
 

 

IUCrJ (2020). 7,  doi:10.1107/S2052252520013007        Supporting information 

IUCrJ 
Volume 7 (2020) 

Supporting information for article: 

Beyond integration: modeling every pixel to obtain better structure 
factors from stills 

Derek Mendez, Robert Bolotovsky, Asmit Bhowmick, Aaron S. Brewster, Jan 
Kern, Junko Yano, James M. Holton and Nicholas K. Sauter 

 

 

 



Supplemental Information

Beyond integration: modeling every pixel to obtain better structure factors

from stills

Derek Mendeza, Robert Bolotovskya, Asmit Bhowmicka, Aaron S. Brewstera, Jan Kerna,

Junko Yanoa, James M. Holtona,b,c, and Nicholas K. Sautera

a
Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Lab, Berkeley, CA 94720 USA

bStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA

cDepartment of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158 USA

Contents

Supplemental Figures 2

Supplemental Tables 9

Supplemental Text 11

S1 Mosaicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

S2 Comparison with a profile fit approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

S3 Detector geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

S4 Accounting for a detector point-spread function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



Supplemental Figures

Figure S1: Synthetic data without noise. These images correspond to the main-text Figure 2, before adding
random measurement noise. The maximum / minimum pixel values within each subplot image are shown for
reference (photon units). The pixel values represent Ii,s,data +Ti,s,data in the main text, i.e. the sum of expected
Bragg and background scattering.
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Figure S2: Structure factor refinement for different mosaicity models. The ground truth mosaic texture used
to generate the data was applied during refinement, but it had little effect on the optimization. This is likely
because the synthetic mosaic spread was relatively small (0.01°), and mosaic spread is a secondary effect that’s
dominated by mosaic domain size, especially at lower scattering angles.
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Figure S3: Repeating stage 1 and stage 2 refinements for 513 shots. After the initial stage 1 and stage 2 diffBragg
refinements, we used the optimized structure factors and crystal models to conduct additional refinement cycles.
The overall RGT decreased from 0.076 to 0.075 upon completion of the second cycle, then down to 0.074 after
a third cycle. After a fourth cycle, RGT seemed to have converged at 0.074. Note, the shots used in this simple
example were synthesized with a single mosaic domain and a single wavelength per shot, in contrast with the
shots synthesized for the main paper, hence why the R-factors are different from those reported for 505 shots
in the main text. The initial rise in RGT for cycles 2, 3, and 4 occurred because the initial scale factor Gs

for stage 2 of those cycles was set as the median value determined from cycle 1 / stage 1, before optimizing
structure factors, and therefore was slightly inaccurate when used together with optimized structure factors
obtained during cycle 1 / stage 2. In each case, the optimization corrected for this after about 10 iterations,
then proceeded to minimize.
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Figure S4: Refined and unrefined detector geometries. Spots represent positions of observed Bragg spots on the
CSPAD which were successfully indexed, and the color of each spot represents the distance to the corresponding
prediction. Anisotropy in such a plot is indicative of geometry inaccuracies. The unrefined geometry used here
is representative of a typical starting geometry at LCLS. With the unrefined geometry, the per-panel prediction
offset had a median value of 1.1 pixels, and a maximum value of 2.5 pixels. After refinement (Brewster et al.
(2018)), these numbers reduced to 0.51 pixels and 0.69 pixels, respectively.

5



0.075

0.100

0.125

0.150

0.175

0.200

R G
T

unrefined geom.
refined geom.
perfect geom.

