

Volume 7 (2020)

Supporting information for article:

Structural insights into the effect of active-site mutation on the catalytic mechanism of carbonic anhydrase

Jin Kyun Kim, Cheol Lee, Seon Woo Lim, Jacob Andring, Adhikari Aniruddha, Robert McKenna and Chae Un Kim

### S1. Protein expression and purification

The V143I CA II variant was made by site-directed mutagenesis using an expression vector with an CA II coding region. The single-point mutation was made using the QuikChange II and QuikChange Lightning kits from Agilent. Verification of mutation was accomplished by DNA sequencing of the entire CA II coding region, followed by simulated translation using *ExPASY* translate. The expression of variant involved transformation of the mutated plasmid into Escherichia coli BL21(DE3)pLysS cells, a cell line specific for protein expression and one that does not express endogenous CA under our experimental conditions. The cells were transformed and expressed at 37 °C in LB, followed by induction with 1 mM isopropyl thiogalactoside when the bacterial growth reached an OD<sub>600</sub> of 0.6. 1 mM zinc sulfate was also added to provide a source of zinc for the proper folding and functioning of the enzyme. Cells were harvested 4 h after induction, spun down, and stored in a -80 °C freezer overnight. The cell pellets were lysed with lysozyme and homegenation, and the lysate was purified via affinity chromatography using p-(aminomethyl) benzenesulfonamide resin. (Khalifah et al., 1977) CA II was eluted off the column by the addition of azide, and azide was subsequently removed via buffer exchange. Following purification, the enzyme concentration was determined via UV spectrometry, monitored at 280 nm followed by an SDS page gel for purity. Native CA II was expressed in a recombinant strain of Escherichia coli [BL21 (DE3) pLysS] containing a plasmid encoding the CA II gene. (Forsman et al., 1988) Purification was performed following the same protocol as above.

#### S2. Crystallization

Crystals of native and V143I CA II were obtained using the hanging drop vapor diffusion method. (McPherson, 1982) A 6  $\mu$ l drop of equal volumes of protein (3  $\mu$ l) and the well-solution (3  $\mu$ l) was equilibrated against 500  $\mu$ l of the well-solution (1.3-1.4 M sodium citrate, 100 mM Tris·HCl pH 7.8-8.0) at RT (~20 °C). (Fisher *et al.*, 2007) Crystals grew to an approximate size of ~ 30 × 100 × 100  $\mu$ m<sup>3</sup> within a few days.

## S3. CO<sub>2</sub> entrapment

Cryo-trapping the intermediate states of CA II was previously achieved by cryocooling CA II crystals under CO<sub>2</sub> pressure, (Kim *et al.*, 2005, Kim *et al.*, 2013) leading to the capture of CO<sub>2</sub> in the active site of CA II for the first time. (Domsic *et al.*, 2008) More recently, series of intermediate states have been tracked in CA II by controlling the internal CO<sub>2</sub> pressure levels. (Kim *et al.*, 2016, Kim *et al.*, 2018) In this study, the CO<sub>2</sub> entrapment was carried out using a high-pressure cryo-cooler for X-ray crystallography (HPC-201, Advanced Design Consulting, USA). The native and V143I CA II crystals were first soaked in a cryo-solution containing 20% (v/v) glycerol supplemented to the reservoir solution. The crystals were then coated with mineral oil to prevent dehydration, and loaded into the base of high-pressure tubes. (Kim *et al.*, 2005) The coated mineral oil worked as a CO<sub>2</sub> buffering medium as well, aiding in the absorption of CO<sub>2</sub> into the crystals. (Kim *et al.*, 2006) The crystals were pressurized in the pressure tubes with  $CO_2$  gas (0 atm (no pressurization), 7 atm, 13 atm, and 15 atm) at room temperature. After a wait of about 5 minutes, the crystals were cryocooled in liquid nitrogen (77 K) under sustained  $CO_2$  pressure. Once the  $CO_2$  bound crystals were fully cryocooled, the  $CO_2$  gas pressure was withdrawn, and the crystal samples were stored in a liquid nitrogen dewar for subsequent X-ray data collection.

## S4. X-ray diffraction and data collection

Diffraction data of native and V143I CAII were collected at Pohang Light Source II (wavelength 0.8856 Å, beam size 100 µm, crystal-to-detector distance 113.80 mm, at 100 K) and at the Cornell High Energy Synchrotron Source (wavelength 0.9179 Å, beam size 100 µm, crystal-to-detector distance 100 mm, at 100 K), respectively. Data were collected using the oscillation method in intervals of 1° step on an ADSC Quantum 270 CCD detector (Area Detector Systems Corporation, USA). A total of 360 images were collected on each of the CA II crystal data sets.

For each data set, a fresh pressure-cryocooled crystal was used. The absorbed X-ray dose for a single data set was less than ~  $5x10^5$  Gy for both the native and the V143I CA II, which is much less than the Henderson dose limit of ~  $1.0 \times 10^7$  Gy. (Henderson, 1990) Moreover, it was previously verified that X-ray radiation dose of up to  $10^7$  Gy does not induce apparent changes in the enzyme active site. (Kim *et al.*, 2016) This ensured that the active site rearrangements described in our present study remained unaffected by the incident X-ray radiation. Indexing, integration, and scaling were performed using HKL2000. (Otwinowski & Minor, 1997) The data processing statistics are given in Tables S1 & S2.

