

Volume 7 (2020)

Supporting information for article:

Measuring energy-dependent photoelectron escape in microcrystals

Selina L. S. Storm, Adam D. Crawshaw, Nicholas E. Devenish, Rachel Bolton, David R. Hall, Ivo Tews and Gwyndaf Evans

Supplementary material

Fig. S1: Gaussian beamprofile for the a) horizontal beamsize of 7.2 μ m and b) the vertical beamsize of 6.4 μ m for beamtime B obtained by performing a scan on a gold wire with 1 μ m resolution and an illumination of 1 s per data point.

Fig. S2: a) First diffraction image from a lysozyme crystal with a size of $4.6 \times 3.5 \times 3.5 \text{ }\mu\text{m}^3$ collected at 13.5 keV; b) first diffraction image from a lysozyme crystal with a size of $5.1 \times 3.2 \times 3.2 \text{ }\mu\text{m}^3$ collected at 20.1 keV.

Table S1 a) Representative data collection parameters for the different beamtimes. The flux is the actually applied flux, i.e. the applied transmission is taken into consideration. A sweep refers to 5 degrees of data. The doses are average diffraction weighted doses; the deposited dose takes photoelectron escape into account.

	crystal size	energy	flux*	exposure	beam size	Dose/	no of	D _{1/2}	deposite
	[µm ³]	[keV]	[ph/s]	time /	[µm²]	sweep	sweeps	[MG]	d D _{1/2}
				frame [s]		[MGy]	to $D_{1/2}$		[MGy]
Beamtime	5.4 x 3.2 x 3.2	13.5	4.5×10^{11}	0.05	9.1 × 8.2	4	13.4	54.1	33
A	20.8 x 7.8 x 7.8	20.1	4.2x 10 ¹¹	0.15	21.9 x 18.2	0.7	19	12.4	7.9
Beamtime	5.4 x 3.3 x 3.3	13.5	9.1x10 ¹¹	0.02	7.2 x 6.4	3.9	10.6	41.3	25.3
В	5.1 x 2.8 x 2.8	20.1	$4.9x10^{11}$	0.1	7.2 x 6.4	4.7	11.6	54.5	14.2
Beamtime	22.9 x 8.6 x 8.6	13.5	$1.7x10^{12}$	0.02	23.4 x 20.5	0.7	7.8	5.6	4.8
С	23 x 9.3 x 9.3	20.1	5.5 x 10 ¹¹	0.16	23.4 x 20.5	0.8	7.4	5.7	4

Table S1 b) Processing statistics are taken from the scaled 5 degree sweeps by applying a resolution cut-off at 3 Å for comparability. The number in brackets refers to the highest resolution shell in the range of 0.05 Å. The sweep reaching $D_{1/2}$ is defined as the rounded up value given in table 1a. The resolution cut-off is based on the $CC_{1/2} >= 0.33$.

	first sweep					sweep reaching D _{1/2}			
	resolution	I/σ	R _{meas}	CC _{1/2}	mosaicity	resolution	I/σ	R _{meas}	CC _{1/2}
	[Å]				[°]	[Å]		[%]	[%]
Beamtime A	2.0	5.0	0.17	0.96	0.12	2.9	2.9	0.27	0.90
		[1.1]	[1.4]	[0.0]			[0.4]	[1.37]	[-0.98]
	2.2	37.0	0.14	0.98	0.11	2.2	23.1	0.22	0.97
		[15.5]	[0.19]	[0.92]			[6.3]	[0.15]	[0.90]
Beamtime B	1.9	4.7	0.14	0.97	0.11	2.5	2.6	0.26	0.85
		[1.8]	[0.11]	[0.95]			[0.4]	[0.56]	[0.84]
	1.9	6.2	0.09	0.98		2.8	2.3	0.27	0.74
		[2.4]	[0.22]	[0.90]	0.09		[0.3]	[0.95]	[-0.18]
Beamtime C	1.9	35.2	0.09	0.97		2.0	26.4	0.07	0.98
		[15]	[0.11]	[0.98]	0.11		[8.5]	[0.14]	[0.9]
	1.9	29.5	0.16	0.90		2.0	24.1	0.18	0.86
		[11.7]	[0.10]	[0.99]	0.24		[8.7]	[0.11]	[1.0]

Fig. S3: SEM image of a destroyed crystal. For comparison, three intact crystals in the upper half of the picture.

Fig. S4 a: The plot shows the total integrated intensity of all profile-fitted reflections in total (blue) and for the different resolution shells. The gaps indicate that the integration of the profile-fitted reflection was not possible. Obviously, these data could not be used in the final analysis.

Fig. S4 b: As in Fig. S4 a, but collected during the injection of electrons into the ring (top-up). This leads to an instable and enlarged beam, which is why neither the doses could be determined correctly nor a reasonable decay plot could be obtained.

