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S1. Derivation of equations (3) & (4) 

S1.1. Derivation of a closed-form expression for  three-beam intensity 

Here, we derive a closed-form solution to three-beam dynamic diffraction. 

The wave function of the diffracted beam 𝑔𝑔 and the central beam 0 can be expressed as: 

 𝜓𝜓𝑔𝑔 = ⟨𝑔𝑔|𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖 𝑴𝑴 𝑧𝑧)|0⟩  (S1a) 

and 𝜓𝜓0 = ⟨0|𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖 𝑴𝑴 𝑧𝑧)|0⟩ , (S1b) 

where 𝑧𝑧 is the specimen thickness,  

|0⟩ = (1, 0, 0)T and ⟨𝑔𝑔| = (0, 1, 0)  

are the initial and final states of the scattering processes. The Hermitian matrix, 

 𝑴𝑴 = �
0 𝜎𝜎𝑉𝑉𝐠𝐠∗ 𝜎𝜎𝑉𝑉𝐡𝐡∗

𝜎𝜎𝑉𝑉g 2𝜋𝜋𝜁𝜁𝑔𝑔 𝜎𝜎𝑉𝑉𝐡𝐡−𝐠𝐠∗

𝜎𝜎𝑉𝑉𝐡𝐡 𝜎𝜎𝑉𝑉𝐡𝐡−𝐠𝐠 2𝜋𝜋𝜁𝜁ℎ
� , (S2) 

is the eigenmatrix for the equation: 

 𝑴𝑴 𝐶𝐶 = 𝜆𝜆𝑖𝑖  𝐶𝐶 . (S3) 

The incident beam direction with respect to the crystal is described by the excitation errors of 

reflections 𝑔𝑔 and ℎ, denoted as 𝜁𝜁𝑔𝑔 and 𝜁𝜁ℎ respectively. The structure factor, 𝑉𝑉−𝐠𝐠, is replaced by 𝑉𝑉𝐠𝐠∗ in 

the Hermitian matrix and 𝜎𝜎 is the interaction constant.      

 

The 3x3 Hermitian matrix 𝑴𝑴 has three real eigenvalues, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, and each corresponds to a Bloch 

wave. The eigenvalues are calculated from the characteristic equation |𝑴𝑴− 𝜆𝜆𝑖𝑖𝑰𝑰| = 0, which yields  

 𝜆𝜆3 + 𝑏𝑏𝜆𝜆2 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0  , (S4a) 
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where 𝑏𝑏 = −2𝜋𝜋�𝜁𝜁𝑔𝑔 + 𝜁𝜁ℎ�  , (S4b) 

 𝑐𝑐 = (2𝜋𝜋𝜁𝜁𝑔𝑔)(2𝜋𝜋𝜁𝜁ℎ) − (𝜎𝜎|𝑉𝑉𝐠𝐠|)2 − (𝜎𝜎|𝑉𝑉𝐡𝐡|)2 − (𝜎𝜎|𝑉𝑉𝐡𝐡−𝐠𝐠|)2   (S4c) 

and   𝑑𝑑 = �2𝜋𝜋𝜁𝜁𝑔𝑔�(𝜎𝜎|𝑉𝑉𝐡𝐡|)2 + (2𝜋𝜋𝜁𝜁ℎ)(𝜎𝜎|𝑉𝑉𝐠𝐠|)2 − 2�𝜎𝜎�𝑉𝑉𝐠𝐠��(𝜎𝜎|𝑉𝑉𝐡𝐡|)�𝜎𝜎�𝑉𝑉𝐡𝐡−𝐠𝐠��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  . (S4d) 

The real roots to this cubic equation can be expressed in trigonometric forms:  

 𝜆𝜆1 = 2�−𝑄𝑄 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜃𝜃
3
� −

𝑏𝑏
3

  , (S5a) 

 𝜆𝜆2 = 2�−𝑄𝑄 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜃𝜃 + 2𝜋𝜋

3
� −

𝑏𝑏
3

   (S5b) 

and 𝜆𝜆3 = 2�−𝑄𝑄 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜃𝜃 + 4𝜋𝜋

3
� −

𝑏𝑏
3

  , (S5c) 

where 𝑄𝑄 =
3𝑐𝑐 − 𝑏𝑏2

9
  , (S5d) 

 𝑅𝑅 =
9𝑏𝑏𝑏𝑏 − 27𝑑𝑑 − 2𝑏𝑏3

54
   (S5e) 

and  𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(
𝑅𝑅

�−𝑄𝑄3
)  . (S5f) 

Fig. S1. shows a plot of the three dispersion surfaces along the Bragg condition for reflection 𝑔𝑔, 

which lies on a line (the so-called Bragg line) where 𝜁𝜁𝑔𝑔 = 0, and 𝜁𝜁ℎ varies continuously. Note: 

𝜆𝜆1,𝜆𝜆2,𝜆𝜆3 have been assigned in a sequence such that 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ 𝜆𝜆3.  