### S5. Structure determination and model refinement

The structures of native and Va143 CA II pressure series were determined using the CCP4 program suite. (Winn et al., 2011) Prior to refinement, a random 5% of the data were flagged for  $R_{\text{free}}$  analysis. The crystal structures (PDB codes of 5YUK and 3U7C for the native and the V143I CA II, respectively) were used as the initial phasing models. (West *et al.*, 2012, Kim *et al.*, 2018) The maximum likelihood refinement (MLH) was carried out using REFMAC5. (Murshudov *et al.*, 2011) The refined structures were manually checked using the molecular graphics program COOT. (Emsley & Cowtan, 2010) Reiterations of maximum likelihood refinement (MHL) were carried out with anisotropic B factor.

On completion of the structural refinements as described above, systematic refinements were further carried out to accurately determine the partial occupancies of the  $HCO_3^{-/}$  ( $W_{DW} \& W_{Zn}$ ),  $HCO_3^{-/}$  ( $CO_2\&W_{Zn}$ ), and  $His64_{in}/His64_{out}$  configurations (primary/secondary configurations). A total of 99 structures were prepared for each of the native and V143I CA II pressure series, in which the occupancies of the first and the second configurations were changed in incremental steps of 1 % (i.e., the 1<sup>st</sup> structure with 1% in the first configuration and 99% in the second configuration, the 2<sup>nd</sup> structure with 2% in the first and 98% in the second, ..., the 99<sup>th</sup> structure with 99% in the first and 1% in the

second). MLH refinements were carried out in parallel for all the 99 structures. After MLH refinements, the overall R-factor as a function of partial occupancy of the first configuration was obtained, and it was fitted into a quadratic function (Fig. S2&S3). The partial occupancy values of the first configuration were determined such that they minimized the overall R-factor. Details on the refinement statistics are given in Tables S1 & S2. All structural figures were rendered with PyMol (Schrödinger, LLC).

## S6. Structural analysis of the bound water molecules

To compare the bound water molecules in the active site and the entrance conduit, we carefully refined water molecules based on the PDB and COOT validation checks and the electron density maps (cutoff level of  $1\sigma$  in  $2F_o$ - $F_c$  electron density map). We have tested the consistency and reproducibility of the bound water molecules in the active site and the entrance conduit carefully. There are several closely positioned water molecules in the active site and the entrance conduit of the CA II structures. Since most of these waters exist transiently, it is allowed that they can be located closer than the normal stably bound water molecules. In this regard, water molecules closely located near the active site and entrance conduit regions were not excluded in the final coordinates. The important bound water molecules addressed in the main manuscript are listed in Tables S3 and S4. The distance information between  $CO_2$ ,  $HCO_3^-$ , Val143, Ile143, and important water molecules is listed in Table S5.

