r2

)
σrφ = 0 σφφ =

E

16R2

(
L2

4
− 3r2

)
. (83)

3 This is despite the fact that we assumed the ansatz of χ to be circularly symmetric, as the bending
radii enter the free energy minimization only through their product.
4 The angular coordinate φ is actually handled here as rφ in order to keep the physical unit of
the coordinates and thus the dimensions of the transformed tensor components consistent with the
Cartesian representation.
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Similarly for the strain tensor we have

urr =
1

16R2

[
(1− ν)

L2

4
− (1− 3ν)r2

]
(84)

uφφ =
1

16R2

[
(1− ν)

L2

4
− (3− ν)r2

]
(85)

urφ = 0 (86)

uzz =
ν

4R2

(
r2 − L2

8

)
(87)

We find that the radial normal stress σrr vanishes at the edge of the wafer which implies

that no external forces are acting normal to the edge of the wafer in the minimum

energy solution. This is in correspondence with physical crystal wafers whose edges

are laterally freestanding i.e. not in contact with anything that would apply in-plane

compression or extension to them. Also the shear components σrφ and urφ are zero

everywhere which can be interpreted that the crystal is not twisted about the z-

axis. However, the most interesting behaviour is expressed by the angular normal

stress σφφ which is negative near the edge and changes sign at r = L/
√
12. This is

a natural consequence from the geometrical fact that the flat wafer cannot fit on a

toroidal surface without transverse (in-plane) deformation. The minimization of the

deformation energy indicates that the edges of the wafer are compressed angularly but

extended in-plane near the center to adopt the toroidal shape. This is in contrast to

the previous work where the wafer was assumed to be unstretched at the center and

compressed at the edge (Honkanen et al., 2014). The discrepancy arises from the fact

that the previous approach was based solely on the geometrical considerations of the

spherical bending which does not fix the value of the elastic energy of the wafer. The

requirement of the energy minimization does not alter the resolution curve drastically

but does lead to e.g. non-vanishing integrated contact force on the wafer–substrate

interface. The derivation presented in this work is theoretically more sound and thus

expected to be physically more accurate.
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As a curiosity it is interesting to note that the qualitative behaviour of urr is different

for ν < 1/3 and ν > 1/3. Whereas in the former case the radial strain is largest at the

centre of the wafer, in the latter it is largest at the edge. This is because the radial

and angular normal stresses σrr and σφφ, respectively, influence urr in the opposite

manner and whichever is the dominant factor is determined by the value of Poisson’s

ratio.

Using Equation (59), we find that the energy shift ∆E as a function of surface

position is
∆E
E

= − ν

4R2

(
r2 − L2

8

)
. (88)

The isocurves of the energy shift are circular as one would expect on the basis of

the radial symmetry. Substituting the obtained ∆E to Eq. (60) and carrying out the

integration, we find the energy shift distribution

ρ∆E(ε) =


constant, −νL2E

32R2 ≤ ε ≤ νL2E
32R2

0 otherwise

(89)

The found uniform distribution can be used to convolve the depth-dependent Takagi-

Taupin solution to predict the diffraction curve of an TBCA.

To quickly estimate the effect of transverse strain to the energy resolution, we note

that the variance of a uniform distribution with a width of w is w2/12 and thus the

standard deviation of the energy shift distribution (89) is

σ =
νL2E

32
√
3R2

. (90)

The standard deviation due to transverse strain can be then combined with the stan-

dard deviations of other contributions (depth-dependent Takagi-Taupin solution, inci-

dent bandwidth, etc.) by quadratic summing in accordance with the central limit theo-

rem. Usually the full-width-at-half-maximum (FWHM) is used instead of the standard

deviation, in the case of which σ is to be multiplied by 2
√
2 ln 2. This underestimates
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the true FWHM of Eq. (89) approximately by a factor of 0.68 but, regarding the

central limit theorem, gives more accurate contribution to the total FWHM.

2.2. Anisotropic circular wafer

The solving procedure follows the same steps for elastically anisotropic crystals as

for the isotropic case. However, since the anisotropy of the crystal does not generally

follow the symmetry of the wafer, we should relax the circular symmetry requirement

for the ansatz of χ as well. In general, the candidate solution can be written as a

polynomial series of x/R and y/R:

χ(x, y) =
∞∑

m,n=0

Cm,n

(
x

R

)m ( y

R

)n

(91)

For a typical crystal analyser x/R and y/R are order of 0.1 or less. Thus we may opt

to truncate the series representation of χ up to the few lowest orders. Substituting

Eq. (91) into the nonhomogeneous biharmonic equation (44), we find that the simplest

solution is of the fourth order. Expanded, the ansatz is then

χ = C11xy +
1

2

(
C20x

2 + C02y
2 + C21x

2y + C12xy
2 + C22x

2y2
)

+
1

3

(
C31x

3y + C13xy
3
)
+

1

6

(
C30x

3 + C03y
3
)
+

1

12

(
C40x

4 + C04y
4
)

(92)

where the numerical prefactors are added for the subsequent convenience. Coefficients

C00, C10, and C01 are set to zero since they do not affect the stress tensor components.

Using Eq. (32), the transverse stress tensor components are

σxx = C02 + C12x+ C22x
2 + C03y + 2C13xy + C04y

2 (93)

σyy = C20 + C21y + C22y
2 + C30x+ 2C31xy + C40x

2 (94)

σxy = −C11 − C21x− C12y − C31x
2 − C13y

2 − 2C22xy (95)

The bending constraint (47) now becomes

fc = S11C04 + S22C40 + (2S12 + S66)C22 − 2(S16C13 + S26C31) +
1

2R2
= 0. (96)
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Omitting the contact force constraint (46) at this stage, the coefficients Cij are solved

by minimizing the constrained stretching energy which is presented in Appendix D.

The resulting stretching stress tensor components are

σxx =
E′

16R2

(
L2

4
− x2 − 3y2

)
σyy =

E′

16R2

(
L2

4
− 3x2 − y2

)
σxy =

E′

8R2
xy (97)

where

E′ =
8

3(S11 + S22) + 2S12 + S66
(98)

which, in comparison to stresses obtained in the isotropic case [Eq. (70)], can be

interpreted as effective Young’s modulus. For isotropic crystal E′ = E but in general

E′ 6= 1/S11.

Since the form of the obtained stresses is identical to that of the isotropic case,

the immediate implication is that the contact force is equivalent to Eq. (75) when

effective Young’s modulus is used. Therefore the obtained anisotropic solution also is

generalisable to the toroidal bending by the trivial substitution R →
√
R1R2.

