

Volume 5 (2018)

Supporting information for article:

Small-angle neutron scattering studies on the AMPA receptor GluA2 in the resting, AMPA and GYKI-53655 bound states

Andreas Haahr Larsen, Jerzy Dorosz, Thor Seneca Thorsen, Nicolai Tidemand Johansen, Tamim Darwish, Søren Roi Midtgaard, Lise Arleth and Jette Sandholm Kastrup **Table S1**Information about the samples, the SANS measurements and the software used for the dataanalysis.

	GluA2,	GluA2,	GluA2,	GluA2,
	Аро,	AMPA-bound	AMPA-bound	GYKI-53655
	in dDDM.	state,	state,	bound state,
		in dDDM,	in dDDM,	in dDDM.
		neutral pH.	acidic pH.	
Sample details				1
Uniprot ID		P19491 (Gl	RIA2_RAT)	
Organism		Rattus N	orvegicus	
Ligands	None	1 mM AMPA	10 mM AMPA	1 mM GYKI- 53655
Buffer	20 mM	20 mM Tris/DCl,	20 mM Tris/DCl,	20 mM
	Tris/DCl, 100	100 mM NaCl,	100 mM NaCl,	Tris/DCl, 100
	mM NaCl, 0.5	0.5 mM dDDM,	0.5 mM dDDM,	mM NaCl, 0.5
	mM dDDM,	pH 7.5	рН 5.5	mM dDDM,
	pH 7.5			pH 7.5
Extinction coefficient*1 [M ⁻¹ cm ⁻¹]		519	100	
Density*2 [g/ml]		1.	37	
Molecular weight*1 [kDa]		36	7.7	
Mean scattering length density ^{*2}		3	.0	
of protein in D ₂ O [10 ⁻⁶ Å ⁻²]				
Mean scattering length density ^{*2}		6	.4	
of DDM tail groups in D ₂ O [10^{-6} Å ⁻²]				
Mean scattering length density ^{*2}		6	.4	
of DDM head groups in D_2O [10 ⁻⁶ Å ⁻²]				
Mean scattering length density*2	6.4			
of solvent (D ₂ O) [10 ⁻⁶ Å ⁻²]				
Protein concentration ^{*3}	0.20 mg/ml	0.31 mg/ml	0.17 mg/ml	0.31 mg/ml
	0.54 μM	$0.84 \ \mu M$	0.46 μM	0.84 µM
SANS data collection details				
Instrument	KWS1@FRM2 (https://www.mlz-garching.de/kws-1)			
Date for data collection	19/09 2017	8/12 2016	19/09 2017	8/12 2016

Beam dimensions Resolution effects	Rectangular	beam, 6x10 mm ² (at	sample) $30x30 \text{ mm}^2$			
Resolution effects			Rectangular beam, 6x10 mm ² (at sample), 30x30 mm ² (first pinhole)			
	Width of the resolution function $\Delta q(q)$ was calculated by the beamline					
	software and given in the 4 th column in data, which was used in WillItFit.					
Settings		1.5m/4.0m, 4.0n	n/4.0m, 8.0m/8.0m			
(Sample-detector/Collimation)						
Measured <i>q</i> -range		0.006	-0.3 Å ⁻¹			
Absolute calibration		By pl	exiglass			
Exposure time (total for all 3 settings)	~ 2.5 hours	~ 4.5 hours	~ 4.5 hours	~ 4.0 hours		
Temperature		1	0 °C			
Software employed						
Indirect Fourier transformations to	BayesApp ^{R1,R2} (w	ww.bayesapp.org)				
obtain $p(r)$						
Calculation of theoretical $p(r)$	CaPP (https://gith	nub.com/Niels-Bohr-	Institute-XNS-StructB	biophys/CaPP)		
Addition of water layer to protein						
Fitting of data with combined	WillItFit ^{R3} (https://www.com/action	://sourceforge.net/pro	ojects/willitfit)			
analytical and atomistic models						
Fischer/Petoukhov M_W determination	Own implementa	tion in MATLAB (T	able S3)			
Missing sequence modelling	MODELLER ^{R4} (https://salilab.org?modeller)					
Graphic model visualization	PyMOL					
Guinier analysis	Own implementation in MATLAB (Fig. S6)					
Ab initio dummy bead modelling	DAMMIF ^{R5} (https://www.embl-hamburg.de/biosaxs/dammif.html)					
	Note: DATGNO	$M^{R6,R7}$ was used to ge	enerate the $p(r)$ function	on needed as		
	input to DAMMI	F				
Structural parameters						
Guinier analysis						
$I(0) [\rm cm^{-1}]$	0.043 ± 0.002	0.108 ± 0.004	$0.052 \pm 0.07^{*4}$	0.109 ± 0.004		
Mw from $I(0)$ [kDa]	220	347	240	347		
(ratio to expected)	(0.60)	(0.94)	(0.66)	(0.94)		
<i>Rg</i> [Å]	60.8 ± 4.3	62.2 ± 3.0	$79.1 \pm 11.5^{*4}$	62.8 ± 3.3		
Minimum q used [Å ⁻¹]	0.0069	0.0078	0.0104	0.0103		
Maximum $q \cdot R_g$	1.26	1.24	1.29	1.30		
p(r) analysis						