# **Table S1**Data collection and refinement statistics for the native CA II.

| CO <sub>2</sub> pressure                | 0 atm               | 7 atm                      | 13 atm                     | 15 atm                    |  |
|-----------------------------------------|---------------------|----------------------------|----------------------------|---------------------------|--|
| (PDB code)                              | (6KM3)              | (6KM4)                     | (6KM5)                     | (6KM6)                    |  |
| Data collection                         |                     |                            |                            |                           |  |
| Space group                             | $P2_{1}$            | $P2_{1}$                   | $P2_{1}$                   | $P2_{1}$                  |  |
| Cell dimensions                         |                     |                            |                            |                           |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)      | 42.14,              | 42.18,                     | 42.17,                     | 42.15,                    |  |
|                                         | 41.20,              | 41.32,                     | 41.32,                     | 41.31,                    |  |
|                                         | 72.11               | 72.23                      | 71.99                      | 71.96                     |  |
| β(°)                                    | 104.17              | 104.04                     | 104.07                     | 104.09                    |  |
| Resolution (Å)                          | 30-1.15 (1.17-1.15) | 30-1.15 (1.17-1.15)        | 30-1.15 (1.17-1.15)        | 30-1.15 (1.17-1.15)       |  |
| $R_{\mathrm{sym}}$ (%)                  | 7.0 (19.5)          | 5.4 (39.5)                 | 4.9 (43.6)                 | 5.4 (76.9)                |  |
| $I/\sigma(I)$                           | 24.7 (11.9)         | 26.0 (5.5)                 | 33.1 (4.8)                 | 31.6 (2.2)                |  |
| Completeness (%)                        | 94.6 (91.9)         | 97.9 (96.5)                | 99.4 (98.5)                | 95.9 (93.2)               |  |
| Redundancy                              | 7.0 (7.3)           | 6.6 (6.7)                  | 6.6 (6.7)                  | 6.0 (5.3)                 |  |
| Refinement                              |                     |                            |                            |                           |  |
| Resolution (Å)                          | 1.15                | 1.15                       | 1.15                       | 1.15                      |  |
| No. reflections                         | 80,768              | 84,072                     | 84,726                     | 81,959                    |  |
| $R_{\rm work} / R_{\rm free}$ (%)       | 10.36 / 12.78       | 9.80 / 12.42               | 10.28 / 12.88              | 10.52 / 13.36             |  |
| No. atoms                               |                     |                            |                            |                           |  |
| Protein                                 | 2,106               | 2,118                      | 2,107                      | 2,107                     |  |
| Ligand/ion                              | 1 glycerol          | 2 CO <sub>2</sub> ,        | 2 CO <sub>2</sub> ,        | 2 CO <sub>2</sub> ,       |  |
| -                                       |                     | 1 glycerol                 | 1 glycerol                 | 1 glycerol                |  |
| Water                                   | 271                 | 383                        | 383                        | 383                       |  |
| <b>B</b> -factors                       |                     |                            |                            |                           |  |
| Protein<br>(main / side chain)          | 9.93 / 13.64        | 10.57 / 14.61              | 12.06 / 16.10              | 13.45 / 17.63             |  |
| Ligand/ion                              | 19.49               | 16.00                      | 15.80                      | 16.18                     |  |
| 8                                       | (glycerol)          | (first CO <sub>2</sub> ),  | (first CO <sub>2</sub> ),  | (first CO <sub>2</sub> ), |  |
|                                         |                     | 28.16                      | 29.36                      | 32.00                     |  |
|                                         |                     | (second CO <sub>2</sub> ), | (second CO <sub>2</sub> ), | (second $CO_2$ ),         |  |
|                                         |                     | 18.50                      | 20.52                      | 22.94                     |  |
|                                         |                     | (glycerol)                 | (glycerol)                 | (glycerol)                |  |
| Water                                   | 24.28               | 30.07                      | 31.72                      | 33.82                     |  |
| R.m.s. deviations                       |                     |                            |                            |                           |  |
| Bond lengths (Å)                        | 0.031               | 0.029                      | 0.030                      | 0.029                     |  |
| Bond angles (°)                         | 2.456               | 2.368                      | 2.455                      | 2.367                     |  |
| Cα r.m.s.d. from 0<br>atm structure (Å) | _                   | 0.1219                     | 0.1269                     | 0.1263                    |  |

Values in parentheses are for the highest-resolution shell.

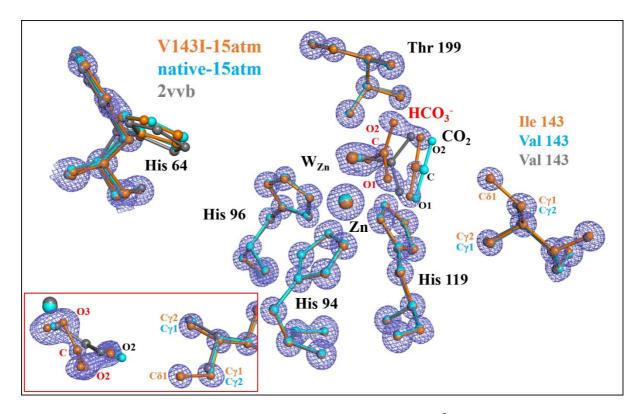
# **Table S2**Data collection and refinement statistics for the V143I CA II.