Substituting the obtained stresses to Eqs. (27)–(29) and (49)–(51) gives the following

strain tensor components:

uxx =
E′

16R2

[
(S11 + S12)

L2

4
− (S11 + 3S12)x

2 − (3S11 + S12)y
2 + 2S16xy

]
(99)

uyy =
E′

16R2

[
(S21 + S22)

L2

4
− (S21 + 3S22)x

2 − (3S21 + S22)y
2 + 2S26xy

]
(100)

uzz =
E′

16R2

[
(S31 + S32)

L2

4
− (S31 + 3S32)x

2 − (3S31 + S32)y
2 + 2S36xy

]
(101)

uxz =
E′

32R2

[
(S41 + S42)

L2

4
− (S41 + 3S42)x

2 − (3S41 + S42)y
2 + 2S46xy

]
(102)

uyz =
E′

32R2

[
(S51 + S52)

L2

4
− (S51 + 3S52)x

2 − (3S51 + S52)y
2 + 2S56xy

]
(103)

uxy =
E′

32R2

[
(S61 + S62)

L2

4
− (S61 + 3S62)x

2 − (3S61 + S62)y
2 + 2S66xy

]
. (104)

Expressed in polar coordinates, the components of the stress tensor are

σrr =
E′

16R2

(
L2

4
− r2

)
σrφ = 0 σφφ =

E′

16R2

(
L2

4
− 3r2

)
(105)
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and the most important strain tensor component5 from the viewpoint of diffraction

calculations is given by

uzz =
E′

16R2

[
(S31 + S32)

L2

4
−
[
2(S31 + S32) +

√
(S32 − S31)2 + S2

36 cos(2φ+ β)

]
r2
]

(106)

where β = atan[S36/(S32 − S31)].

The symmetric stress tensor is expected to be radially symmetric since transversally

anisotropic stress would even itself out, as argued previously in (Honkanen et al., 2014).

However, the symmetry is broken in the strain tensor due to the anisotropic elastic

properties of the crystal. Generally the isocurves of uzz are elliptical whereas for the

isotropic case they are circular. The derived expression for uzz is otherwise identical

to the previously found result in (Honkanen et al., 2014) except for the constant

term proportional to L2. As discussed in the previous subsection, this is due to the

fact that in the previous geometrically based method the total elastic energy was not

considered. However, it should be noted that the original approach leads to the same

solution if the integrated contact force is required to vanish.

As for the isotropic case, the shifts ∆E in the diffraction energy are obtained from

Eq. (59). By substituting to Eq. (60) and carrying out the radial integration we find

that

ρ∆E(ε) ∝
∫ 2π

0
dφ Γ(φ, ε) (107)

where

Γ(φ, ε) =


1

2A+B cos 2φ
when −A−B cos 2φ < ε < A

0 otherwise

(108)

where the constants are

A = −(S31 + S32)E
′L2E

64R2
B =

E′L2E
64R2

√
(S32 − S31)2 + S2

36. (109)

5 For the sake of brevity, the other components are not presented here as transforming them using
Eqs. (77)–(82) is straightforward but the results are lengthy and give little extra value to the discussion
of the topic at hand.
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Note that β has been dropped from the argument of the cosine for simplicity since

the integration goes over 2π. Furthermore from the symmetry of cos 2φ it follows that

the integrating Eq. (107) over 2π is equal to integration over [0, π/2] and multiplying

the result by 4. Thus

ρ∆E(ε) ∝
∫ π/2

0
dφ Γ(φ, ε). (110)

Now since acos(x)/2 can be uniquely mapped over the shortened integration range,

we can find an angle 0 < φ0 < π/2 above which the inequality ε > −A − B cos 2φ

ceases to be valid. Therefore we may get rid of the piecewise definition of Γ(φ, ε) by

replacing the upper limit in the integral Equation (110) with

φ0(ε) =
1

2
acos

−A− ε

B
(111)

and thus obtain

ρ∆E(ε) ∝
∫ φ0(ε)

0
dφ

1

2A+B cos 2φ
=

1√
4A2 −B2

atan

[
(2A−B) tanφ0(ε)√

4A2 −B2

]

=
1√

4A2 −B2
atan

√
(B − 2A)(ε+A+B)

(B + 2A)(ε+A−B)
(112)

when −A − B < ε < −A + B. In the interval −A + B ≤ ε < A the integral (110)

evaluates to a constant which is found by taking the limit φ0(ε) → π/2 of Eq. (112).

Thus we find the energy shift distribution

ρ∆E(ε) = k ×



atan

√
(B − 2A)(ε+A+B)

(B + 2A)(ε+A−B)
−A−B < ε < −A+B

π

2
−A+B ≤ ε < A

0 otherwise

(113)

where k > 0 is a proportionality constant. Plots of Equation (113) with a selected

values of B/A are presented in Figure 3 of the main text. When B = 0, the situation

is equivalent to that of the isotropic circular case as the distribution of energy shifts is

found to be constant and the energy shift isocurves traced over the crystal surface are

perfect circles. For non-zero B, the isocurves become elliptical which means that they
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are intercepted by the circular edge away from the wafer centre, as illustrated in Fig. 4

of the main text. The discontinuous isocurves influence the energy shift distribution by

introducing a tail on the low energy side of the curve whose prominence is proportional

to B/A ratio.

An important practical implication of elliptical isocurves is that there is a specific

direction along the surface in which the energy shift varies fastest. Since S31 and

S32 are negative, the gradient of uzz as per to Eq. (106) is steepest in the radial

direction when cos(2φ + β) = −1 i.e. φ = (−β ± π)/2. This has relevance in regards

to the resolution function in cases where the surface area of a TBCA needs to be

limited transversally in one direction e.g. to minimize the Johann error by masking

the surface, or to reduce the space occupied by the analyser by cutting its edges off.

To optimize the intrinsic resolution of the analyser, the surface area should be reduced

where the gradient is steepest.6 For example, masking the edges of a spherical Si(660)

analyser with 100 mm diameter and 1 m bending radius using a 80 mm wide slit

can improve the energy resolution (measured from the standard deviation) by 13% in

near-backscattering conditions if the mask is aligned over the direction of the steepest

gradient, which is [110]. However, in the worst-case scenario when the mask is oriented

perpendicular to the optimal case, the resolution degrades by 3% in comparison to the

unmasked crystal. In the worst case, the resolution of the SBCA in question can thus

be 18% worse than with optimal masking/cutting which is not a negligible detriment.

The directions of steepest gradient for selected crystal planes in cubic systems are

listed in Table 1.

To estimate the contribution of transverse strain to the energy resolution, the stan-

dard deviation of Eq. (113) can be calculated from the first and second moments of
6 The cut SBCAs in the X-ray Raman scattering spectrometer at the beamline ID20 at ESRF are
optimized in this manner (Huotari et al., 2017).
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the normalized distribution, and is found to be

σ =
ν ′L2E
32
√
3R2

√
1 +

K2

2
(114)

where we have introduced the effective Poisson’s ratio

ν ′ ≡ − 4(S31 + S32)

3(S11 + S22) + 2S12 + S66
(115)

and the eccentricity factor

K ≡ B

A
= −

√
(S32 − S31)2 + S2

36

S31 + S32
. (116)

The FWHM compliant with the central limit theorem is obtained by multiplying σ by

2
√
2 ln 2. In the isotropic case ν ′ = ν and K = 0, thus reducing Eq. (114) expectedly

to Eq. (90). For convenience, Table 1 tabulates the effective Young’s moduli, Poisson

ratios, and eccentricity factors for selected crystal plane directions of Si and Ge.

The predictions of the anisotropic circular model were calculated for four different

types of SBCA and compared to two separate experimental data sets acquired at ESRF

and first published in (Honkanen et al., 2014) and (Rovezzi et al., 2017). In Figure 5

of the main text are presented the reflectivity curves measured in near-backscattering

conditions from three Si(660) and two Si(553) analysers all with the bending radius

of 1 m, 100 mm diameter and 300 µm wafer thickness. The curves were acquired

using two circular masks with aperture diameters of 30 mm and 60 mm, and without

mask (aperture 100 mm). Figure 6 of the main text presents the comparison of the

current model with and without the contribution of Johann error (Johann, 1931) to

the reflectivity curves measured at two different Bragg angles of two Si(555) circular

analysers with the bending radii of 1 m and 0.5 m. The diameter and thickness of

the wafers were 100 mm and 150 µm, respectively. Further experimental details are

presented in the original sources.