 

 

 

 

 

Figure S1 A plot of (the cut view of) dispersion surfaces in three-beam electron diffraction. The 

three eigenvalues, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, are described by equations (S5a-c). Wolfram Mathematica 10 

(Wolfram Research Inc., 2014) is used for generating this plot. 
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Following Hurley et al.(1978), we apply the projection operator  

 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 𝑴𝑴 𝑧𝑧) = �𝑷𝑷𝒊𝒊

3

𝑖𝑖=1

𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 𝜆𝜆𝑖𝑖  𝑧𝑧)  (S6a) 

and    𝑷𝑷𝒊𝒊 =
𝑴𝑴− 𝜆𝜆𝑖𝑖⨁1𝑰𝑰
𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖⨁1

 
𝑴𝑴− 𝜆𝜆𝑖𝑖⨁2𝑰𝑰
𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖⨁2

      (𝑖𝑖 = 1,2,3), (S6b) 

where an operator ⨁ is introduced to indicate cyclic addition: 1⨁1=2, 1⨁2=3, 2⨁1=3, 2⨁2=1, 

3⨁1=1, 3⨁2=2. Before moving on, we introduce some shorthand notations: 

𝑆𝑆𝑔𝑔 = 2𝜋𝜋𝜁𝜁𝑔𝑔  , 𝑈𝑈1 = 𝜎𝜎|𝑉𝑉𝐠𝐠| , 𝑈𝑈2 = 𝜎𝜎|𝑉𝑉𝐡𝐡| , 𝑈𝑈3 = 𝜎𝜎|𝑉𝑉𝐡𝐡−𝐠𝐠|, 

and 𝜇𝜇𝑖𝑖 = 𝜆𝜆𝑖𝑖⊕1 − 𝜆𝜆𝑖𝑖⊕2  (i.e. 𝜇𝜇1 = 𝜆𝜆2 − 𝜆𝜆3 , 𝜇𝜇2 = 𝜆𝜆3 − 𝜆𝜆1, 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇3 = 𝜆𝜆1 − 𝜆𝜆2). 

By combining equations (S1), (S5a, b) and (S6a, b), we can obtain the wave functions for reflections 

𝑔𝑔 and 0: 

𝜓𝜓𝑔𝑔 = −𝑈𝑈1 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝜑𝜑𝐠𝐠��𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 𝜆𝜆𝑖𝑖𝑧𝑧)
3

𝑖𝑖=1

𝑈𝑈2 𝑈𝑈3
𝑈𝑈1

𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝑖𝑖) + 𝑆𝑆𝒈𝒈 − 𝜆𝜆𝑖𝑖⨁1 − 𝜆𝜆𝑖𝑖⨁2
𝜇𝜇𝑖𝑖⨁1 𝜇𝜇𝑖𝑖⨁2

    (S7) 

and   𝜓𝜓0 = −�𝑒𝑒𝑒𝑒𝑒𝑒 (𝑖𝑖 𝜆𝜆𝑖𝑖𝑧𝑧)
𝜆𝜆𝑖𝑖⨁1𝜆𝜆𝑖𝑖⨁2 + 𝑈𝑈1

2 + 𝑈𝑈2
2

𝜇𝜇𝑖𝑖⨁1 𝜇𝜇𝑖𝑖⨁2

3

𝑖𝑖=1

  . (S8) 

Thus, we can derive the intensity expressions for reflections 𝑔𝑔 and ℎ: 

 

𝐼𝐼𝑔𝑔 = 𝜓𝜓𝑔𝑔 𝜓𝜓𝑔𝑔∗ = 2𝑈𝑈12�{(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇𝑖𝑖𝑧𝑧 − 1)
3

𝑖𝑖=1

�
|𝐺𝐺0|2

𝜇𝜇1𝜇𝜇2𝜇𝜇3𝜇𝜇𝑖𝑖
+ 𝐺𝐺𝑖𝑖⨁1𝐺𝐺𝑖𝑖⨁2� 

+(𝑐𝑐𝑐𝑐𝑐𝑐(𝜇𝜇𝑖𝑖𝑧𝑧 + 𝜙𝜙) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
|𝐺𝐺0|𝐺𝐺𝑖𝑖⨁1

𝜇𝜇𝑖𝑖  𝜇𝜇𝑖𝑖⨁1
+ 

(𝑐𝑐𝑐𝑐𝑐𝑐(𝜇𝜇𝑖𝑖𝑧𝑧 − 𝜙𝜙) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
|𝐺𝐺0|𝐺𝐺𝑖𝑖⨁2
𝜇𝜇𝑖𝑖 𝜇𝜇𝑖𝑖⨁2

}  

 

 

 

 
(S9a) 

and 
𝐼𝐼ℎ = 𝜓𝜓ℎ  𝜓𝜓ℎ∗ = 2𝑈𝑈22�{(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇𝑖𝑖𝑧𝑧 − 1)