<i>I</i> (0) [cm ⁻¹]	0.0444 ± 0.0002	0.106 ± 0.001	0.0418 ± 0.0004	0.109 ± 0.001		
<i>Rg</i> [Å]	61.9 ± 0.4	61.0 ± 0.6	65.2 ± 0.5	62.1 ± 0.3		
D _{max} [Å]	179 ± 11	184 ± 11	189 ± 5	186 ± 5		
Used q-range	[0.011,0.20]	[0.011,0.20]	[0.019,0.21]	[0.012,0.20]		
Fitted constant background [cm ⁻¹]	0.00052	0.00089	0.00048	0.00090		
Reduced χ^2	2.15	6.84	1.39	6.60		
Number of good parameters	5.2	4.2	4.1	5.5		
Number of Shannon channels	11.8	11.0	11.7	11.0		
Number of error calculations	260	759	95	264		
Regularization parameter $\log(\alpha)$	14.3	14.7	14.0	14.3		
Fischer M _W determination ^{*5}						
Molecular weight [kDa]	396 ± 52	379 ± 49	442 ± 57	373 ± 48		
(ratio to expected)	(1.08)	(1.03)	(1.20)	(1.01)		
Model fitting parameters	T	Γ	Γ			
Combined analytical and						
atomistic model						
q-range for fitting [A ⁻¹]	[0.006,0.3]	[0.006,0.3]	[0.006,0.3]	[0.006,0.3]		
Reduced χ^2 (best fit)	3.3	5.0	1.9	7.5		
Ab initio dummy bead modelling						
Number of calculations	10	* ⁶	* ⁶	* ⁶		
Symmetry	P1, none					
NSD	1.5 ± 0.1					
Resolution (from SASRES ^{R8}) [Å]	56 ± 4					
Filtered volume [nm ³]	380					
Mw from filtered volume	238 kDa					
(ratio to expected)	(0.92)					
SASBDB IDs for data and models						
SASBDB ID	SASDDY5	SASDDZ5	SASDD26	SASDD36		
Footnotes and references						
** Calculated with Expasy Protparam (https: *2 Calculated with Biomolecular Scattering	//web.expasy.org/prot	param/).	ac uk/Psldc)			
- Calculated with Biomolecular Scattering Length Density Calculator (http://psidc.isis.rl.ac.uk/Psidc).						

*³ Protein concentration determined by UV280 absorption for GluA2 AMPA-bound at pH 7.5 and GluA2 GYKI-bound. Determined with BCA assay for GluA in the resting state and GluA2 AMPA-bound at pH 5.5.

*⁴ It was not possible to obtain fully linear region at $qR_G < 1.3$ (Fig. S6C), so the the values may be incorrect.

*⁵ M_W determined with the Fischer method (Fischer *et al.*, 2011) with parameters given in Table S3.