Compared with the previous work which was based on the geometrical considera-

tions and did not account for the minimization of the elastic energy, slight differences
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between two models are observed but they are found to be less than the variation

between different SBCA units, as seen in Fig. 5 of the main text. This excludes one

explanation put forth in the previous work for the discrepancy between the data and

the model at the low-energy tail of the diffraction curve for the full analyser, according

to which the observed difference could be due to non-vanishing σrr at the wafer edge in

the previous model. One possible explanation to the discrepancy is the imperfections

in manufacturing process, as it is found that the figure error in anodically bonded

analysers is largest at the edge (Verbeni et al., 2005). Another explanation could be

a slight deviation from the Rowland circle geometry that is not included in the cal-

culations. The latter hypothesis is supported by the data in Fig. 6 of the main text

where the deviations are more prominent. According to the theory, the stresses and

strains due to stretching are a factor of 4 larger in a wafer that has half the bending

radius than in a wafer otherwise identical. Even for considerably higher transverse

stress, the theory predicts correctly the observed boxcar shape and its width for the

measured 0.5 m Si(555) analyser. The general shape and the width of the predicted

1 m Si(555) curve are in line with the measurements but is not as precise as for the set

of Si(660) and Si(553) analysers in Fig. 5 of the main text. The most probable reason

for this is the contribution of the aforementioned deviation from the Rowland circle

geometry, the effect of which is amplified at lower Bragg angles. In the experimental

description, it is mentioned that the radius of the Rowland circle was adjusted by

optimizing the product of total counts and peak intensity divided by the FWHM for

each analyser (Rovezzi et al., 2017). Since the different contributions to the energy

resolution of an SBCA are not truly independent of each other, such an optimization

can lead to partial cancellation of some contribution by another and thus lead to a

better resolution than expected in the exact Rowland circle configuration. Therefore

to accurately characterise the elastic contribution to resolution functions of SBCAs,
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the near-backscattering condition is recommended to minimise the geometrical effects.

2.3. Isotropic rectangular wafer

We assume that a spherically bent, rectangular crystal wafer is centred at x = y = 0

with sides of length a and b aligned parallel with x- and y-axes, respectively. Since

the wafer is symmetric under transformations x → −x and y → −y, we immediately

conclude that the series Eq. (91) can contain only even terms i.e. Cm,n = 0 if either

m or n is odd. Thus we arrive at the fourth-order ansatz

χ(x, y) =
1

2

(
C20x

2 + C02y
2 + C22x

2y2
)
+

1

12

(
C40x

4 + C04y
4
)
, (117)

with the added numerical prefactors. In addition, we set C00 = 0 since it has no

contribution to the sought-after stress tensor. Thus using Equations (32) we obtain

from (117)

σxx = C22x
2 + C04y

2 + C02, σxy = −2C22xy, σyy = C22y
2 + C40x

2 + C20. (118)

The coefficients Cij are found by minimizing the stretching energy F under the require-

ment that χ fulfils the non-homogeneous biharmonic equation (44). The details of the

minimization are presented in Appendix E. As a result, the following stretching strain

tensor components are found:

σxx =
E

gR2

[
a2

12
− x2 +

(
1 + ν

2
+ 5

a2

b2
+

1− ν

2

a4

b4

)(
b2

12
− y2

)]
(119)

σyy =
E

gR2

[
b2

12
− y2 +

(
1 + ν

2
+ 5

b2

a2
+

1− ν

2

b4

a4

)(
a2

12
− x2

)]
(120)

σxy =
2E

gR2
xy, (121)

where

g = 8 + 10

(
a2

b2
+

b2

a2

)
+ (1− ν)

(
a2

b2
− b2

a2

)2

. (122)
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We now assume that the obtained solution for the stresses is valid also for the general

toroidal bending. From Eq. (45) we find the contact force per unit area to be

P = − Ed

gR2
1R

2
2

[(
R1

(
1 + ν

2
+ 5

b2

a2
+

1− ν

2

b4

a4

)
+R2

)(
a2

12
− x2

)

+

(
R2

(
1 + ν

2
+ 5

a2

b2
+

1− ν

2

a4

b4

)
+R1

)(
b2

12
− y2

)]
(123)

Integrating P over the analyser surface results in zero net contact force, which indicates

that the constrained omitted in the minimization is automatically fulfilled and the

obtained solution is indeed generalisable to the toroidal by a trivial substitution R →
√
R1R2.

An interesting observation is that, contrary to the case of circular wafers, at the

edges of the wafer the stress tensor elements describing the normal stress perpendicular

to the edge do not vanish. One could argue that the order of the ansatz used is not

high enough. However, at least up to the eighth-order, it turns out that requiring the

solution to simultaneously to fulfil Eq. (44) and lead to vanishing normal stress at the

edges is not possible unless the expansion coefficients of χ higher that the fourth-order

are zero. Fixing the normal component of the stress at the edges completely determines

the solution in the fourth order that is necessarily less relaxed than the one obtained

through the minimization of energy in Appendix E. Further, it turns out that the

integrated contact force [Eq. (46)] of such a solution is non-zero, which is incompatible

with the assumption that the wafer is bent and held onto the spherical substrate by

the adhesive force between the wafer and substrate alone. Thus it seems that non-

zero normal stress at the edges of the wafer is a real part of the rectangular model

arising from the mechanical contact between a rectangular wafer and the spherical

surface and not an artefact due to the low-order polynomial ansatz. However, since

the physical wafer is of finite thickness, the toroidal surface can not possibly support

the lateral edges above the immediate contact between the wafer and the surface.
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This implies that the true physical stretching strain field can have a more complicated

form than assumed in the method and thus cause deviations between the predicted

and measured diffraction curves at the wafer edges. More in-depth analysis of the edge

region is, however, beyond the scope of this work.

Substituting Eqs. (119) and (120) to Eq. (52), the most relevant strain tensor com-

ponent for the diffraction calculations is thus found to be

uzz =
ν

gR2

[(
3 + ν

2
+ 5

b2

a2
+

1− ν

2

b4

a4

)(
x2 − a2

12

)

+

(
3 + ν

2
+ 5

a2

b2
+

1− ν

2

a4

b4

)(
y2 − b2

12

)]
(124)

Equation (124) for three different a/b ratios is visualised in Figure 7 of the main text.

In general, the crystal planes normal to the surface are compressed in the center of

the wafer and expanded at the edges, which is reactionary to transverse extension at

the center and contraction at the edges of the wafer via non-zero Poisson’s ratio. The

isocurves of uzz are found to be elliptical in shape, albeit being cut near the edges of

the wafer. The major axis of the isocurves are along the longer dimension of the wafer

and the strain grows fastest along the minor axes. For the special case of a = b, the

isocurves become circles following the symmetry of the crystal similar to the isotropic

circular wafer. It is interesting to note that whereas in the case of circular wafer non-

circular isocurves result from the breaking of radial symmetry by the anisotropy of

elastic properties of the crystal, for the rectangular wafer it is broken by lifting the

90◦ rotation symmetry.