3

𝑖𝑖

�
|𝐺𝐺0′|2

𝜇𝜇1𝜇𝜇2𝜇𝜇3𝜇𝜇𝑖𝑖
+ 𝐺𝐺𝑖𝑖+1′𝐺𝐺𝑖𝑖+2′� 

+(𝑐𝑐𝑐𝑐𝑐𝑐(𝜇𝜇𝑖𝑖𝑧𝑧 − 𝜙𝜙) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
|𝐺𝐺0

′|𝐺𝐺𝑖𝑖⨁1
′

𝜇𝜇𝑖𝑖  𝜇𝜇𝑖𝑖⨁1
+  

(𝑐𝑐𝑐𝑐𝑐𝑐(𝜇𝜇𝑖𝑖𝑧𝑧 + 𝜙𝜙) − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)
|𝐺𝐺0

′|𝐺𝐺𝑖𝑖⨁2′

𝜇𝜇𝑖𝑖  𝜇𝜇𝑖𝑖⨁2
} , 

 

 

 

 
(S9b) 

where |𝐺𝐺0| =
𝑈𝑈2 𝑈𝑈3

𝑈𝑈1
, |𝐺𝐺0′| =

𝑈𝑈1 𝑈𝑈3

𝑈𝑈2
  ;   

and 𝐺𝐺𝑖𝑖 =
𝑆𝑆𝑔𝑔 − 𝜆𝜆𝑖𝑖⨁1 − 𝜆𝜆𝑖𝑖⨁2

𝜇𝜇𝑖𝑖⨁1 𝜇𝜇𝑖𝑖⨁2
 , 𝐺𝐺𝑖𝑖′ =

𝑆𝑆ℎ − 𝜆𝜆𝑖𝑖⨁1 − 𝜆𝜆𝑖𝑖⨁2

𝜇𝜇𝑖𝑖⨁1 𝜇𝜇𝑖𝑖⨁2
  .  

The intensity expression for the central beam is:  
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 𝐼𝐼0 = 𝜓𝜓0 𝜓𝜓0
∗ = 1 + 2�𝐶𝐶𝑖𝑖⨁1𝐶𝐶𝑖𝑖⨁2

3

𝑖𝑖=1

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇𝑖𝑖𝑧𝑧 − 1)   , (S10) 

where 𝐶𝐶𝑖𝑖 =
𝜆𝜆𝑖𝑖⨁1𝜆𝜆𝑖𝑖⨁2 + 𝑈𝑈1

2 + 𝑈𝑈2
2

𝜇𝜇𝑖𝑖⨁1 𝜇𝜇𝑖𝑖⨁2
 .  

 

From equations (S9a, b) and (S10), it can be seen that 𝐼𝐼𝒈𝒈 and 𝐼𝐼𝒉𝒉 depend on the three-phase invariant, 

𝜙𝜙, and 𝐼𝐼𝟎𝟎 depends only on its magnitude, |𝜙𝜙|. Here, the three-phase invariant is defined as the 

summation of three structure factor phases, 𝜙𝜙 ≡ 𝜑𝜑𝐠𝐠 + 𝜑𝜑𝐡𝐡−𝐠𝐠 + 𝜑𝜑−𝐡𝐡, and the reciprocal lattice vectors, 

g, h-g, -h form a closed loop in the anticlockwise direction, which sets up the sign convention1 for 

three-phase invariants.  

Although the expressions for 𝐼𝐼𝑔𝑔 and 𝐼𝐼ℎ in equations (S9a, b) and (S10) convey all the structural 

parameters, an inversion for the three-phase invariant, 𝜙𝜙, is still not straightforward. To invert the 

three-phase invariant, 𝜙𝜙, or at least the signs of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, it is necessary to reduce equation (S9) 

further. To invert the sign of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, S1.2 will reduce equation (S9a). To invert the sign of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in a 

practical way, S1.3 will introduce some approximations when reducing equation (S9a).  

 

S1.2. Derivation of equation (3) 

Commencing from equation (S9a), one can derive a short expression for the intensity difference 

between a Friedel pair, 𝑔𝑔 and 𝑔𝑔. To be more specific, it is the intensity of 𝑔𝑔 at a point (𝜁𝜁𝑔𝑔, 𝜁𝜁ℎ) near the 

three-beam condition for 0 / 𝑔𝑔 / ℎ subtracted by the intensity of  𝑔𝑔 at (𝜁𝜁𝑔𝑔, 𝜁𝜁ℎ) = (𝜁𝜁𝑔𝑔, 𝜁𝜁ℎ) near the 

three-beam condition for 0 / 𝑔𝑔 / ℎ: 

 𝐼𝐼𝑔𝑔�𝜁𝜁𝑔𝑔 , 𝜁𝜁ℎ , 𝑧𝑧� − 𝐼𝐼𝑔𝑔�𝜁𝜁𝑔𝑔, 𝜁𝜁ℎ , 𝑧𝑧� = −4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈1𝑈𝑈2𝑈𝑈3�
𝑠𝑠𝑠𝑠𝑠𝑠(𝜇𝜇𝑖𝑖𝑧𝑧)
𝜇𝜇1𝜇𝜇2𝜇𝜇3

3

𝑖𝑖=1

  , (S11a) 

where 𝜁𝜁𝑔𝑔 and 𝜁𝜁ℎ are the excitation errors for reflections 𝑔𝑔 and ℎ, and 𝜁𝜁𝑔𝑔 and 𝜁𝜁ℎ are the excitation 

errors for reflections 𝑔𝑔 and ℎ . 