0 50 100 150 200 250 300 350
L-BFGS iteration

0.20

0.25

0.30

0.35

0.40

CC
* an

o

Figure S5: Structure factor refinement in the presence of “unrefined geometry”, “refined geometry” and “perfect
geometry”. Each curve represents 459 shots which indexed successfully with all three geometries. Remarkably,
refinement proceeds to converge even when subject to the highly erroneous “unrefined geometry”; the con-
verged result is worse overall, given the panel position inaccuracies, but nevertheless a large improvement over
integration-based merging (the integration-based merge results are the values of the curves at L-BFGS iteration
0). After indexing the 459 shots using the “unrefined geometry”, we ran the CCTBX script cspad.cbf metrology
(Brewster et al. (2018)) to obtain the “refined geometry”. We then ran stage 1 and stage 2 refinement using
the “refined geometry” and achieved a result much closer to that obtained using the ground truth (perfect)
geometry.
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Figure S6: Application of a point-spread function to a synthetic diffraction pattern. The image is zoomed-in on
a lower quadrant of the CSPAD (the forward beam is shown for reference). The point-spread kernel used here
is typical of that observed on Rayonix cameras (Holton et al. (2012)), commonly used in SFX. The colorscale
is the same for both images, and the upper limit of 3 photons was chosen to emphasize the point-spread effect.
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Figure S7: Refinement of structure factors in the presence of significant detector point-spread. Shots used here
were synthesized according to the description in the main text, however we only used one mosaic domain and
one photon energy per shot. We show here a stage 2 refinement using 495 synthetic shots, both with and
without detector point-spread (see right and left panels of Figure S6, respectively). The same set of pixels was
modeled in both cases such that the only difference between the refinements was the point-spread function. In
spite of the point-spread function, structure factor refinement converged with improved accuracy, provided the
point-spread kernel was applied to the model intensities and gradients (as in equations (S7) and (S8)) during
optimization.

8



Supplemental Tables

Merge without post-refinement
Number of shots RGT(%) CC∗ano (%) Rsplit(%) CC 1/2 (%)

2023(1629) 10.9 49.1 9.4(74.0) 99.7(43.3)
6144(4982) 10.8 70.0 5.5(46.2) 99.7(73.1)

19953(15989) 10.2 85.7 3.2(25.6) 99.8(90.2)
Merge with post-refinement

Number of shots RGT(%) CC∗ano (%) Rsplit(%) CC 1/2 (%)
2023(1489) 7.8 49.5 8.8(82.2) 99.8(28.9)
6144(4525) 6.7 71.2 4.9(47.8) 99.9(70.3)

19953(14643) 7.1 85.8 2.6(27.0) 100(90.4)

Table S1: Integration-based CCTBX merging, with and without post-refinement (values in parenthesis are at
the high resolution bin). CCTBX merging with the command line script cxi.merge (or cctbx.xfel.merge) uses a
per-image resolution cutoff, hence why the number of shots contributing to the high resolution bin is lower than
the total number of shots used. One can merge data with the option post refinement.enable=True, however
doing so requires a reference model, either in the form of a PDB file or a structure factor MTZ file. In this case,
we are assuming we do not know the PDB model, however we can use the structure factor table obtained without
post-refinement as the reference model for a merge with post refinement (see also Brewster et al. (2019)). Here,
overall statistics improve with post-refinement, however high-resolution statistics worsen, due to additional shot
rejection imposed by the post-refinement algorithm (note the consistently fewer number of shots used in the high
resolution bins for the post-refinement merges). Crucially, CC∗ano, which is the preferred metric for predicting
the ability to phase a dataset (Terwilliger et al. (2016)), minimally improves with post-refinement. Note, the
“no post-refinement” merge statistics shown here differ slightly from those shown in main-text Table 5. Though
negligible, this results from using a slightly different set of cxi.merge arguments.

I: 〈Ih〉 II: 〈Ih/Ph〉 III: diffBragg stage 2
number of shots RGT CC∗ano RGT CC∗ano RGT CC∗ano

505 0.155 0.230 0.165 0.298 0.059 0.479
2023 0.136 0.458 0.141 0.570 0.049 0.790
6144 0.131 0.657 0.136 0.753 0.049 0.904

Table S2: Comparing alternate integration merging methods with diffBragg structure factor refinement (stage
2). Note, these merge methods are outside of the CCTBX scope, hence why the “ column I ” results differ from
those reported for the integration method in main-text Table 5.
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metric perfect geometry unrefined geom. refined geom.
misorientation from dials.stills process (deg.) 0.038± 0.028 0.079± 0.03 0.039± 0.026