As before, the energy shifts according to Eq. (59) are ∆E = −uzzE . Substituting

this to Eq. (60), utilizing the symmetries and carrying out the integration along x

results to

ρ∆E(ε) ∝
∫ b/2

0
dy


1√

C − ε−By2
when 0 < C − ε−By2 < Aa2

4

0 otherwise

(125)
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where

A =
νE
gR2

(
3 + ν

2
+ 5

b2

a2
+

1− ν

2

b4

a4

)
B =

νE
gR2

(
3 + ν

2
+ 5

a2

b2
+

1− ν

2

a4

b4

)

C =
Aa2 +Bb2

12
. (126)

By performing a change of the integration variable, Eq. (125) becomes

ρ∆E(ε) ∝
∫ Bb2/4

0
du


1√

(C − ε)u− u2
when C − ε− Aa2

4 < u < C − ε

0 otherwise

(127)

The indefinite solution to the integral is 2 atan(
√
u/(C − ε− u)) but the integration

range is altered by the limits imposed on u. Depending whether Aa2 > Bb2 or Aa2 <

Bb2, the integration ranges as a piecewise function of ε can be classified respectively

to the Case I or II as indicated by Figure 3. It can be shown that A(a/b)2 − B is a

monotonically decreasing function of a/b with the root a/b = 1 and thus the conditions

simplify to a < b for the Case I and a > b for the Case II. For a = b the cases become

identical. As per Fig. 3, the integration ranges are

Case I :



[C − ε− Aa2

4 , Bb2

4 ] when C − Aa2

4 − Bb2

4 < ε < C − Aa2

4

[0, Bb2

4 ] when C − Aa2

4 ≤ ε ≤ C − Bb2

4

[0, C − ε] when C − Bb2

4 < ε < C

(128)

Case II :



[C − ε− Aa2

4 , Bb2

4 ] when C − Aa2

4 − Bb2

4 < ε < C − Bb2

4

[C − ε− Aa2

4 , C − ε] when C − Bb2

4 ≤ ε ≤ C − Aa2

4

[0, C − ε] when C − Aa2

4 < ε < C

(129)

Thus the energy shift distribution in the Case I (a < b) is found to be

ρ∆E(ε) = k×



π

2
− atan

√
4(C−ε)
Bb2

− 1− atan
√

4(C−ε)
Aa2

− 1 when − Aa2+Bb2

6 < ε < −2Aa2−Bb2

12

π

2
− atan

√
4(C−ε)
Bb2

− 1 when − 2Aa2−Bb2

12 ≤ ε ≤ Aa2−2Bb2

12

π

2
when Aa2−2Bb2

12 < ε < Aa2+Bb2

12

0 otherwise
(130)
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where k > 0 is the proportionality constant. The distribution in the Case II (a > b)

is identical to Eq. (130) provided that all Aa2 are replaced with Bb2 and vice versa.

Examples of energy shift distribution given by Eq. (130) are presented in Figure 8

of the main text for rectangular wafers with constant area but various side length

ratios. As in the anisotropic circular case, distribution has a flat portion consisting of

complete elliptical isocurves and a left-hand side tail caused by the isocurves cropped

by the wafer edges in (see Fig. 7 of the main text).When a 6= b, the tails exhibit a

non-differentiable kink due to the isocurves being cropped at different energy shifts

along the minor and major axes. Keeping a/b constant, the width of the curve scales

proportional to the surface area of the wafer or, equivalently put, to the second power

of its linear dimensions and to good accuracy it is directly proportional to the Poisson

ratio.

The energy resolution of due to transverse stretching can be estimated by calculating

the standard deviation σ of Eq. (130). By integrating the first and second moments

of the normalized distribution, we obtain

σ =
1

6
√
5

√
A2a4 +B2b4

=
νabE
6gR2

√
6 + 2ν +

115 + 2ν − ν2

20
M1 + (1− ν)M2 +

(1− ν)2

20
M3 (131)

where

Mk =

(
a2

b2

)k

+

(
b2

a2

)k

. (132)

The FWHM compliant with the central limit theorem is obtained by multiplying σ

by 2
√
2 ln 2. The standard deviation of the energy shift distribution for various ν is

plotted in the left panel of Fig. 4 as a function wafer side length ratio. It can be

seen that regardless of ν, the standard deviation is maximised and thus the energy

resolution of the wafer is the worst when a/b = 1 as already indicated by Fig. 8 of the

main text.
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Although not obvious from the expression, the square root term divided by g in

Eq. (131) is found to depend rather weakly on ν (Fig. 4, right panel). Therefore

in practice the exact relation can be approximated to the sufficient extent by the

following, considerably simpler expression

σ ≈ νabE
12

√
2R2

√
1 + 0.4M1

1 +M1
(133)

which is accurate within a few precent over the range 0 < ν < 1 being near exact for

ν = 0.5.

2.4. Anisotropic rectangular wafer

In principle the solution for the anisotropic rectangular wafer is obtained by follow-

ing the same steps as for the anisotropic circular wafer, except for the fact that the

integration domain is different. However, it turns out that even though an analytical

solution exists, it is too complicated to be practical. Therefore the best approach to

anisotropic crystal is to find the solution to the linear system numerically. However,

the analytical solution simplifies problem slightly as it turns out that the coefficients

C30 = C03 = C21 = C12 = 0. In addition, the Lagrange multiplier for the integrated

contact force λ2 = 0 which, in line with the derivations so far, allows us to omit

that constraint from the energy minimization.7 Thus we can reduce the number of

unknowns to be solved from 14 down to 9. We now write the ansatz in the following

form

χ = C11xy +
1

2

(
C20x

2 + C02y
2
)
+ 6C22x

2y2 + 4
(
C31x

3y + C13xy
3
)
+ C40x

4 + C04y
4

(134)

where the numerical prefactors are chosen to simplify the form of the linear system.

Substituting the ansatz to Eqs. (32), we find the transverse stress tensor components
7 An interesting question is whether the integrated contact force vanishes automatically in the mini-
mization of L = F +λ1fc, or does it happen e.g. for certain crystal symmetries. Intuitively one could
expect the former, as the wafer is easiest to bend by applying a (relatively) weak force normal to the
surface but showing this mathematically is out of the scope of this paper.
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to be

σxx = C02 + 12C22x
2 + 24C13xy + 12C04y

2 (135)

σyy = C20 + 12C22y
2 + 24C31xy + 12C40x

2 (136)

σxy = −C11 − 12C31x
2 − 24C22xy − 12C13y

2 (137)

The toroidal minimization constraint [Eq. (47)] is now

fc = 24(2S12 + S66)C22 − 48S26C31 − 48S16C13 + 24S22C40 + 24S11C04 +
1

R1R2
= 0

(138)

The linear system to be minimized is presented in a matrix form Appendix F. After

the numerical minimization, the components of the stretching tensor are obtained

from Eqs. (135)–(137) and the components of the corresponding strain tensor from

Eqs. (27)–(29) and (49)–(51). The contact force can be calculated from Eq. (45).

The predicted reflectivity curves from the anisotropic model are compared to the

isotropic one for Si(008), Si(555) and Si(731) reflections in Figure 9 of the main text. In

general, the isotropic model seems to follow its more intricate anisotropic counterpart

rather well when Poisson’s ratio used for the model is calculated by averaging the

anisotropic Poisson’s ratio over 2π in-plane i.e.