This is identical to equation (23) in the paper by Hurley et al. (1999). 

Since 𝜇𝜇1+ 𝜇𝜇2 + 𝜇𝜇3 = 0, equation (S11a) can be factorized: 

 𝐼𝐼𝑔𝑔�𝜁𝜁𝑔𝑔 , 𝜁𝜁ℎ , 𝑧𝑧� − 𝐼𝐼𝑔𝑔�𝜁𝜁𝑔𝑔, 𝜁𝜁ℎ , 𝑧𝑧� = 16𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈1𝑈𝑈2𝑈𝑈3�
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜇𝜇𝑖𝑖𝑧𝑧2 )

𝜇𝜇𝑖𝑖

3

𝑖𝑖=1

  . (S11b) 

By replacing the shorthand notations with the original symbols, we obtain the form in equation (3). 

S1.3. Derivation of equation (4) 

                                                      
If the three-phase invariant is defined as 𝜙𝜙 ≡ 𝜑𝜑𝐡𝐡 + 𝜑𝜑𝐠𝐠−𝐡𝐡 + 𝜑𝜑−𝐠𝐠, then the sign of ϕ will be flipped. 
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Mathematica (Wolfram Research Inc., 2014) has been used to generate interactive plots of the 

analytical functions of eigenvalues, intensities, some polynomials and so on, which allows for 

visualisation of these functions for all possible values of the input parameters. The Mathematica code 

can be obtained from the following website: https://github.com/DrYGuo/3-beam-project. There are five 

parameters in the input to these functions: |𝑉𝑉𝐠𝐠|,  |𝑉𝑉𝐡𝐡|, |𝑉𝑉𝐡𝐡−𝐠𝐠|, 𝜙𝜙 and 𝑧𝑧. A wide range of possible 

values has been set for each parameter:|𝑉𝑉𝐠𝐠|,  |𝑉𝑉𝐡𝐡|, |𝑉𝑉𝐡𝐡−𝐠𝐠| ∈ [0, 7] (in V), 𝜙𝜙 ∈ [−𝜋𝜋,𝜋𝜋], and 𝑧𝑧 ∈

[0, 2000](in Å).  

In some situations, it is difficult, if not impossible, to derive a mathematical relation, especially an 

approximate equality by using pure mathematics alone. In the current practical problem in which 

finding the features that relate to the sign of cosine three-phase invariants is the main concern, we 

allow the use of some empirical rules such as approximate equalities that are concluded from 

observations of the interactive plots: if an approximate equality is always found in the interactive plots 

where the five parameters have been finely tuned to give almost all the possible combinations of their 

values within their ranges, then it can be accepted as an empirical rule that such an approximate 

equality holds for three-beam dynamic diffraction in all cases. For the purpose of deriving empirical 

rules, the interactive plots will be used in the current and next sections. 

S1.3.1. Derivation of the criteria for determining the sign of 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

In equation (S9a) or (S10), either 𝐼𝐼𝑔𝑔 or 𝐼𝐼0 is a summation of three polynomials. An interactive plot is 

generated for the three polynomials in equation (S9a) along the Bragg line of reflection 𝑔𝑔 (an example 

is shown in Fig.S2). The interactive plots show that a certain distance2, |∆𝜁𝜁𝒉𝒉|𝑐𝑐, away from the exact 

three-beam condition, 𝜁𝜁𝒉𝒉 = 0, the intensity is mostly contributed by only one of the three 

polynomials. The distinct contributions of the polynomials can be explained by the terms 

1/(𝜇𝜇1𝜇𝜇2𝜇𝜇3𝜇𝜇𝑖𝑖) in their expressions, which include the dispersion surface gaps µi in the denominator: 

when 𝜁𝜁ℎ < − |∆𝜁𝜁ℎ|𝑐𝑐,|𝜇𝜇3| ≪ |𝜇𝜇1| < |𝜇𝜇2|; when 𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐, |𝜇𝜇1| ≪ |𝜇𝜇3| < |𝜇𝜇2| (which can be seen 

from Fig. S3). Therefore, we can approximate the exact solution, which is a summation of three 

polynomials, by only one of the three polynomials for the regions away from the exact three-beam 

condition. By factorisation of the first and the third polynomial (i =1 and 3), we can derive a 

piecewise function that is asymptotic to the exact solutions given by equations (S9a) and (S10) on 

both sides of the three-beam condition:  

 𝐼𝐼𝑔𝑔 ≈ �   
(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1) 𝑇𝑇3,      𝑓𝑓𝑓𝑓𝑓𝑓 𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐
(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1) 𝑇𝑇1,      𝑓𝑓𝑓𝑓𝑓𝑓 𝜁𝜁ℎ >  |∆𝜁𝜁ℎ|𝑐𝑐   (S12a) 

