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S1. Hyperparameters of the XGBoost Model 

We used the same set of hyperparameters to train all of our XGBoost models. Parameters did not 

require extensive tuning because the SWAXS features are strongly correlated to the structural 

descriptors. The hyperparameters are reported in Table S1. 

Table S1 The hyperparameters of the XGBoost model.  

Hyperparameter name XGBoost Arguments Value 

Learning Rate learning_rate 0.07 

Maximum Tree Depth max_depth 3 

Number of Trees n_estimators 
750 (10-fold cross-validation) 

7,500 (Training w/ early stopping) 

L1 regularization term reg_alpha 0.75 

L2 regularization term reg_lambda 0.45 

Subsample ratio of columns colsample_bytree 0.4 

Subsample ratio subsample 0.8 

Minimum sum of instance weight min_child_weight 1.5 

  

 

 

S2. Performance of Linear Models 

We benchmarked the XGBoost models with unregularized linear models, Ridge regression and least 

absolute shrinkage and selection operator (LASSO). The Ridge regression and LASSO correspond to L2 and L1 

regularization of the linear model. We trained the linear models using the helical radius data. The mean-square-

error (MSE) is reported in Table S2. The performance of these linear models is not comparable to that of 

XGBoost model based on the large MSE. This comparison implies the nonlinearity of SWAXS profiles and 

helical radii of the RNA duplexes. 

Table S2 Performance of linear models using the helical radius dataset. The result should be 

compared to the noise-free XGBoost model in Table 1 in the main text. The regularization coefficient 

is 𝛼. 

 
Unregularized 

Linear Model 

Ridge Regression 

𝛼 = 0.05 

LASSO 

𝛼 = 0.2 

Training MSE 0.013 0.017 0.067 

Validation MSE 0.013 0.017 0.069 

Testing MSE 0.014 0.018 0.070 
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S3. Setup of MD Simulations 

The setup for the MD simulations was described in section A.1 of (Templeton & Elber, 2018), where a helix-

junction-helix (HJH) conformation was studied.  The simulation parameters are paraphrased below.  

 The helix HJH construct of interest was composed of two 12 base pair A-form RNA duplexes, 

connected by a linker, consisting of a poly(U) junction with five nucleotides.  One long strand, with sequence 

5’-CCCUAUACUCCCUUUUUCCUCCUAAUCGC-3’  was base paired at each end (for 12 residues) with a 

complementary strand to form the HJH complex. Initially, the construct was created using the make-na web 

server[1], an online platform that builds single or double stranded helical nucleic acids. The MD simulations 

were performed using NAMD[2] as well as the CHARMM 36 force fields[3]. 

 Water molecules from TIP3P [4] solvated the molecules within a 100x100x120 Å3  periodic box. Ions 

were randomly placed using the VMD autoionize plugin[5].  Ions were initially located  at least 5 Å from the 

RNA or other ions. Temperature was maintained at 310K, and pressure was 1 atmosphere. Langevin dynamics 

and a Nose-Hoover Langevin piston were used for all simulations.  For electrostatics, Particle Mesh Ewald 

(PME) summation[6] with grid spacing of 1 Å was used.  A 12 Å cutoff distance was used to evaluate Lennard-

Jones forces. One  helix was consistently kept rigid to fix the RNA and to provide a static frame of reference. 

The other was allowed to fluctuate, and it is the latter helix that was used for comparisons in this work.  

 A free energy landscape was generated using Milestoning with radius of gyration as variable. 

Simulations were conducted at 30 mM MgCl2 and at 60 mM KCl.  
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Figure S1 The mean squared error (MSE) of the 10-fold CV, training, validation and testing results 

versus the number of MD structures used to train the XGBoost model for helical radius. To achieve a 

higher accuracy in the trained XGBoost model on the testing set (higher power of prediction and 

generalization), a larger dataset is required for training. For error tolerance of 0.01 in the helical radius 

parameter for the 12-base-paired duplex, at least 15,000 MD structures are required.   

  



 

 

IUCrJ (2020). 7,  doi:10.1107/S2052252520008830        Supporting information, sup-4 

Figure S2 The performance of XGBoost models trained by SWAXS profiles with different numbers 

of q points close to or under the Shannon sampling limit for all the structural descriptors and random 

data as a control. The vertical line is the sampling limit, about 31 q points for our 12-based-paired 

system. In the under-sampled regime, the performance rapidly degrades, losing the structural 

information in the SWAXS profile and barely trains the model.  
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Figure S3 The performance of XGBoost models trained by noisy SWAXS profiles with noise 

percentages ranging from 5% to 30% for all the structural descriptors and random data as a control. 

The signal-to-noise ratio is the reciprocal of the noise percentage. As the noise increases, the 

structural information is less clear in the SWAXS profile, so the ML models perform poorly as 

training error increases. The inclusion of noise in the training data increases the risk of overfitting 

since ML models are likely to learn from noise, resulting in greater errors in the validation and testing 

sets. 
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Figure S4 The performance of 4 trained XGBoost models on the experimental data of the 12 bp 

RNA duplex in a solution containing 5.0 mM MgCl2. The visualization scheme is as described in Fig. 

4 in the main text.   
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Figure S5 The performance of 4 trained XGBoost models on the experimental data of the 12 bp 

RNA duplex in a solution containing 500 mM KCl. The visualization scheme is as described in Fig. 4 

in the main text.   
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Figure S6 The normalized “importance-weight” traces for 4 trained XGBoost models. The 

“importance-weight” reports the number of times a feature (here the intensity at certain q) is used in 

the model to make predictions. It reflects the decision-making process of the model. Among all the 

trained models and structural descriptors, the traces are very similar, suggesting almost identical 

splitting of the CARTs in the tree boosting ensemble. The difference lies only in the “gain” associated 

with each intensity, reported in Fig. 6 in the main text. 

 