ν = − 1

2π

∫ 2π

0
dφ

S′
13

S′
11

(139)

where S′
ij are now taken to be functions of φ. Calculated ν for selected reflections of

Si and Ge are presented in Table 1. Unlike for the anisotropic circular crystal, the

shape of the resolution curve do not seem to change considerably between different

reflections even though their width varies. This is an indication that, as in the isotropic

model, the shape of the resolution curve is largely determined by the aspect ratio of

the wafer whereas Poisson’s ratio scales its width.

However, the isotropic model fails to capture some details in the reflectivity curves,

most notably the effect of the in-plane orientation of the crystal which for some reflec-
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tions [e.g. Si(008)] can cause a significant effect to the resolution curve of the crystal.

Nevertherless, as it is evident from Eqs. (135)–(137), the isocurves of the transverse

stresses, and thus the strains as well, are elliptical in shape as they are in the isotropic

case, although for some crystals and orientations the main axes of the ellipses may be

inclined with respect to sides of the wafer, as seen for Si(731) in Fig. 9 of the main

text.

For the investigated reflections, the isotropic model with in-plane averaged Poisson’s

ratio ν appears to be a reasonable approximation to the anisotropic one at least for

cubic systems. Further theoretical or computational work is needed to extrapolate the

conclusion to other crystal systems.

Appendix A
List of Assumptions

This appendix lists the assumptions made in the derivation of theory and the special

cases.

General theory

• Crystal wafer is arbitrarily shaped in the xy-plane, constant thickness in z

• No restrictions are put on the crystal symmetry

• The compliance matrix S is presented in the Voigt notation.

• Deformations of the wafer are in the scope of linear elasticity

• Crystal wafer is assumed to be thin i.e. its dimensions are much larger in the

xy-plane than in the z-direction

• Bending radii of the toroidal deformation are assumed to be large compared to

the xy-dimensions of the wafer
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• Toroidal deformation can be approximated with paraboloidal surface (corollary

to the previous assumption)

• Meridional bending radius is aligned with the x-axis and the sagittal one with

the y-axis

• The pure bending solution with two acting torques can accurately produce the

deformation field of an arbitrary paraboloidal displacement when the torques

are allowed to rotate jointly in-plane

• External forces or body forces acting on the crystal are assumed to be negligible

in comparison to the internal stresses

• Total strain tensor can be divided into two parts: the pure bending and stretching

components

• Pure bending strain tensor components are linear in z (corollary to thin wafer

assumption)

• Stretching strain tensor components are independent of z (corollary to thin wafer

assumption)

• Total elastic deformation energy is the sum of pure bending energy and the

stretching energy (corollary to previous two assumptions)

• Total stress and strain tensors can be found by minimizing the two aforemen-

tioned energy components separately

• Mechanical deformation energy is minimized under two constraints: the vertical

(z) deflection of the wafer follows toroidal surface; and the integrated contact

force between the wafer and the surface is zero

• The solution can be found by low-order polynomial expansion of the stress func-

tion χ

• Diffraction of X-rays is calculated from the Takagi-Taupin theory

• Diffraction takes place in xz-plane
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• Components of the stretching strain tensor are (near) constant in the diffraction

domain of a single ray

• Pure bending component of the strain seen by X-ray at any (x, y)-position of

the wafer is the same

• Total diffraction curve of the full wafer can be calculated by convolving the pure

bending Takagi-Taupin solution with the contribution of the stretching part

(corollary to the previous two assumptions)

Important special cases

• Energy minimizations are made without the integrated contact force constraint;

the validity of constraint is checked afterwards

• The Mitchell solution gives the full solution to the isotropic circular wafer

• Fourth-order expansion is sufficiently accurate for χ based on the isotropic cir-

cular case solution

• No additional boundary conditions for the stress or strain tensor are enforced

• Rectangular wafers are assumed to be aligned with the meridional and sagittal

bending radii

• Rectangular symmetry is required of the χ ansatz for the isotropic rectangular

wafer

• To approximate the anisotropic rectangular wafer with the isotropic model, Pois-

son’s ratio is obtained by averaging the anisotropic Poisson’s ratio in the xy-

plane

• Strips of the strip-bent analyser can be approximated with masked rectangular

wafers

Appendix B
Connection of vertical displacement and transverse stress
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From Hooke’s law, the transverse components of the strain relate to the stresses by

uxx = S11σxx + S12σyy + S16σxy (140)

uyy = S21σxx + S22σyy + S26σxy (141)

uxy =
S61

2
σxx +

S62

2
σyy +

S66

2
σxy (142)

For large deflections, the strain tensor components are

uxx =
∂ux
∂x

+
1

2

(
∂ζ

∂x

)2

(143)

uyy =
∂uy
∂y

+
1

2

(
∂ζ

∂y

)2

(144)

uxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

+
∂ζ

∂x

∂ζ

∂y

)
(145)

Substituting the former and stresses from Eq. (32) to Eqs. (140)–(142) we obtain

∂ux
∂x

+
1

2

(
∂ζ

∂x

)2

= S11
∂2χ

∂y2
+ S12

∂2χ

∂x2
− S16

∂2χ

∂x∂y
(146)

∂uy
∂y

+
1

2

(
∂ζ

∂y

)2

= S21
∂2χ

∂y2
+ S22

∂2χ

∂x2
− S26

∂2χ

∂x∂y
(147)

∂ux
∂y

+
∂uy
∂x

+
∂ζ

∂x

∂ζ

∂y
= S61

∂2χ

∂y2
+ S62

∂2χ

∂x2
− S66

∂2χ

∂x∂y
(148)

By taking the partial derivatives ∂2/∂y2, ∂2/∂x2, and −∂2/∂x∂y of Eqs. (140), (141),

and (142), respectively, we find

∂3ux
∂x∂y2

+
∂ζ

∂x

∂3ζ

∂x∂y2
+

(
∂2ζ

∂x∂y

)2

= S11
∂4χ

∂y4
+ S12

∂4χ

∂x2∂y2
− S16

∂4χ

∂x∂y3
(149)

∂3uy
∂x2∂y

+
∂ζ

∂y

∂3ζ

∂x2∂y
+

(
∂2ζ

∂x∂y

)2

= S21
∂4χ

∂x2∂y2
+ S22

∂4χ

∂x4
− S26

∂4χ

∂x3∂y
(150)

− ∂3ux
∂x∂y2

− ∂3uy
∂x2∂y

− ∂3ζ

∂x2∂y

∂ζ

∂y
− ∂3ζ

∂x∂y2
∂ζ

∂x
− ∂2ζ

∂x2
∂2ζ

∂y2
−
(

∂2ζ

∂x∂y

)2

=

−S61
∂4χ

∂x∂y3
− S62

∂4χ

∂x3∂y
+ S66

∂4χ

∂x2∂y2
(151)

Summing up the equations above sidewise, we thus obtain

D4χ =

(
∂2ζ

∂x∂y

)2

− ∂2ζ

∂x2
∂2ζ

∂y2
, (152)
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where the linear operator D4 is defined by

D4 ≡ S11
∂4

∂y4
+ (2S12 + S66)

∂4

∂x2∂y2
+ S22

∂4

∂x4
− 2S16

∂4

∂x∂y3
− 2S26

∂4

∂x3∂y
(153)

and simplified using the symmetry property Sij = Sji. Eq. (152) is an anisotropic

generalization of Equation (14.7) in (Landau et al., 1986)[p. 53], to which it reduces

in the isotropic case.