                                                      
2 The value of  |∆𝜁𝜁ℎ|𝑐𝑐 is very small for reflections having small structure factor magnitudes but 
increases with increasing structure factor magnitudes.  

https://github.com/DrYGuo/3-beam-project
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and 𝐼𝐼0 ≈ �1 + 2𝐶𝐶1𝐶𝐶2(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1),     𝑓𝑓𝑓𝑓𝑓𝑓   𝜁𝜁ℎ <  −|∆𝜁𝜁ℎ|𝑐𝑐
1 + 2𝐶𝐶3𝐶𝐶2(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1),     𝑓𝑓𝑓𝑓𝑓𝑓   𝜁𝜁ℎ >  |∆𝜁𝜁ℎ|𝑐𝑐  , (S12b) 

where the terms3, T1 and T3, are independent of the thickness, 𝑧𝑧, and  

 𝑇𝑇3 =
2 𝑈𝑈12

𝜇𝜇1𝜇𝜇2𝜇𝜇32
{𝐺𝐺02 − 𝐺𝐺0(𝜆𝜆1 + 𝜆𝜆2 + 2𝜆𝜆3)𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 + (𝜆𝜆1 + 𝜆𝜆3)(𝜆𝜆2 + 𝜆𝜆3)} (S13a) 

and 𝑇𝑇1 =
2  𝑈𝑈12

𝜇𝜇12𝜇𝜇2𝜇𝜇3
 {𝐺𝐺02 − 𝐺𝐺0(𝜆𝜆2 + 𝜆𝜆3 + 2𝜆𝜆1)𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 + (𝜆𝜆2 + 𝜆𝜆1)(𝜆𝜆1 + 𝜆𝜆3)}.  (S13b) 

The interactive plots of 𝑇𝑇1 (𝜁𝜁ℎ), 𝑇𝑇3 (𝜁𝜁ℎ), 𝐶𝐶1(𝜁𝜁ℎ)𝐶𝐶2(𝜁𝜁ℎ) and 𝐶𝐶2(𝜁𝜁ℎ)𝐶𝐶3(𝜁𝜁ℎ) show that 

 𝑇𝑇3 (−|𝜁𝜁ℎ|) ≈ 𝑇𝑇1 (|𝜁𝜁ℎ|),         𝑓𝑓𝑓𝑓𝑓𝑓   |𝜁𝜁ℎ| >  |∆𝜁𝜁ℎ|𝑐𝑐; (S14a) 

and 𝐶𝐶1(– |𝜁𝜁ℎ|)𝐶𝐶2(– |𝜁𝜁ℎ|) ≈ 𝐶𝐶2(|𝜁𝜁ℎ|)𝐶𝐶3(|𝜁𝜁ℎ|), 𝑓𝑓𝑓𝑓𝑓𝑓   |𝜁𝜁ℎ| >  |∆𝜁𝜁ℎ|𝑐𝑐 . (S14b) 

 

 

 

Figure S2 Plots of the three polynomials in equations (S5a-c) along the Bragg line of reflection g. 

The summation of the three gives the intensity profile of 𝐼𝐼𝑔𝑔 along its Bragg line. On the left hand side 

(say 𝜁𝜁ℎ < −0.002 Å−1), the summation of the three polynomials is governed by the polynomial where 

𝑖𝑖 =3 while on the right hand side (say 𝜁𝜁ℎ > 0.002 Å−1), the summation of the three polynomials is 

governed by the polynomial where 𝑖𝑖 =1. Wolfram Mathematica 10 (Wolfram Research Inc., 2014) 

was used for this plot. 

                                                      
3 A term involving sinϕ has been ignored because its contribution in the region |𝜁𝜁ℎ| > |∆𝜁𝜁ℎ|𝑐𝑐 is very 
small. 
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Figure S3 The gaps of the three dispersion surfaces, µi, along the Bragg line of 𝑔𝑔. On the left hand 

side (say 𝜁𝜁ℎ < −0.002 Å−1), |𝜇𝜇3| ≪ |𝜇𝜇1| < |𝜇𝜇2|; while on the right hand side (say 𝜁𝜁ℎ > 0.002 Å−1), 

|𝜇𝜇1| ≪ |𝜇𝜇3| < |𝜇𝜇2|. Wolfram Mathematica 10 (Wolfram Research Inc., 2014) was used for this plot. 