*6 The dummy atom model for GluA2 apo is approximate, since aggregation was not taken into account. For the same reason, a

dummy atom model was only generated for the GluA2 apo sample, where the aggregation scattering contribution was very minor.

^{R1} Hansen, S. (2000). J. Appl. Cryst. 33, 1415-1421.

R2 Hansen, S. (2014). J. Appl. Cryst. 47, 1469-1471.

R3 Pedersen, M. C., Arleth, L. & Mortensen, K. (2013). J. Appl. Cryst. 46, 1894-1898.

^{R4} Fiser, A., Do, R.K. & Sali, A. (2000). Protein Sci. 9, 1753-1773.

^{R5} Franke, D. & Svergun, D. I. (2009). J. Appl. Cryst. 42, 342-346.

^{R6} Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. (2003). J. Appl. Cryst. 36, 1277-1282.

^{R7} Petoukhov, M. V., Konarev, P. V., Kikhney, A. G. & Svergun, D. I. (2007). J. Appl. Cryst. 40, 223-228.

^{R8} Tuukkanen, A. T., Kleywegt, G. J. & Svergun, D. I. (2016). *IUCrJ* 3, 440-447.

Table S2 Fischer and Petoukhov M_W determination (Petoukhov *et al.*, 2012; Fisher *et al.*, 2010), where M_W is determined via. the scattering "invariant" Q (Porod, 1982)

The upper integration limit q_m used to determine Q was $8/R_g$ (Petoukhov *et al.*, 2012). V_{app} is the apparent volume, and is the same for the two methods. In the Fischer method, linear coefficients A and B given in the table are used to convert V_{app} to the Porod volume V_p , and the weight-to-volume conversion constant of 0.83 kDa/nm³ to obtain M_W^F . In the Petoukhov method, M_W^P is determined directly from the V_{app} using the conversion constant 0.625 kDa/nm³. The constant subtracted backgrounds K were used to assure a constant plateau in the Porod plots (Fig. S2) and the data sets were extrapolated to q = 0 by simple linear extrapolation. An implementation in MATLAB of the methods was used. The value for M_W obtained with the Fisher method is given in Table S1 and used in the paper, since this method takes the size of the particle into account, which adds an important correction for large proteins such as GluA2. Values of R_g and I(0) from the p(r) analysis were used (Table S1).

Fischer/Petoukhov	Resting	AMPA pH 7.5*1	АМРА рН 5.5	GYKI-53655
V_{app} [nm ³]	871.7	833.4	970.1	820.4
$M_W^{F}^{*1}$ [kDa]	396 ± 52	379 <u>+</u> 49	442 ± 57	373 <u>+</u> 48
(ratio to expected)	(1.08)	(1.03)	(1.20)	(1.01)
$\Delta M_W/\sigma^{*2}$	0.56	0.22	1.3	0.1
$M_W^P * [kDa]$	545 ± 109	521 ± 104	606 ± 121	513 ± 103
(ratio to expected)	(1.48)	(1.42)	(2.65)	(1.39)
$\Delta M_W/\sigma$	1.5	1.5	2.8	1.4
K [10 ⁻³ cm ⁻¹]	0.65	1.30	0.61	1.30
$q_m = 8/R_g [\text{Å}^{-1}]$	0.133	0.131	0.127	0.131
<i>A</i> [Å ³]	-10500	-10500	-10500	-10500
В	0.56	0.56	0.56	0.56

^{*1} Assuming a 13% uncertainty on M_W^F (Fischer *et al.*, 2010, p. 106), and a 20% uncertainty on M_W^P (Petoukhov *et al.*, 2012, p. 344).

^{*2} $\Delta M_W/\sigma$ is the normalized residual molecular weight, i.e. the difference between the experimentally determined value and the expected molecular weight in units of the experimental error. If $M_W/\sigma < 2$ then the null-hypothesis (tetrameric state) cannot be rejected, given a significance level of 5%.