Appendix C
Contact forces at the wafer–substrate interface

Consider a rectangular volume covering the wafer over its whole thickness d in z-

direction but small in the transverse directions x and y. Due to the curved substrate,

the surface of the wafer is only approximately aligned with the xy-plane and thus the

total force acting on the volume element has a small component in z which has to be

cancelled by the surface force P .

Let an edge of the volume parallel to z be located at (x, y). Now the normal force

acting on the face defined by edges at (x, y) and (x, y + ∆y), where ∆y is the side

length of the volume in y-direction, is

Fx,n = −d sinφxσxx∆y (154)

where φx is the inclination of the wafer with respect to the xy-plane along x. The

sign is a result of the outward normal of the face pointing in the negative x-direction.

Since sinφx ≈ ∂ζ/∂x, the normal force on the opposite face defined by the edges

at (x + ∆x, y) and (x + ∆x, y + ∆y), where ∆x is the side length of the volume in

x-direction, can be written up to the first order as

F ′
x,n ≈ −Fx,n + d

∂2ζ

∂x2
σxx∆y∆x+ d

∂ζ

∂x

∂σxx
∂x

∆y∆x. (155)

Performing the same steps for the shear force in the x-direction and summing all the
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forces together, we find the total force due to the stress acting in x is

Fx = d

(
∂2ζ

∂x2
σxx +

∂ζ

∂x

∂σxx
∂x

+
∂2ζ

∂x∂y
σxy +

∂ζ

∂x

∂σxy
∂y

)
∆x∆y. (156)

Analogously for the stress acting in the y-direction

Fy = d

(
∂2ζ

∂y2
σyy +

∂ζ

∂y

∂σyy
∂y

+
∂2ζ

∂x∂y
σxy +

∂ζ

∂y

∂σxy
∂x

)
∆x∆y. (157)

Substituting the Airy stress function χ from Eq. (32), we find the total force in the

z-direction per unit area to be

Fx + Fy

∆x∆y
≈ d

(
∂2ζ

∂x2
∂2χ

∂y2
+

∂2ζ

∂y2
∂2χ

∂x2
− 2

∂2ζ

∂x∂y

∂2χ

∂x∂y

)
(158)

which becomes exact at the limit ∆x,∆y → 0. Substituting the toroidal displacement

ζ(x, y) = x2/2R1 + y2/2R2, we find that the compensating surface force per unit area

at the wafer–substrate interface is

P = −d

(
1

R1

∂2χ

∂y2
+

1

R2

∂2χ

∂x2

)
= −d

(
σxx
R1

+
σyy
R2

)
. (159)

Since thicknesses of the crystal wafers are typically a few hundred micrometers and

the bending radii are range from tens to hundreds of centimeters, we may conclude

on the basis of the derived expression that the surface forces are indeed negligible

compared to the internal stresses.

Appendix D
Minimization of F for an anisotropic circular wafer

The stretching energy F is minimized with the toroidal bending constraint fc = 0

by finding the minimum of L = F + λ1fc + λ2Fc by solving the linear system given

by Eq. (48). It turns out that the contact force constraint Fc can be omitted in the

minimization as it is implicitly fulfilled by the solution obtained without it. With the

IUCr macros version 2.1.10: 2016/01/28



41

toroidal bending constraint fc given by Eq. (96), the linear system becomes

∂11F = 0, ∂20F = ∂02F = 0, ∂21F = ∂12F = 0, ∂30F = ∂03F = 0

∂31F − 2S26λ = 0, ∂13F − 2S16λ = 0, ∂40F + S22λ = 0, ∂04F + S11λ = 0

∂22F + (2S22 + S66)λ = 0 fc = 0 (160)

where the shorthand ∂kF ≡ ∂F/∂Ck has been used. By expressing σij in Eqs. (93)–(95)

in polar coordinates, substituting them to Eq. (39), and carrying out the integration

over a circular domain with the diameter L, we obtain

∂11F =
πdL4

64

[
− (S16 + S26)C22 − S16C04 − S26C40 + S66 (C31 + C13)

− 16

L2
(S16C02 + S26C20 − S66C11)

]
(161)

∂20F =
πdL4

64

[
(S12 + S22)C22 + S12C04 + S22C40 − S26 (C31 + C13)

+
16

L2
[S12C02 + S22C20 − S26C11]

]
(162)

∂02F =
πdL4

64

[
(S11 + S12)C22 + S11C04 + S12C40 − S16 (C31 + C13)

+
16

L2
(S11C02 + S12C20 − S16C11)

]
(163)

∂21F =
πdL4

64

[
(S22 + S66)C21 − (S16 + S26)C12 + S12C03 − S26C30

]
(164)

∂12F =
πdL4

64

[
(S11 + S66)C12 − (S16 + S26)C21 + S12C30 − S16C03

]
(165)

∂22F =
πdL4

64

[
(S11 + S12)C02 + (S12 + S22)C20 − (S16 + S26)C11

+
L2

24

[
(3S11 + 2S12 + 3S22 + 4S66)C22 − (3S16 + 5S26)C31

− (5S16 + 3S26)C13 + (3S12 + S22)C40 + (S11 + 3S12)C04

]]
(166)

IUCr macros version 2.1.10: 2016/01/28



42

∂31F =
πdL4

64

[
S66C11 − S16C02 − S26C20 −

L2

24

[
(3S16 + 5S26)C22

− (4S12 + S66)C13 − (4S22 + 3S66)C31 − S16C04 − 3S26C40

]]
(167)

∂13F =
πdL4

64

[
S66C11 − S16C02 − S26C20 −

L2

24

[
(3S26 + 5S16)C22

− (4S12 + S66)C31 − (4S11 + 3S66)C13 − S26C04 − 3S16C40

]]
(168)

∂30F =
πdL4

64

[
S12C12 − S26C21 + S22C30

]
(169)

∂03F =
πdL4

64

[
S12C21 − S16C12 + S11C03

]
(170)

∂40F =
πdL4

64

[
S12C02 + S22C20 − S26C11

+
L2

24

[
(3S12 + S22)C22 − S26 (3C31 + C13) + S12C04 + 3S22C40

]]
(171)

∂04F =
πdL4

64

[
S11C02 + S12C20 − S16C11

+
L2

24

[
(S11 + 3S12)C22 − S16 (3C13 + C31) + S12C40 + 3S11C04

]]
(172)

Substituting the found derivatives to Eq. (160), the solution to the system is

C11 = 0 C20 = C02 =
E′L2

64R2
C40 = C04 = − 3E′

16R2
C22 = − E′

16R2

C30 = C03 = 0 C21 = C12 = 0 C31 = C13 = 0 λ =
πdE′L6

6144R2
(173)

where R2 = R1R2 is the product of bending radii and

E′ =
8

3(S11 + S22) + 2S12 + S66
. (174)

Appendix E
Minimization of F for an isotropic rectangular wafer

The stretching energy F is minimized by finding the coefficients {Cij , λ1, λ2} which
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minimize L = F + λ1fc + λ2Fc by solving the linear system given by Eq. (48). The

constraint fc is obtained by the requirement that χ solves Eq.(44) i.e.

fc = ∇4χ+
E

R2
= 2C40 + 4C22 + 2C04 +

E

R2
= 0, (175)

where R2 = R1R2 is the product of bending radii. Therefore the equations composing

the linear system to be solved are

∂20F = 0, ∂02F = 0, ∂40F + 2λ = 0,

∂04F + 2λ = 0, ∂22F + 4λ = 0, fc = 0. (176)