  

Combining equations (S12a) and (S14a), we have  

 
𝐼𝐼𝑔𝑔(−|𝜁𝜁ℎ|)
𝐼𝐼𝑔𝑔(|𝜁𝜁ℎ|)

≈
𝑠𝑠𝑠𝑠𝑠𝑠2(𝜇𝜇3𝑧𝑧/2)
𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜇𝜇1𝑧𝑧/2)

  , for |𝜁𝜁ℎ| > |∆𝜁𝜁ℎ|𝑐𝑐 �except for 𝑧𝑧 ≈
2𝜋𝜋
𝜇𝜇1
� . (S15) 

In other words, the asymmetry between 𝐼𝐼𝑔𝑔(−|𝜁𝜁ℎ|) and 𝐼𝐼𝑔𝑔(|𝜁𝜁ℎ|) as well as between 𝐼𝐼0(−|𝜁𝜁ℎ|) and 

𝐼𝐼0(|𝜁𝜁ℎ|) is dominated by the difference between the thickness-dependent factors 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜇𝜇3𝑧𝑧/2) and 

𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜇𝜇1𝑧𝑧/2). That completes the derivation of equation (4). 

S2. Derivation of Criterion 2 

Valid range of thickness for direct observation of the sign of sin𝛟𝛟 

To decide whether the thickness is smaller than the “three-beam extinction distance”, 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 

inspection of the Bragg lines is needed. Two conditions listed in criterion 2 must be satisfied.    

From equation (3), we can see that the intensity difference between a Friedel or Bijvoet pair will be 

small if the thickness gets close to the three-beam extinction distance, 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. To have a contrast 

that is observable even by eye, the thickness has to differ from the three-beam extinction distance by a 

certain value. As an empirical rule, when 𝑧𝑧 < 0.85 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 or 𝑧𝑧 > 1.15 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (except for very 

thick specimens, which can be easily recognised from observing the corresponding CBED patterns), 

then the contrast is usually observable by eye. Therefore, as long as one can distinguish the CBED 

patterns for 𝑧𝑧 < 0.85 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 from those for 𝑧𝑧 > 1.15 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, one will be able to decide whether 
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the thickness is smaller than the extinction distance, 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Here, we are able to find two 

conditions, I and II. The satisfaction of both conditions is sufficient but not necessary for having 𝑧𝑧 <

 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The two conditions are derived from two opposite situations, as will be discussed below. 

S2.1.  When max {�𝑽𝑽𝐠𝐠�, |𝑽𝑽𝐡𝐡|} ≳ �𝑽𝑽𝐡𝐡−𝐠𝐠�  

The curves, 𝜇𝜇1(𝜁𝜁ℎ), 𝜇𝜇3(𝜁𝜁ℎ) along the Bragg line of 𝑔𝑔 (e.g. in Fig. S3) always have local minima near 

the exact three-beam conditions, 𝜁𝜁ℎ = 0. Thus, we have 

 |𝜇𝜇1(𝜁𝜁ℎ = 0)| < 𝜇𝜇1(𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐) , (S16a) 

 |𝜇𝜇3(𝜁𝜁ℎ = 0)| < 𝜇𝜇3(𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐) (S16b) 

and |𝜇𝜇2(𝜁𝜁ℎ = 0)| < 𝜇𝜇3(𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐) + 𝜇𝜇1(𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐) (S16c) 

Without losing generality, we consider the case for max{|𝑉𝑉𝐠𝐠|, |𝑉𝑉𝐡𝐡|} = |𝑉𝑉𝐠𝐠|: 

for 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0,   
𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

2𝜋𝜋
|𝜇𝜇2(𝜁𝜁ℎ = 0)| ≳

1
2

2𝜋𝜋
|𝜇𝜇3(𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐)| , 

=> 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≳
1
2
𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐) ; 

 

 

(S17a) 

for 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 0, 
𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

2𝜋𝜋

�𝜇𝜇2�𝜁𝜁ℎ = 0��
≳

1
2

2𝜋𝜋

�𝜇𝜇1�𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐��
 , 

=> 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≳
1
2
𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐) , 

 

 

(S17b) 

where 𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐) denotes the two-beam extinction distance for the pseudo-2beam 

condition regions (i.e. along the Bragg condition of 𝜁𝜁𝑔𝑔 = 0 but away from the three-beam condition) 

on the negative side of 𝜁𝜁ℎ. 

Here, a shorthand notation is introduced: 

𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐�, 𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐��. 

Then the inequalities (S17a, b) can be re-written as: 

 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≳
1
2
𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . (S17c) 

 

According to the two-beam diffraction equations (for example, Blackman, 1939, Spence & Zuo, 

1992), when 𝑧𝑧 = 1
2

 𝜉𝜉, the central bright peak is 1.618 times as broad as the neighbouring bright peak. 

Therefore, when max{�𝑉𝑉𝐠𝐠�, |𝑉𝑉𝐡𝐡|} ≳ �𝑉𝑉𝐡𝐡−𝐠𝐠�, z < 1
2
𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a sufficient condition for 𝑧𝑧 ≲

𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and  condition I can be stated as: 
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That completes the proof for condition I. 

 

Next, we consider the opposite situation.  