| CO <sub>2</sub> pressure                                      | 0 atm                             | 7 atm                             | 13 atm                           | 15 atm                           |  |
|---------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|--|
| (PDB code)                                                    | (6KLZ)                            | (6KM0)                            | (6KM1)                           | (6KM2)                           |  |
| Data collection                                               |                                   |                                   |                                  |                                  |  |
| Space group                                                   | $P2_{1}$                          | $P2_{1}$                          | $P2_{1}$                         | $P2_{1}$                         |  |
| Cell dimensions                                               |                                   |                                   |                                  |                                  |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                            | 42.21,                            | 42.30,                            | 42.29,                           | 42.30,                           |  |
|                                                               | 41.32,                            | 41.50,                            | 41.45,                           | 41.46,                           |  |
|                                                               | 72.18                             | 72.14                             | 72.08                            | 72.08                            |  |
| β(°)                                                          | 104.39                            | 104.23                            | 104.18                           | 104.16                           |  |
| Resolution (Å)                                                | 30-0.90 (0.92-0.90)               | 30-0.93 (0.95-0.93)               | 30-1.05 (1.07-1.05)              | 30-0.90 (0.92-0.90)              |  |
| $R_{ m sym}$ (%)                                              | 7.9 (45.6)                        | 8.4 (50.4)                        | 6.8 (45.4)                       | 8.3 (65.3)                       |  |
| $I/\sigma(I)$                                                 | 22.6 (2.6)                        | 20.4 (2.2)                        | 32.4 (4.8)                       | 20.6 (1.8)                       |  |
| Completeness (%)                                              | 90.0 (68.8)                       | 93.7 (77.5)                       | 94.1 (90.7)                      | 95.7 (80.7)                      |  |
| Redundancy                                                    | 5.8 (3.3)                         | 5.6 (3.2)                         | 7.7 (7.8)                        | 5.6 (3.0)                        |  |
| Refinement                                                    |                                   |                                   |                                  |                                  |  |
| Resolution (Å)                                                | 0.90                              | 0.93                              | 1.05                             | 0.90                             |  |
| No. reflections                                               | 160,206                           | 152,358                           | 106,239                          | 171,296                          |  |
| $R_{\text{work}} / R_{\text{free}}$ (%)<br>No. atoms          | 10.81 / 12.14                     | 10.77 / 12.19                     | 10.35 / 12.14                    | 10.99 / 12.22                    |  |
| Protein                                                       | 2,285                             | 2,294                             | 2,285                            | 2,285                            |  |
| Ligand/ion                                                    | $1 \text{ HCO}_{3}^{-},$          | $1 \text{ HCO}_3^-$ ,             | $1 \text{ HCO}_3^-$ ,            | $1 \text{ HCO}_{3}$ ,            |  |
| 8                                                             | 1 glycerol                        | 1 CO <sub>2</sub> ,               | 2 CO <sub>2</sub> ,              | 2 CO <sub>2</sub> ,              |  |
| Water                                                         | 388                               | 1 glycerol<br>390                 | 1 glycerol<br>394                | 1 glycerol<br>390                |  |
| B-factors                                                     | 300                               | 390                               | 394                              | 390                              |  |
| Protein                                                       | 8.78 / 11.60                      | 9.08 / 11.99                      | 8.71 / 11.44                     | 7.79 / 10.44                     |  |
| (main / side chain)                                           | 0./0/11.00                        | 9.06 / 11.99                      | 0./1/11.44                       | 7.79710.44                       |  |
| Ligand/ion                                                    | 6.29                              | 11.03                             | 8.29                             | 6.86                             |  |
| Ligand/1011                                                   | (HCO <sub>3</sub> <sup>-</sup> ), | (HCO <sub>3</sub> <sup>-</sup> ), | (HCO <sub>3</sub> <sup>-</sup> ) | (HCO <sub>3</sub> <sup>-</sup> ) |  |
|                                                               | (11003),<br>14.77                 | 17.55                             | 9.26                             | 9.23                             |  |
|                                                               | (glycerol)                        | (second $CO_2$ ),                 | (first CO <sub>2</sub> ),        | (first CO <sub>2</sub> ),        |  |
|                                                               | (glycelol)                        | 13.13                             | 13.55                            | 12.07                            |  |
|                                                               |                                   | (glycerol)                        | (second CO <sub>2</sub> ),       | (second CO <sub>2</sub> ),       |  |
|                                                               |                                   | (gryceror)                        | 13.27                            | 12.03                            |  |
|                                                               |                                   |                                   | (glycerol)                       | (glycerol)                       |  |
| Water                                                         | 24.83                             | 24.43                             | 23.80                            | 21.97                            |  |
| R.m.s. deviations                                             | 2-7.03                            | 2-1.TJ                            | 23.00                            | 21.7/                            |  |
| Bond lengths (Å)                                              | 0.034                             | 0.030                             | 0.029                            | 0.030                            |  |
| Bond angles (°)                                               | 2.763                             | 2.582                             | 2.574                            | 2.568                            |  |
| Ca r.m.s.d. from 0                                            | _                                 | 0.1159                            | 0.1320                           | 0.1341                           |  |
| atm structure (Å)<br>Cα r.m.s.d. from<br>native structure (Å) | 0.1243                            | 0.1291                            | 0.1126                           | 0.1157                           |  |

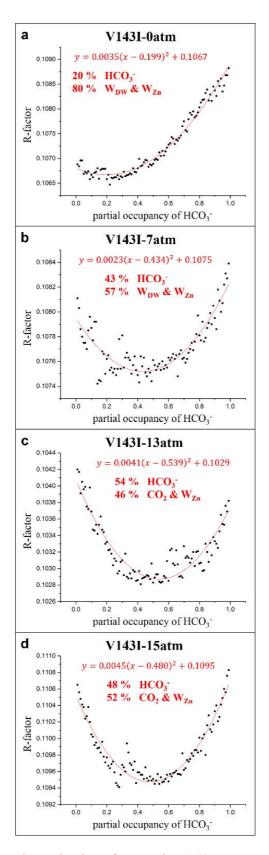
Values in parentheses are for the highest-resolution shell.