Data	Аро		AMPA pH 7.5		AMPA pH 5.5	GYKI-53655
Model	X-ray, rest. +	X-ray, rest +	EM, act. +	EM, des. +	EM, class3 +	EM, GYKI +
	frac. olig.	frac. olig.	frac. olig.	frac. olig.	frac. olig.	frac. olig.
R_g for fractal	126 ± 250	190 ± 177	145 ± 135	116 ± 62	175 ± 166	240 ± 254
oligomers [Å]						
Fraction in	0.9 ± 6.5	0.4 ± 1.0	0.7 ± 2.1	2.7 ± 5.3	1.0 ± 3.0	0.2 ± 0.6
oligomeric						
form, γ [%]						

Table S3 R_g of fractal oligomers and the amount of oligomers in the fitted models.	
--	--

Figure S1 Guinier plots and residual plots for GluA2 in the resting state (A), in the AMPA bound state at pH 7.5 (B), in the AMPA bound state at pH 5.5 (C) and in the GYKI-53655 bound state (D). Residuals show the difference between log(I) and the fit, weighted with the errors on log(I). Resulting values for I(0) and R_g are given in Table S1. The AMPA bound state at pH 5.5 (panel C) does not have a fully linear Guinier region at $qR_g < 1.3$, meaning that the values for I(0) and R_g may be wrong. The values of I(0) and R_g from the p(r) function was therefore used for M_W determination.

Figure S2 Porod plots (black) for GluA2 in the resting state (A), in the AMPA bound state at pH 7.5 (B), in the AMPA bound state at pH 5.5 (C) and in the GYKI-53655 bound state (D). Additional constant backgrounds were subtracted to give a constant behavior at high-q (red). The constants are listed in Table S2.

Figure S3 Kratky plots for GluA2 in the resting state (A), in the AMPA bound state at pH 7.5 (B), in the AMPA bound state at pH 5.5 (C) and in the GYKI-53655 bound state (D). Constant backgrounds were subtracted, and listed in Table S2.