S2.1.1. When max{�𝑽𝑽𝐠𝐠�, |𝑽𝑽𝐡𝐡|} ≪ �𝑽𝑽𝐡𝐡−𝐠𝐠�  

In such a situation, the interactive plots of 𝜇𝜇𝑖𝑖(𝜁𝜁ℎ) along the Bragg line of reflection 𝑔𝑔, 𝜁𝜁𝑔𝑔 = 0, show 

that 
 �𝜇𝜇2�𝜁𝜁ℎ = 0�� > 𝜇𝜇3�𝜁𝜁ℎ < −|∆𝜁𝜁ℎ|𝑐𝑐� + 𝜇𝜇1�𝜁𝜁ℎ > |∆𝜁𝜁ℎ|𝑐𝑐� . (S18) 

Now, condition I is no longer sufficient for 𝑧𝑧 < 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, so we need to derive another sufficient 

condition for this situation. 

Fig. S4a shows the plot of 𝐶𝐶𝑖𝑖⨁1𝐶𝐶𝑖𝑖⨁2 , the terms in equation (S10), along the locus 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ , where 

𝐶𝐶1𝐶𝐶3  ≈ 0 (an empirical rule), 𝐶𝐶2𝐶𝐶3 and 𝐶𝐶1𝐶𝐶2 show two peaks at the turning points of 𝜇𝜇3 and 𝜇𝜇1 on 

each side of  𝜁𝜁ℎ = 0. These turning points are close to the exact three-beam condition, 𝜁𝜁ℎ = 0 (shown 

in Fig. S4b). 

 

We first consider a case when |𝜙𝜙| = 𝜋𝜋
2
. Since 𝐶𝐶1𝐶𝐶3 ≈ 0, equation (S10) becomes: 

 𝐼𝐼0 = 1 + 2𝐶𝐶2𝐶𝐶3�𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1� + 2𝐶𝐶1𝐶𝐶2�𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1� . (S19) 

Here we consider any point on the locus, 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ, that is close to the three-beam condition, 𝜁𝜁ℎ = 0, 

from the negative side (shown by the dashed line in Figs. S4 & 5). All the arguments or functions 

below refer to the same point, and the coordinate, (𝜁𝜁ℎ), will be omitted for short-hand notations. The 

derivative of 𝐼𝐼0 with respect to 𝜁𝜁ℎ is: 

 

𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

= 2
𝑑𝑑𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1) + 2
𝑑𝑑𝐶𝐶1𝐶𝐶2
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1) − 2𝐶𝐶2𝐶𝐶3𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇1𝑧𝑧
𝑑𝑑𝜇𝜇1𝑧𝑧
𝑑𝑑𝜁𝜁ℎ

− 2𝐶𝐶1𝐶𝐶2𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇3𝑧𝑧
𝑑𝑑𝜇𝜇3𝑧𝑧
𝑑𝑑𝜁𝜁ℎ

  . 

 

 

(S20a) 

Since �
𝑑𝑑𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜁𝜁ℎ

� ≫ �𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜇𝜇1
𝑑𝑑𝜁𝜁ℎ

� ,  

We have 
𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

≈ 2
𝑑𝑑𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1) + 2
𝑑𝑑𝐶𝐶1𝐶𝐶2
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1) . (S20b) 

For any thickness, we have: 

Condition I: The excess Bragg line in the “pseudo two-beam regions” of the stronger reflection has 

a central bright fringe that is at least 1.6 times wider than the second bright fringe. 
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 2
𝑑𝑑𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇1𝑧𝑧 − 1) > 0  , (S21a) 

 2
𝑑𝑑𝐶𝐶1𝐶𝐶2
𝑑𝑑𝜁𝜁ℎ

(𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇3𝑧𝑧 − 1) < 0 , (S21b) 

 and �
𝑑𝑑𝐶𝐶1𝐶𝐶2
𝑑𝑑𝜁𝜁ℎ

� < �
𝑑𝑑𝐶𝐶2𝐶𝐶3
𝑑𝑑𝜁𝜁ℎ

� . (S22) 

For very thin specimens, where the perturbation theory of kinematic diffraction can be applied, we 

have 

 
𝑑𝑑𝐼𝐼0

𝑑𝑑𝜁𝜁ℎ
< 0 , (S23a) 

which is equivalent to 

 
|𝑑𝑑𝐶𝐶1𝐶𝐶2𝑑𝑑𝜁𝜁ℎ

|

|𝑑𝑑𝐶𝐶2𝐶𝐶3𝑑𝑑𝜁𝜁ℎ
|

|𝑠𝑠𝑠𝑠𝑠𝑠2 �𝜇𝜇3𝑧𝑧2 � |

|𝑠𝑠𝑠𝑠𝑠𝑠2 �𝜇𝜇1𝑧𝑧2 � |
> 1 (S23b) 

In other words,  
|𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇3𝑧𝑧2 �|

�𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇1𝑧𝑧2 ��
 (>1) beats the multiplier 