... after diffBragg stage 1 0.0035± 0.0024 0.079± 0.037 0.0074± 0.003

unit cell a from dials.stills process (Å) 79.095± 0.010 79.32± 0.050 79.099± 0.011
... after diffBragg stage 1 79.097± 0.0048 79.29± 0.073 79.11± 0.0063

unit cell c from dials.stills process (Å) 38.42± 0.058 38.53± 0.081 38.42± 0.056
... after diffBragg stage 1 38.40± 0.0048 38.49± 0.096 38.41± 0.0075
RGT from cctbx.xfel.merge 0.16 0.21 0.16
... after diffBragg stage 2 0.075 0.11 0.074
CC∗ano cctbx.xfel.merge 0.23 0.20 0.22

... after diffBragg stage 2 0.39 0.33 0.38

Table S3: Data quality metrics, and how they are influenced by geometry errors. The ground truth unit cell is
a = 79.1�A, c = 38.4�A. The merge results shown are for 459 shots.
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Supplemental Text

S1 Mosaicity

The synthetic data described in the manuscript was computed using a finite mosaic texture, with an effective

mosaic spread of 0.01 deg. When we performed diffBragg refinement we made the decision to exclude mosaic

spread from the model, on the basis that the mosaic domain size appeared to be a more dominant effect. This

is illustrated in a general sense by Figure 7 of Sauter et al. (2014). To further justify the decision, we performed

a “stage 2 diffBragg refinement” on a limited number of shots using the ground truth mosaic texture for each

crystal and found that it did not improve the structure factor optimization (Figure S2). Modeling mosaic spread

can be computationally costly, so in certain circumstances when the mosaic spread is seemingly small, it is much

more efficient to leave it out of the model. One will note that the ground truth mosaic domain size parameter

m was 10 for the synthetic data, indicating that each mosaic block consisted of 10 unit cells along each crystal

axis. The optimized value for m however was slightly less than 10 (main-text Figure 3). We suspect this slight

reduction in mosaic domain size occurred in order to account for a lack of mosaic spread in the model (smaller

domain sizes result in larger spot profiles).

S2 Comparison with a profile fit approach

Here we explore how profile fitting using models resulting from “stage 1 diffBragg refinement” can enhance

structure factor estimation in the conventional integration approach. With integration-based methods, structure

factor estimates are obtained by summing up regions of pixels near predicted Bragg reflections. We model a

summed spot integration as

Ih =
∑

i∈spot
Ii,sMi,s (S1)

where

Ii,s = Js,allGsr
2
e |Fh|2m6

s exp
(
−Cm2

s∆hi,s ·∆hi,s

)
κi∆Ωi (S2)

is equation (15) of the main text and Mi,s is the integration mask, i.e. it takes on values of 1, 0 depending on

whether the pixel is in the foreground, background, respectively. This same expression can be used to determine

a per-spot correction factor Ph. For each pixel, we computed

Pi,s = Js,allGsr
2
em

6
s exp

(
−Cm2

s∆hi,s ·∆hi,s

)
κi∆Ωi (S3)

such that the correction term is
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Ph =
∑

i∈spot
Pi,sMi,s (S4)

After stage 1 diffBragg refinement, we used the optimized per-shot parameters Gs,ms,Bs,Us (scale factors,

mosaic parameters, unit cell matrices, and orientation matrices) to form integration masks

Mi,s =


1 if Ii,s > χ

0 otherwise

(S5)

and to compute Ih and Ph for every indexed spot that entered the diffBragg refinement. The threshold was

chosen to be χ = 0.01 (χ is in units of photons). We then directly compared three methods for estimating

structure factors:

I : integration averaging over equivalent reflections |Fh|2 = 〈Ih〉equivalents

II : integration averaging over equivalent reflections with profile correction |Fh|2 = 〈Ih/Ph〉equivalents

III : diffBragg stage 2 optimization

The results for RGT and CC∗ano are shown in Table S2 for the various merges. Note, RGT is consistently

worse for method II, but CC∗ano shows significant improvement, and is generally regarded as a more rigorous

indicator of structure factor accuracy. Also, the results shown here for method I are slightly different than those

shown in the main text for integration-based merging, as the main text integration-based merging was done

using the command line program cxi.merge. In particular, stage 1 refinement is dependent on structure factor

estimates, and initial errors in structure factor estimates will lead to errors in the post- stage 1 profile estimates