| CO <sub>2</sub> pressure | 0 atm  | 7 atm  | 13 atm | 15 atm<br>(6KM6) |  |
|--------------------------|--------|--------|--------|------------------|--|
| (PDB code)               | (6KM3) | (6KM4) | (6KM5) |                  |  |
| W <sub>DW</sub>          | A 589  |        |        |                  |  |
| W <sub>Zn</sub>          | A 464  | A 431  | A 447  | A 432            |  |
| WI                       | _      | A 482  | A 515  | A 498            |  |
| $W_{I}'$                 | _      | A 638  | A 636  | A 627            |  |
| W1                       | A 473  | _      | _      | _                |  |
| W2                       | A 623  | A 682  | A 676  | A 673            |  |
| W2′                      | _      | A 401  | A 401  | A 401            |  |
| W3a                      | A 530  | A 544  | A 544  | A 525            |  |
| W3b                      | A 458  | A 451  | A 464  | A 477            |  |
| W3b′                     | _      | A 700  | A 697  | A 697            |  |
| W <sub>EC1</sub>         | A 624  | A 672  | A 665  | A 664            |  |
| $W_{EC1}'$               | _      | A 705  | A 702  | A 705            |  |
| W <sub>EC2</sub>         | A 609  | _      | _      | _                |  |
| $W_{EC2}'$               | _      | A 684  | A 688  | A 685            |  |
| W <sub>EC3</sub>         | A 639  | A 715  | A 726  | A 722            |  |
| $W_{EC3}'$               | _      | _      | _      | _                |  |
| $W_{EC3}^{\prime\prime}$ | _      | _      | _      | _                |  |
| $W_{EC4}$                | A 659  | A 755  | A 753  | A 754            |  |
| $W_{EC5}$                | A 444  | A 432  | A 432  | A 422            |  |

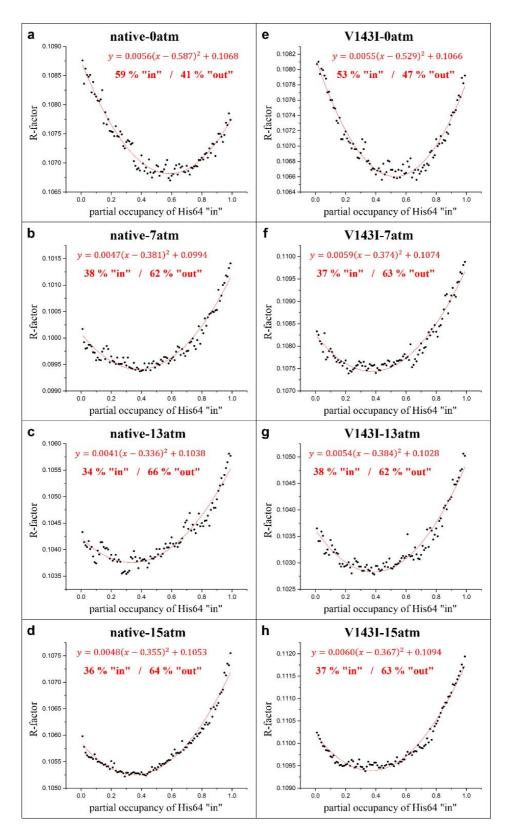
**Table S3**List of key bound water molecules in the native CA II.


| CO <sub>2</sub> pressure       | 0 atm  | 7 atm  | 13 atm | 15 atm<br>(6KM2) |  |
|--------------------------------|--------|--------|--------|------------------|--|
| (PDB code)                     | (6KLZ) | (6KM0) | (6KM1) |                  |  |
| W <sub>DW</sub>                | A 401  | A 402  | _      | _                |  |
| $W_{Zn}$                       | A 412  | A 401  | A 401  | A 401            |  |
| WI                             | A 403  | A 403  | A 402  | A 402            |  |
| $W_{I}'$                       | _      | A 665  | A 661  | A 662            |  |
| W1                             | A 514  | A 545  | A 579  | A 586            |  |
| W2                             | A 676  | A 681  | A 680  | A 679            |  |
| W2′                            | _      | A 404  | A 403  | A 404            |  |
| W3a                            | A 564  | A 546  | A 556  | A 551            |  |
| W3b                            | A 484  | A 450  | A 449  | A 458            |  |
| W3b′                           | _      | A 685  | A 687  | A 683            |  |
| $W_{EC1}$                      | A 672  | A 673  | A 670  | A 666            |  |
| $W_{EC1}'$                     | _      | A 682  | A 691  | A 688            |  |
| W <sub>EC2</sub>               | A 631  | A 662  | A 650  | A 652            |  |
| $W_{EC2}^{\prime}$             | _      | A 424  | A 425  | A 429            |  |
| $W_{EC2}^{\prime\prime}$       | A 661  | _      | _      | _                |  |
| $W_{EC2}^{\prime\prime\prime}$ | A 657  | _      | _      | _                |  |
| W <sub>EC2</sub> ""            | A 402  | _      | _      | _                |  |
| W <sub>EC3</sub>               | A 692  | A 700  | A 698  | A 699            |  |
| $W_{EC4}$                      | A 743  | A 736  | A 743  | A 740            |  |
| W <sub>EC5</sub>               | A 459  | A 434  | A 442  | A 440            |  |