3KG2 :	NSIQIGGLFPRGADQEYSAFRVGMVQFSTSEFRLTPHIDNLEVANSFAVTNAFCSQFSRG	60
4U2P:	NSIQIGGLFPRGADQEYSAFRVGMVQFSTSEFRLTPHIDNLEVANSFAVTNAFCSQFSRG	60
5WEO:	NSIQIGGLFPRGADQEYSAFRVGMVQFSTSEFRLTPHIDNLEVANSFAVTNAFCSQFSRG	60
5VHZ:	NSIQIGGLFPRGADQEYSAFRVGMVQFSTSEFRLTPHIDNLEVANSFAVTNAFCSQFSRG	60
5L1H:	NSIQIGGLFPRGADQEYSAFRVGMVQFSTSEFRLTPHIDNLEVANSFAVTNAFCSQFSRG	60
3KG2 :	VYAIFGFYDKKSVNTITSFCGTLHVSFITPSFPTDGTHPFVIQMRPDLKGALLSLIEYYQ	120
4U2P:	VYAIFGFYDKKSVNTITSFCGTLHVSFITPSFPTDGTHPFVIQMRPDLKGALLSLIEYYQ	120
5WEO:	VYAIFGFYDKKSVNTITSFCGTLHVSFITPSFPTDGTHPFVIQMRPDLKGALLSLIEYYQ	120
5VHZ:	VYAIFGFYDKKSVNTITSFCGTLHVSFITPSFPTDGTHPFVIQMRPDLKGALLSLIEYYQ	120
5L1H:	VYAIFGFYDKKSVNTITSFCGTLHVSFITPSFPTDGTHPFVIQMRPDLKGALLSLIEYYQ	120
3KG2 :	WDKFAYLYDSDRGLSTLQAVLDSAAEKKWQVTAINVGNINNDKKDETYRSLFQDLELKKE	180
4U2P:	WDKFAYLYDSDRGLSTLQAVLDSAAEKKWQVTAINVGNINNDKKDETYRSLFQDLELKKE	180
5WEO:	WDKFAYLYDSDRGLSTLQAVLDSAAEKKWQVTAINVGNINNDKKDETYRSLFQDLELKKE	180
5VHZ:	WDKFAYLYDSDRGLSTLQAVLDSAAEKKWQVTAINVGNINNDKKDETYRSLFQDLELKKE	180
5L1H:	WDKFAYLYDSDRGLSTLQAVLDSAAEKKWQVTAINVGNINNDKKDETYRSLFQDLELKKE	180
3KG2 :	RRVILDCERDKVNDIVDQVITIGKHVKGYHYIIANLGFTDGDLLKIQFGGAEVSGFQIVD	240
4U2P:	${\tt RRVILDCERDKVNDIVDQVITIGKHVKGYHYIIANLGFTDGDLLKIQFGGAEVSGFQIVD$	240
5WEO:	${\tt RRVILDCERDKVNDIVDQVITIGKHVKGYHYIIANLGFTDGDLLKIQFGGAEVSGFQIVD$	240
5VHZ:	${\tt RRVILDCERDKVNDIVDQVITIGKHVKGYHYIIANLGFTDGDLLKIQFGGAEVSGFQIVD$	240
5L1H:	RRVILDCERDKVNDIVDQVITIGKHVKGYHYIIANLGFTDGDLLKIQFGGAEVSGFQIVD	240
3KG2 :	YDDSLVSKFIERWSTLEEKEYPGAHTATIKYTSALTYDAVQVMTEAFRNLRKQRIEISRR	300
4U2P:	YDDSLVSKFIERWSTLEEKEYPGAHTATIKYTSALTYDAVQVMTEAFRNLRKQRIEISRR	300
5WEO:	YDDSLVSKFIERWSTLEEKEYPGAHTATIKYTSALTYDAVQVMTEAFRNLRKQRIEISRR	300
5VHZ:	YDDSLVSKFIERWSTLEEKEYPGAHTATIKYTSALTYDAVQVMTEAFRNLRKQRIEISRR	300
5L1H:	YDDSLVSKFIERWSTLEEKEYPGAHTATIKYTSALTYDAVQVMTEAFRNLRKQRIEISRR	300
3KG2 :	GNAGDCLANPAVPWGQGVEIERALKQVQVEGLSGNIKFDQNGKRINYTINIMELKTNGPR	360
4U2P:	GNAGDCLANPAVPWGQGVEIERALKQVQVEGLSGNIKFDQNGKRINYTINIMELKTNGPR	360
5WEO:	GNAGDCLANPAVPWGQGVEIERALKQVQVEGLSGNIKFDQNGKRINYTINIMELKTNGPR	360
5VHZ:	GNAGDCLANPAVPWGQGVEIERALKQVQVEGLSGNIKFDQNGKRINYTINIMELKTNGPR	360
5L1H:	GNAGDCLANPAVPWGQGVEIERALKQVQVEGLSGNIKFDQNGKRINYTINIMELKTNGPR	360
3KG2:	KIGYWSEVDKMVLTEDDTSGLEQKTVVVTTILESPYVMMKANHAALAGNERYEGYCVD	418
4U2P:	KIGYWSEVDKMV <mark>VT</mark> LTEDDTSGLEQKTVVVTTILESPYVMMK <mark>K</mark> NH <mark>EM</mark> L <mark>E</mark> GNERYEGYCVD	420
5WEO:	KIGYWSEVDKMVLTEDDTSGLEQKTVVVTTILESPYVMMK <mark>K</mark> NH <mark>EM</mark> L <mark>E</mark> GNERYEGYCVD	418
5VHZ:	KIGYWSEVDKMVLTEDDTSGLEQKTVVVTTILESPYVMMK <mark>K</mark> NH <mark>EM</mark> L <mark>E</mark> GNERYEGYCVD	418
5L1H:	KIGYWSEVDKMVLTEDDTSGLEQKTVVVTTILESPYVMMK <mark>K</mark> NH <mark>EM</mark> L <mark>E</mark> GNERYEGYCVD	418