�𝑑𝑑𝐶𝐶1𝐶𝐶2𝑑𝑑𝜁𝜁ℎ
�

�𝑑𝑑𝐶𝐶2𝐶𝐶3𝑑𝑑𝜁𝜁ℎ
�
 (<1) and results in a product of larger than 1 

for very thin specimens. When the thickness increases, 
�𝑑𝑑𝐶𝐶1𝐶𝐶2𝑑𝑑𝜁𝜁ℎ

�

�𝑑𝑑𝐶𝐶2𝐶𝐶3𝑑𝑑𝜁𝜁ℎ
�
 is constant while 

|𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇3𝑧𝑧2 �|

�𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇1𝑧𝑧2 ��
 will 

decrease from a value of larger than 1 to a value of less than 1 and the product, and thus 

|𝑑𝑑𝐶𝐶1𝐶𝐶2𝑑𝑑𝜁𝜁ℎ
|

|𝑑𝑑𝐶𝐶2𝐶𝐶3𝑑𝑑𝜁𝜁ℎ
|

|𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇3𝑧𝑧2 �|

|𝑠𝑠𝑠𝑠𝑠𝑠2�𝜇𝜇1𝑧𝑧2 �|
 , will become less than 1, and  𝑑𝑑𝐼𝐼0

𝑑𝑑𝜁𝜁ℎ
 will become positive at  a certain stage. The sign of 

𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

 will be flipped when the thickness increases to about: 

 
𝜇𝜇1𝑧𝑧

2
=
𝜋𝜋
2

 . (S24) 

From the interactive plots (an example of the plots is given in Fig. S4b), we have 
 

𝜇𝜇1 ≈
|𝜇𝜇2(𝜁𝜁ℎ = 0)|

2
 .  

(S25) 

Therefore,  

 𝑧𝑧 ≥ 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≡
2𝜋𝜋

𝜇𝜇2(𝜁𝜁ℎ = 0) ≈
𝜋𝜋
𝜇𝜇1

 

=>  
𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

> 0 . 

 

 

(S26a) 

The converse-negative proposition is also true: 
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𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

≤ 0 =>  𝑧𝑧 < 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  . 
(S26b) 

 

Now, we consider any point on the locus, 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ, that is close to the three-beam condition, 𝜁𝜁ℎ = 0, 

from the positive side. Similarly, we have: 
𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

≥ 0 =>  𝑧𝑧 < 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  . (S26c) 

In summary, for any point that is along the locus 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ  and near the three-beam condition, we 

have: 
 

𝑑𝑑2𝐼𝐼0

𝑑𝑑𝜁𝜁ℎ
2 ≥ 0 =>  𝑧𝑧 < 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . (S26d) 

Similar arguments can be repeated for |𝜙𝜙| ≠ 𝜋𝜋
2
, where the sign of 

𝑑𝑑𝐼𝐼0
𝑑𝑑𝜁𝜁ℎ

 near the point that corresponds 

to the intersection of 𝐶𝐶2𝐶𝐶3 and 𝐶𝐶1𝐶𝐶2 (rather than 𝜁𝜁ℎ = 0 ) is considered.  

Therefore, we can state condition II: 

 

 

When both conditions I and II are satisfied, it is sufficient to conclude that the thickness is smaller than 

the three-beam extinction distance or the maximum allowed thickness for direct observation of the sign. 

Then, the sign of the three-phase invariants can be determined by comparing the intensity difference 

directly without measuring the thickness. Otherwise, without the knowledge of the thickness and the 

structure factor magnitudes, the diffraction pattern should be rejected as unsuitable for the direct 

determination of the sign by inspection. 

 

 

   

Condition II: Near the exact three-beam condition in the central beam, the intensity along the 

locus 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ has a local minimum, i.e.  𝑑𝑑
2𝐼𝐼0

𝑑𝑑𝜁𝜁ℎ
2 ≥ 0, then  𝑧𝑧 < 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.  
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Figure S4 Plots of (a) the polynomials 𝐶𝐶𝑖𝑖⨁1𝐶𝐶𝑖𝑖⨁2 from equation (3.10) and (b) the gaps of the 

dispersion surfaces, 𝜇𝜇𝑖𝑖, versus the excitation error 𝜁𝜁ℎ along the locus, 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ (the horizontal axis). 

The dashed line shows a point that can be anywhere close to the three-beam condition, 𝜁𝜁ℎ = 0, from 

the negative side, 𝜁𝜁ℎ < 0. Wolfram Mathematica 10 (Wolfram Research Inc., 2014) was used for 

generating this plot. 

 

  

 
 

Figure S5 Plots of the intensity of the central beam (in orange) and the intensity difference between 

a Friedel pair, 𝑔𝑔 and 𝑔𝑔, (in blue) along the locus 𝜁𝜁𝑔𝑔 = 𝜁𝜁ℎ (the horizontal axes). When the thickness 

increases from (a) 𝑧𝑧 = 0.85 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 to (b) 𝑧𝑧 = 1.15 𝜉𝜉3−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the sign of the intensity difference flips 

to the opposite direction and the convexity of  intensity profile of the central beam, 𝐼𝐼0, is also 

changed. The dashed line shows a point that can be anywhere close to the three-beam condition, 𝜁𝜁ℎ =

0, from the negative side, 𝜁𝜁ℎ < 0. Wolfram Mathematica 10 (Wolfram Research Inc., 2014) was used 

for generating these plots. 
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