Ph. Indeed, in order to achieve improved accuracy with method II, we had to first filter Ph outliers amongst

equivalent reflections using a median absolute deviation threshold (Iglewicz and Hoaglin (1993)). Without

filtering for outliers, method II performed consistently worse than method I. This highlights the utility of stage

2 diffBragg refinement: rather than using a single number (summed pixels) to represent each Bragg spot’s

contribution to Fh, it uses all pixels in the neighborhood of the corresponding Bragg spot, each contributing

differently to the total data likelihood depending on the probability of observation. Further, diffBragg stage

2 allows one to obtain more accurate structure factor estimates by further refinement of the stage 1 model

parameters simultaneously with the structure factor amplitudes.

S3 Detector geometry

The majority of XFEL diffraction cameras are made up of multiple pixel array detectors (PADs), and it is

generally recognized that panel position inaccuracies plague XFEL data analysis. While programs exist that
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use diffraction patterns to optimize the detector geometry (Yefanov et al. (2015); Brewster et al. (2018)), they

are not perfect, and inaccuracies in panel positions are to be expected when dealing with real data. In order

to test the stability of diffBragg refinement in the presence of unrefined geometry, we used a detector geometry

model with very large, yet realistic errors (Figure S4) in order to process the synthetic data (referred to as

“unrefined geometry”). We also optimized the “unrefined geometry” using the CCTBX command line program

cspad.cbf metrology (Brewster et al. (2018)), obtaining a geometry which we refer to as “refined geometry”.

Before optimization, the “unrefined geometry” had positional errors on the order of 1.1 pixels, up to 2.5 pixels

on the panels with the largest errors. The “refined geometry” had errors on the order of 0.51 pixels, up to 0.69

pixels. Errors in geometry lower the quality of the analysis at every step of the pipeline (Table S3). Notably,

“stage 2 diffBragg refinement” is stable in spite of the panel inaccuracies, even when no geometry optimization

is performed on the “unrefined geometry” (Figure S5). The effects of geometry on integration-based merge

quality are also illustrated in Figure 2 of Hattne et al. (2014).

The geometry we used to synthesize the data for the manuscript is referred to as “perfect geometry” or “ground

truth geometry”, and was taken directly from an experimental dataset (LCLS proposal number LD91) after

optimizing panel orientations according to Brewster et al. (2018). The “unrefined geometry” used here is simply

the original experimental geometry that was optimized against the real LD91 data to form the geometry we

are calling “perfect geometry”. Therefore, the degree of panel error present in “unrefined geometry” is typical

of what one can expect at an XFEL beamline. Finally, the “refined geometry” was obtained by re-refining the

“unrefined geometry” against the synthetic data (Figure S4).

S4 Accounting for a detector point-spread function

Though we developed diffBragg to work for newer generation pixel array detectors with minimal point spread,

we demonstrate here that diffBragg can indeed be used to analyze data that includes a significant point-spread

function. Following Holton et al. (2012), we applied a point-spread function to the synthesized diffraction

patterns,

Xi,s,psf = G ∗Xi,s (S6)

where the ∗ is an image convolution operator, and G is a two-dimensional kernel function defined in the detector

plane, and modeled here as a sum of two dimensional Gaussian terms (Holton et al. (2012)). Recall that the

pixel index i is really a triple index (panel, fast, slow) that indexes a multi-panel CSPAD camera (see main-text,

section 2.1.4), however the kernel G used here is independent of the location of pixel i. Figure S6 shows the

effect of the point-spread function when applied to the synthetic data. Point-spread modulates the intensity,

so it should influence diffBragg refinement. Provided we estimate or measure the point-spread kernel G as in
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Holton et al. (2012), we can account for it in diffBragg by applying it to the model (main-text, equation (15))

ni,s(Θ)→ G ∗ ni,s(Θ) (S7)

and the corresponding gradient terms (main-text, equation (23))

∂ni,s(Θ)

∂θ
→ G ∗ ∂ni,s(Θ)

∂θ
(S8)

Figure S7 shows “diffBragg stage-2 refinement” with and without finite point-spread. Even if point-spread is

present in the synthetic data, refinement proceeds, however the converged R-factor is 2% higher than it would

be without point-spread.
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