Substituting the stretching stress tensor components given by Eq. (118) into the

expression of partial derivatives Eq. (40) and carrying out the integration over rect-

angular domain with linear dimensions a and b in x- and y-directions, respectively, we

thus obtain

∂20F =
abd

E

[
C20 − νC02 + (C40 − νC22)

a2

12
+ (C22 − νC04)

b2

12

]
(177)

∂02F =
abd

E

[
C02 − νC20 + (C22 − νC40)

a2

12
+ (C04 − νC22)

b2

12

]
(178)

∂04F =
ab3d

12E

[
C02 − νC20 + (C22 − νC40)

a2

12
+ 3(C04 − νC22)

b2

20

]
(179)

∂40F =
a3bd

12E

[
C20 − νC02 + 3(C40 − νC22)

a2

20
+ (C22 − νC04)

b2

12

]
(180)

∂22F =
abd

12E

[
(C02 − νC20)a

2 + (C20 − νC02)b
2 + 3(C22 − νC40)

a4

20

+
[
C04 + C40 + (8 + 6ν)C22

]a2b2
12

+ 3(C22 − νC04)
b4

20

]
(181)

Substituting the calculated derivatives to Eq. (176), the solution to the system is

C20 =
E

24gR2

[
(1 + ν)a2 + 12b2 + (1− ν)

b4

a2

]
, C40 = − E

2gR2

[
1 + ν + 10

b2

a2
+ (1− ν)

b4

a4

]
,

C02 =
E

24gR2

[
(1 + ν)b2 + 12a2 + (1− ν)

a4

b2

]
, C04 = − E

2gR2

[
1 + ν + 10

a2

b2
+ (1− ν)

a4

b4

]
,

C22 = − E

gR2
, λ =

d

720gR2

[
(1− ν)(a5b+ ab5) + 10a3b3

]
(182)
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where

g = 8 + 10

(
a2

b2
+

b2

a2

)
+ (1− ν)

(
a2

b2
− b2

a2

)2

(183)

Appendix F
Minimization of F for an anisotropic rectangular wafer

The stretching energy F is minimized with the toroidal bending constraint fc = 0 by

finding the minimum of L = F + λ1fc by solving the linear system given by Eq. (48).

Using the ansatz from Eq. (134) for χ, the constraint from Eq. (138), and rewriting

the Lagrange multiplier λ1 → λ1abd/120, we may reformulate the problem as solving

the matrix equation ΛC = b in terms of C where

C =
[
C11 C20 C02 C22 C31 C13 C40 C04 λ1

]T
, (184)

b =
[
0 0 0 0 0 0 0 0 −(24R1R2)

−1
]T

, (185)

and

Λ =



S66 −S26 −S16 Λ14 S66a
2 S66b

2 −S26a
2 −S16b

2 0

−S26 S22 S12 Λ24 −S26a
2 −S26b

2 S22a
2 S12b

2 0

−S16 S12 S11 Λ34 −S16a
2 −S16b

2 S12a
2 S11b

2 0

Λ41 Λ42 Λ43 Λ44 Λ45 Λ46 Λ47 Λ48 Λ49

5S66a
2 −5S26a

2 −5S16a
2 Λ54 Λ55 Λ56 −9S26a

4 −5S16a
2b2 −2S26

5S66b
2 −5S26b

2 −5S16b
2 Λ64 Λ65 Λ66 −5S26a

2b2 −9S16b
4 −2S16

−5S26a
2 5S22a

2 5S12a
2 Λ74 −9S26a

4 −5S26a
2b2 9S22a

4 5S12a
2b2 S22

−5S16b
2 5S12b

2 5S11b
2 Λ84 −5S16a

2b2 −9S16b
4 5S12a

2b2 9S11b
4 S11

0 0 0 Λ94 −2S26 −2S16 S22 S11 0


(186)
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with

Λ14 = −S16a
2 − S26b

2 Λ24 = S12a
2 + S22b

2

Λ34 = S11a
2 + S12b

2 Λ41 = −5S16a
2 − 5S26b

2

Λ42 = 5S12a
2 + 5S22b

2 Λ43 = 5S11a
2 + 5S12b

2

Λ44 = 9S11a
4 + 9S22b

4 + 10(S12 + 2S66)a
2b2 Λ45 = −9S16a

4 − 25S26a
2b2

Λ46 = −25S16a
2b2 − 9S26b

4 Λ47 = 9S12a
4 + 5S22a

2b2

Λ48 = 5S11a
2b2 + 9S12b

4 Λ49 = 2S12 + S66

Λ54 = −9S16a
4 − 25S26a

2b2 Λ55 = 9S66a
4 + 20S22a

2b2

Λ56 = 5(4S12 + S66)a
2b2 Λ64 = −25S16a

2b2 − 9S26b
4

Λ65 = 5(4S12 + S66)a
2b2 Λ66 = 20S11a

2b2 + 9S66b
4

Λ74 = 9S12a
4 + 5S22a

2b2 Λ84 = 5S11a
2b2 + 9S12b

4

Λ94 = 2S12 + S66

Appendix G
Johann error

Consider a spherically bent crystal wafer with the meridional and sagittal bending

radii R1 and R2, respectively. The surface of the spherical Johann-type analyser is

approximately given by the constraint

f(x, y, z) =
x2

2R1
+

y2

2R2
− z = 0, (187)

where R is the bending radius. Let

n = −∇f = − x

R1
x̂− y

R2
ŷ + ẑ. (188)

The surface normal vector field is thus n̂ = n/n, where

n =

√
1 +

x2

R2
1

+
y2

R2
2

(189)
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Let us denote the distance from the source to the point (x, y, z) on the crystal

surface by the vector R. According to Figure 5, we find that R = r − r′, where r′ is

the position vector of the source and r is the position vector of the surface point in

question. From Figure 5 we also see that

r′ = ρ cos δx̂+ ρ(1 + sin δ)ẑ. (190)

Since π = δ + π/2 + 2γ and γ = π/2− θ, we find that δ = 2θ − π/2. Thus

r′ = ρ sin 2θx̂+ ρ(1− cos 2θ)ẑ. (191)

Therefore

R = (x− ρ sin 2θ)x̂+ yŷ −
(
ρ(1− cos 2θ)− x2

2R1
− y2

2R2

)
ẑ (192)

⇒ |R|2 = (x− ρ sin 2θ)2 + y2 +

(
ρ(1− cos 2θ)− x2

2R1
− y2

2R2

)2

=
1

2

(
x2 +

R1

R2
y2 −R2

1

)
cos 2θ − xR1 sin 2θ

+
1

2

[
x2 +

(
2− R1

R2

)
y2 +R2

1

]
+

(
x2

2R1
+

y2

2R2

)2

(193)

where the fact that the Rowland circle radius ρ is half the meridional bending radius

R1. Since cos 2θ = 1− 2 sin2 θ and sin 2θ = 2 sin θ cos θ, we get

|R|2 = R2
1 sin

2 θ

[
1 +

(R2 −R1)y
2

R2R2
1 sin

2 θ
− 2x cot θ

R1

+

(
x2

R2
1

+
y2

R1R2

)
cot2 θ +

1

4 sin2 θ

(
x2

R2
1

+
y2

R1R2

)2 ]