**Table S4**List of key bound water molecules in the V143I CA II.


|                                                           | native | native | native | native | V143I | V143I | V143I | V143I |
|-----------------------------------------------------------|--------|--------|--------|--------|-------|-------|-------|-------|
|                                                           | 0atm   | 7atm   | 13atm  | 15atm  | 0atm  | 7atm  | 13atm | 15atm |
|                                                           | 6KM3   | 6KM4   | 6KM5   | 6KM6   | 6KLZ  | 6KM0  | 6KM1  | 6KM2  |
| $Zn - W_{Zn}$                                             | 1.90   | 1.93   | 1.93   | 1.93   | 1.89  | 1.89  | 1.93  | 1.92  |
| $Zn - W_{\rm DW}$                                         | 4.14   | _      | _      | _      | 4.09  | 4.12  | 3.07  | 3.07  |
| $Zn - CO_2(O1)$                                           | -      | 3.23   | 3.27   | 3.28   | _     | _     | _     | _     |
| $Zn - HCO_3^{-}(O1)$                                      | -      | _      | _      | _      | 3.17  | 2.92  | 3.00  | 3.01  |
| $Zn - HCO_3^{-}(O3)$                                      | -      | _      | _      | _      | 1.99  | 1.98  | 1.99  | 1.99  |
| $W_{Zn}-W_{DW} \\$                                        | 2.51   | _      | _      | _      | 2.61  | 2.75  | _     | _     |
| $W_{Zn} - CO_2(O1)$                                       | -      | 2.89   | 2.92   | 2.94   | _     | _     | 2.92  | 2.90  |
| $W_{Zn} - CO_2(O2)$                                       | -      | 3.07   | 3.06   | 3.07   | _     | _     | 2.90  | 2.88  |
| $W_{Zn} - CO_2(C)$                                        | -      | 2.79   | 2.78   | 2.79   | _     | _     | 2.68  | 2.67  |
| $W_{Zn} - HCO_3(O1)$                                      | -      | _      | _      | _      | 2.32  | 2.27  | 2.32  | 2.29  |
| $W_{Zn} - HCO_3(O2)$                                      | -      | _      | _      | _      | 2.63  | 2.51  | 2.43  | 2.44  |
| $W_{Zn} - HCO_3(O3)$                                      | -      | _      | _      | _      | 0.31  | 0.60  | 0.69  | 0.67  |
| $W_{Zn}$ - $HCO_3^-(C)$                                   | -      | _      | _      | _      | 1.56  | 1.48  | 1.49  | 1.50  |
| $Val143(C\gamma 2) - W_{DW}$                              | 5.28   | _      | _      | _      | _     | _     | _     | _     |
| $Val143(C\gamma 1)-W_{DW}$                                | 5.80   | _      | _      | _      | _     | _     | _     | _     |
| $Val143(C\gamma 2) - CO_2(O1)$                            | -      | 4.01   | 3.93   | 3.94   | _     | _     | _     | _     |
| $Val143(C\gamma 2) - CO_2(O2)$                            | -      | 4.19   | 4.16   | 4.15   | _     | _     | _     | _     |
| $Val143(C\gamma 2) - CO_2(C)$                             | -      | 3.93   | 3.87   | 3.87   | _     | _     | _     | _     |
| $Val143(C\gamma 1) - CO_2(O1)$                            | -      | 3.73   | 3.68   | 3.70   | _     | _     | _     | -     |
| $Val143(C\gamma 1) - CO_2(O2)$                            |        | 4.75   | 4.77   | 4.79   | _     | _     | _     | _     |
| $Val143(C\gamma 1) - CO_2(C)$                             | -      | 4.13   | 4.11   | 4.12   | _     | _     | _     | _     |
| $Ile143(C\delta 1) - W_{DW}$                              | -      | _      | _      | _      | 3.53  | 3.41  | _     | _     |
| Ile143(C $\gamma$ 2) – W <sub>DW</sub>                    | -      | _      | _      | _      | 5.41  | 5.23  | _     | _     |
| Ile143(C $\gamma$ 1) – W <sub>DW</sub>                    |        | _      | _      | _      | 5.04  | 4.89  | _     | _     |
| Ile143(C $\delta$ 1) – CO <sub>2</sub> (O1)               | -      | _      | _      | _      | _     | _     | 3.17  | 3.17  |
| Ile143(C $\delta$ 1) – CO <sub>2</sub> (O2)               | -      | _      | _      | _      | _     | _     | 3.23  | 3.20  |
| Ile143(C $\delta$ 1) – CO <sub>2</sub> (C)                |        | —      | —      | —      | —     | —     | 2.97  | 2.95  |
| Ile143(C $\gamma$ 2) – CO <sub>2</sub> (O1)               |        | _      | _      | _      | _     | _     | 3.77  | 3.78  |
| Ile143(C $\gamma$ 2) – CO <sub>2</sub> (O2)               |        | _      | _      | _      | _     | _     | 5.04  | 5.01  |
| Ile143(C $\gamma$ 2) – CO <sub>2</sub> (C)                |        | _      | _      | _      | _     | _     | 4.29  | 4.28  |
| Ile143(C $\gamma$ 1) – CO <sub>2</sub> (O1)               |        | _      | _      | _      | _     | _     | 4.25  | 4.23  |
| Ile143(C $\gamma$ 1) – CO <sub>2</sub> (O2)               |        | _      | _      | _      | _     | _     | 4.73  | 4.68  |
| Ile143(C $\gamma$ 1) – CO <sub>2</sub> (C)                |        | _      | _      | _      | _     | _     | 4.34  | 4.29  |
| Ile143(C $\delta$ 1) – HCO <sub>3</sub> <sup>-</sup> (O1) |        | _      | _      | _      | 3.78  | 3.73  | 3.86  | 3.86  |
| Ile143(C $\delta$ 1) – HCO <sub>3</sub> <sup>-</sup> (O2) | -      | _      | _      | _      | 4.08  | 4.08  | 4.30  | 4.25  |
| Ile143(C $\delta$ 1) – HCO <sub>3</sub> <sup>-</sup> (O3) |        | _      | _      | _      | 5.19  | 5.08  | 5.14  | 5.11  |
| Ile143(C $\delta$ 1) – HCO <sub>3</sub> <sup>-</sup> (C)  |        | _      | _      | _      | 4.20  | 4.17  | 4.28  | 4.23  |
| Ile143(C $\gamma$ 2) – HCO <sub>3</sub> <sup>-</sup> (O1) |        | _      | _      | _      | 5.05  | 4.81  | 4.97  | 5.00  |
| Ile143(C $\gamma$ 2) – HCO <sub>3</sub> <sup>-</sup> (O2) | -      | _      | _      | _      | 6.16  | 6.03  | 6.17  | 6.14  |