⇒ 1

|R|
=

1

R1 sin θ

[
1 +

(R2 −R1)y
2

R2R2
1 sin

2 θ
− 2x cot θ

R1

+

(
x2

R2
1

+
y2

R1R2

)
cot2 θ +

1

4 sin2 θ

(
x2

R2
1

+
y2

R1R2

)2 ]−1/2

(194)

The cosine of angle α is now given by

cosα =
n̂ · R
|R|

=
n · R
n|R|

. (195)
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Since

n · R = − x2

2R1
− y2

2R2
+ x sin θ cos θ −R1 sin

2 θ (196)

we find that

cosα = − sin θ

[
1− x

R1
cot θ +

1

2 sin2 θ

(
x2

R2
1

+
y2

R1R2

)](
1 +

x2

R2
1

+
y2

R2
2

)−1/2

×

1− 2x cot θ

R1
− (R1 −R2)y

2

R2R2
1 sin

2 θ
+

(
x2

R2
1

+
y2

R1R2

)
cot2 θ +

1

4 sin2 θ

(
x2

R2
1

+
y2

R1R2

)2
−1/2

.

(197)

Since x/R and y/R are small, we may expand cosα as their series and retain only the

terms up to the second order. Doing so we find

cosα ≈ − sin θ − x2

2R2
1

cos2 θ

sin θ
+

(R1 −R2)(R1 sin
2 θ −R2)

2R1R2 sin θ
y2. (198)

From Figure 5 we see that α+ β = π and θ′ + β = π/2. Thus α = π/2+ θ′ ⇒ cosα =

− sin θ′ and

sin θ′ = sin θ +
x2

2R2
1

cos2 θ

sin θ
− (R1 −R2)(R1 sin

2 θ −R2)

2R1R2 sin θ
y2. (199)

By writing θ′ = θ+∆θ and taking the first-order approximation sin θ′ ≈ sin θ+cos θ∆θ,

we find by comparing to Eq. (199) that

∆θ =
x2

2R2
1

cot θ − (R1 −R2)(R1 sin
2 θ −R2)

2R1R2 sin θ cos θ
y2 (200)

Note that since Eq. (200) is based on the first-order approximation of sinx, it ceases

to be valid near θ = π/2 if R1 6= R2.

Alternatively, given in terms of energy the Johann error is

∆E =
hc

2d sin θ′
− hc

2d sin θ
≈ − x2

2R2
1

E cot2 θ +
(R1 −R2)(R1 sin

2 θ −R2)

2R1R2 sin
2 θ

Ey2, (201)

where E = hc/2d sin θ. Unlike Eq. (200), Eq. (201) is also valid at θ = π/2 since we

do not expand sinx with respect to its argument.
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Si Ge
(hkl) φmax E′ (GPa) ν′ ν K E′ (GPa) ν′ ν K

(100) – 147.14 0.3146 0.3173 0 116.84 0.3129 0.3162 0
(110) [110] 163.06 0.2043 0.1978 0.7061 131.15 0.1879 0.1793 0.8692
(111) – 169.16 0.1621 0.1621 0 136.74 0.1391 0.1391 0
(210) [120] 156.94 0.2467 0.2456 0.3603 125.62 0.2366 0.2348 0.4237
(211) [111] 163.06 0.2043 0.2041 0.2354 131.15 0.1879 0.1874 0.2897
(221) [110] 166.39 0.1812 0.1788 0.4814 134.20 0.1613 0.1580 0.6139
(311) [233] 156.75 0.2480 0.2490 0.1479 125.44 0.2378 0.2389 0.1737
(321) [8, 11, 2]* 163.06 0.2043 0.2023 0.4297 131.15 0.1879 0.1851 0.5289
(331) [110] 164.79 0.1924 0.1880 0.6047 132.73 0.1741 0.1684 0.7572
(511) [255] 151.27 0.2860 0.2880 0.0616 120.52 0.2807 0.2833 0.0704
(531) [32, 51, 6]* 160.38 0.2229 0.2207 0.4334 128.72 0.2091 0.2063 0.5217
(533) [655] 165.73 0.1859 0.1854 0.2458 133.59 0.1666 0.1659 0.3110
(551) [110] 163.73 0.1997 0.1940 0.6696 131.77 0.1825 0.1751 0.8294
(553) [110] 167.32 0.1748 0.1733 0.3892 135.05 0.1539 0.1518 0.5022
(731) [9, 20, 3]* 155.86 0.2542 0.2544 0.2578 124.64 0.2448 0.2450 0.3012
(953) [20, 31, 9]* 161.33 0.2163 0.2155 0.3211 129.58 0.2016 0.2004 0.3893
Table 1. Derived elastic quantities for selected (hkl) normal to the wafer surface of silicon

and germanium. φmax is the in-plane direction of steepest gradient of uzz which are valid for
all cubic systems (directions marked with an asterisk are approximate integer Miller indices).
E′, ν′ and K are the effective Young modulus [Eq. (98)], effective Poisson ratio [Eq. (115)]

and eccentricity factor [Eq. (116)], respectively, for the anisotropic circular wafer. ν is
Poisson ratio averaged over 2π angle in-plane. The values of elastic matrix elements for Si

and Ge are according to (Lide, 2001).

Fig. 1. Nomenclature for a toroidally bent wafer. The thickness of the wafer is d. The
origin O of the Cartesian coordinate system (x, y, z) and the polar coordinates (r, φ)
is located at the midplane of the crystal in the z-direction. Two orthogonal torques
µx and µy cause the bending of the wafer.
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Fig. 2. Nomenclature for a toroidally bent wafer. The thickness of the wafer is d. The
origin O of the Cartesian coordinate system (x, y, z) and the polar coordinates (r, φ)
is located at the midplane of the crystal in the z-direction. Two orthogonal torques
µx and µy cause the bending of the wafer.
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Fig. 3. Restrictions to the integration range in terms of u imposed by the condition
C − ε−Aa2/4 < u < C − ε. The valid integration range presented as colored areas
depends linearly on ε in a piecewise manner and is divided into two cases based on
whether Aa2 > Bb2 or Aa2 < Bb2. Equivalently, these conditions can be restated
in a respective manner as a < b and a > b.

0.0 0.2 0.4 0.6 0.8 1.0
Wafer side length ratio (a/b)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

No
rm

al
ize

d 
st
an

da
rd
 d
ev

ia
tio

n 
(σ
R

2 /ν
ab


)

ν = 0.00
ν = 0.25
ν = 0.50
ν = 0.75
ν = 1.00

0.0 0.2 0.4 0.6 0.8 1.0
Wafer side length ratio (a/b)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

No
rm

al
ize

d 
st
an

da
rd
 d
ev

ia
tio

n 
(σ
R

2 /a
b

)

ν = 0.00
ν = 0.25
ν = 0.50
ν = 0.75
ν = 1.00

Fig. 4. Left: Normalized standard deviation of the energy shift distribution of isotropic
rectangular crystal wafer according to Eq. (131) for various Poisson’s ratios ν. The
standard deviation is normalized to the wafer surface area, bending radius and
the energy of the incident photons. Right: The curves presented on the left panel
divided by ν demonstrating the relative insensitivity of the standard deviation σ to
the value of Poisson’s ratio ν apart from scaling.
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x

z

Fig. 5. Nomenclature used in the derivation of the Johann error.
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