**Table S5** Distance geometry (Å) of  $CO_2$ ,  $HCO_3^-$  and key bound water molecules in the native andV143I CA II.


|                                                                                            | 1    |      |      |      |      |      |      |      |
|--------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|
| $\frac{\text{Ile143}(\text{C}\gamma2) - \text{HCO}_3(\text{O}3)}{\text{HCO}_3(\text{O}3)}$ | _    | -    | -    | _    | 6.05 | 5.84 | 5.84 | 5.83 |
| Ile143(C $\gamma$ 2) – HCO <sub>3</sub> -(C)                                               | _    | -    | -    | -    | 5.67 | 5.43 | 5.53 | 5.50 |
| Ile143(C $\gamma$ 1) – HCO <sub>3</sub> -(O1)                                              | _    | -    | -    | -    | 5.01 | 4.94 | 5.12 | 5.10 |
| Ile143(C $\gamma$ 1) – HCO <sub>3</sub> -(O2)                                              | —    | _    | _    | _    | 5.59 | 5.58 | 5.83 | 5.76 |
| Ile143(C $\gamma$ 1) – HCO <sub>3</sub> <sup>-</sup> (O3)                                  | _    | _    | _    | _    | 6.50 | 6.37 | 6.44 | 6.39 |
| Ile143(C $\gamma$ 1) – HCO <sub>3</sub> <sup>-</sup> (C)                                   |      | -    | -    | _    | 5.61 | 5.54 | 5.68 | 5.61 |
| $W_{EC2}'''' - HCO_3(O1)$                                                                  | _    | -    | -    | —    | 1.38 | _    | _    | _    |
| $W_{EC2}'''' - HCO_3(O2)$                                                                  | _    | -    | -    | -    | 2.51 | —    | _    | _    |
| $W_{EC2}'''' - HCO_3^{-}(O3)$                                                              | _    | _    | _    | _    | 3.46 | _    | _    | _    |
| $W_{EC2}^{\prime\prime\prime\prime\prime} - HCO_3^{-}(C)$                                  | _    | _    | _    | _    | 2.30 | _    | _    | _    |
| $W_{EC2}' - HCO_3(O1)$                                                                     | —    | _    | _    | _    | _    | 2.73 | 2.66 | 2.62 |
| $W_{EC2}' - HCO_3^{-}(O2)$                                                                 | —    | -    | _    | _    | _    | 3.56 | 3.67 | 3.66 |
| $W_{EC2}' - HCO_3^{-}(O3)$                                                                 | —    | _    | _    | _    | _    | 4.31 | 4.42 | 4.40 |
| $W_{EC2}' - HCO_3(C)$                                                                      | —    | _    | _    | _    | _    | 3.46 | 3.52 | 3.50 |
| $W_I - CO_2(O1)$                                                                           | —    | 3.89 | 3.97 | 4.02 | _    | _    | 3.85 | 3.83 |
| $W_I - CO_2(O2)$                                                                           | _    | 3.29 | 3.31 | 3.34 | _    | —    | 3.01 | 3.03 |
| $W_I - CO_2(C)$                                                                            | -    | 3.42 | 3.47 | 3.51 | _    | _    | 3.26 | 3.26 |
| $W_I - HCO_3(O1)$                                                                          | _    | _    | _    | _    | 2.29 | 2.72 | 2.70 | 2.66 |
| $W_I - HCO_3(O2)$                                                                          | _    | _    | _    | _    | 1.44 | 1.68 | 1.79 | 1.82 |
| $W_I - HCO_3^{-}(O3)$                                                                      | _    | _    | _    | _    | 2.47 | 2.73 | 2.87 | 2.86 |
| $W_I - HCO_3(C)$                                                                           | -    | _    | _    | _    | 1.61 | 2.12 | 2.19 | 2.20 |
| $W_{EC2}' - CO_2(O1)$                                                                      | _    | 3.73 | 3.78 | 3.79 | _    | _    | 3.66 | 3.60 |
| $W_{EC2}' - CO_2(O2)$                                                                      | _    | 4.41 | 4.42 | 4.42 | _    | _    | 4.20 | 4.19 |
| $W_{EC2}' - CO_2(C)$                                                                       | _    | 3.94 | 3.95 | 3.94 | _    | _    | 3.76 | 3.72 |
| $W_{EC2}-W_{DW} \\$                                                                        | 4.39 | _    | _    | _    | _    | _    | _    | -    |
| $W1-W_{Zn} \\$                                                                             | 2.64 | _    | _    | _    | 2.60 | 2.59 | 2.56 | 2.57 |
| $W_{\rm I}-W_{\rm I}'$                                                                     | —    | 2.09 | 2.12 | 2.11 | _    | 2.08 | 2.06 | 2.14 |
| $W2-W_{Zn}$                                                                                | —    | 4.67 | 4.68 | 4.68 | _    | _    | _    | -    |
| $W_{EC2}^{\prime\prime\prime\prime\prime}-W_{I}$                                           | —    | _    | _    | _    | 2.43 | _    | _    | -    |
| $W_{EC2}^{\prime\prime\prime\prime\prime}-W1$                                              | —    | _    | _    | _    | 3.28 | _    | _    | _    |
| $W_{EC2}^{\prime\prime\prime\prime\prime}-W_{EC2}$                                         | —    | _    | _    | _    | 2.07 | _    | _    | _    |
| $W_{EC2}^{\prime\prime\prime\prime\prime}-W_{EC2}^{\prime\prime}$                          | -    | _    | _    | _    | 3.24 | _    | _    | _    |
| $W_{EC2}^{\prime\prime\prime\prime}-W_{EC2}^{\prime\prime\prime}$                          | _    | _    | _    | _    | 1.71 | _    | _    | _    |
| $W_{EC2} - W_{I}$                                                                          | _    | _    | _    | _    | 3.13 | 3.28 | 3.20 | 3.16 |
| $W_{EC2} - W1$                                                                             | 2.79 | _    | _    | _    | 2.78 | 2.62 | 2.64 | 2.65 |
| $W_{EC2}^{\prime}-W_{I}$                                                                   | _    | 3.15 | 3.16 | 3.15 | _    | 2.94 | 2.98 | 2.96 |
| $W_{EC2}^{\prime}-W1$                                                                      | —    | _    | _    | _    | _    | 3.04 | 3.14 | 3.12 |
| $W2-W_{\mathrm{I}}$                                                                        | _    | 4.71 | 4.71 | 4.73 | 4.78 | 4.78 | 4.62 | 4.62 |
| $His64_{in}(N\delta 1) - W2$                                                               | 3.24 | 3.30 | 3.25 | 3.23 | 3.29 | 3.40 | 3.32 | 3.35 |
| $His64_{in}(N\delta 1) - W2'$                                                              | —    | 1.82 | 1.75 | 1.76 | _    | 1.76 | 1.93 | 1.92 |
|                                                                                            |      |      |      |      |      |      |      |      |



**Figure S1** Close view of the active site of V143I-15atm (orange, 0.9 Å resolution). The structure of native-15atm (cyan, 1.15 Å resolution) and the structure of the native CA II with HCO<sub>3</sub><sup>-</sup> (grey, 1.66 Å, PDB code: 2VVB) are superimposed for comparison. (Sjoeblom *et al.*, 2009) The active site water network ( $W_1/W_2/W_3a/W_3b$ ) is not shown for clarity. The electron density map is from V143I-15 atm. The 2Fo-Fc map is contoured at 4.0  $\sigma$ , except His64 which is at 2.5  $\sigma$ , and  $W_{Zn}$ , CO<sub>2</sub>, and HCO<sub>3</sub><sup>-</sup> at 2.0  $\sigma$ . The atom names are labelled for CO<sub>2</sub> (black), HCO<sub>3</sub><sup>-</sup> (red), Isoleucine 143 (orange) and Valine 143 (cyan). The inset (red box) shows the CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup> at different angle. Note that the  $W_{Zn}$ , CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup> in native CA II are roughly within a plane. On the other hand, V143I-15atm shows that both CO<sub>2</sub> and O1 and O2 atoms of HCO<sub>3</sub><sup>-</sup> are pushed and twisted toward  $W_{Zn}$  and O3 atom of HCO<sub>3</sub><sup>-</sup> is pushed away from  $W_{Zn}$ . This movement results in HCO<sub>3</sub><sup>-</sup> being displaced from the plane defined by  $W_{Zn}$ , CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup> in the native CA II form.



**Figure S2** Partial occupancy determination of  $HCO_3^-$  in V143I CA II (**a-d**). For each data set, systematic refinements were carried out on 99 structures with manually adjusted  $HCO_3^-/CO_2/W_{Zn}/W_{DW}$  occupancies. The obtained data points were then fitted to quadratic functions, showing the minimum points in the overall R factors.



**Figure S3** Partial occupancy determination of His64 in native CA II (**a-d**) and V143I CA II (**e-h**). For each data set, systematic refinements were carried out on 99 structures with manually adjusted His64 in/out occupancies. The obtained data points were then fitted to quadratic functions, showing the minimum points in the overall R factors.