3KG2:	LAAEIAKHCGFKYKLTIVGDGKYGARDADTKIWNGMVGELVYGKADIAIAPLTITLVREE	478
4U2P:	LAAEIAKHCGFKYKLTIVGDGKYGARDADTKIWNGMVGELVYGKADIAIAPLTITLVREE	480
5WEO:	LAAEIAKHCGFKYKLTIVGDGKYGARDADTKIWNGMVGELVYGKADIAIAPLTITLVREE	478
5VHZ:	LAAEIAKHCGFKYKLTIVGDGKYGARDADTKIWNGMVGELVYGKADIAIAPLTITLVREE	478
5L1H:	LAAEIAKHCGFKYKLTIVGDGKYGARDADTKIWNGMVGELVYGKADIAIAPLTITLVREE	478
3KG2 :	VIDFSKPFMSLGISIMIKKPQKSKPGVFSFLDPLAYEIWMCIVFAYIGVSVVLFLVSRFS	538
4U2P:	VIDFSKPFMSLGISIMIKKPQKSKPGVFSFLDPLAYEIWM<mark>A</mark>IVFAYIGVSVVLFLVSR <i>FS</i>	540
5WEO:	VIDFSKPFMSLGISIMIKKPQKSKPGVFSFLDPLAYEIWMCIVFAYIGVSVVLFLVSRFS	538
5VHZ:	VIDFSKPFMSLGISIMIKKPQKSKPGVFSFLDPLAYEIWMCIVFAYIGVSVVLFLVSRFS	538
5L1H:	VIDFSKPFMSLGISIMIKKPQKSKPGVFSFLDPLAYEIWMCIVFAYIGVSVVLFLVSD <mark></mark>	536
3KG2 :	PYEWHTEEFEDGRETOSSESTNEFGIFNSLWFSLGAFMOOGADISPRSLSGRIVGGVWWF	598
4U2P:	PYEWHTEEFEDGRETQSSESTNEFGIFNSLWFSLGAF <mark>F</mark> QQGADIS PRSLSA RIVAGVWWF	600
5WEO:	PYEWHTEEFEDGRETQSSESTNEFGIFNSLWFSLGAFMQQGCDISPRSLSGRIVGGVWWF	598
5VHZ:	PYEWHTEEFEDGRETOSSESTNEFG IFNSLWFSLGAFMOOGCDISPRSLSGRIVGGVWWF	598
5L1H:		579
3KG2 :	FTLIIISSYTANLAAFLTVERMVSPIESAEDLSKQTEIAYGTLDSGSTKEFFRRSKIAVF	658
4U2P:	FTLIIISSYTANLAAFLTVERMVSPIESAEDLSKQTEIAYGTLDSGSTKEFFRRSKIAVF	660
5WEO:	FTLIIISSYTANLAAFLTVERMVSPIESAEDLSKQTEIAYGTLDSGSTKEFFRRSKIAVF	658
5VHZ:	FTLIIISSYTANLAAFLTVERMVSPIESAEDLSKQTEIAYGTLDSGSTKEFFRRSKIAVF	658
5L1H:	FTLIIISSYTANLAAFLTVERMVSPIESAEDLSKQTEIAYGTLDSGSTKEFFRRSKIAVF	639
3KG2 :	DKMWTYMRSAEPSVFVRTTAEGVARVRKSKGKYAYLLESTMNEYIEQRKPCDTMKVGGNL	718
4U2P:	DKMWTYMRSAEPSVFVRTTAEGVARVRKSKGKYAYLLESTMNEYIEQRKPCDTMKVGGNL	720
5WEO:	DKMWTYMRSAEPSVFVRTTAEGVARVRKSKGKYAYLLESTMNEYIEQRKPCDTMKVGGNL	718
5VHZ:	DKMWTYMRSAEPSVFVRTTAEGVARVRKSKGKYAYLLESTMNEYIEQRKPCDTMKVGGNL	718
5L1H:	DKMWTYMRSAEPSVFVRTTAEGVARVRKSKGKYAYLLESTMNEYIEQRKPCDTMKVGGNL	699
3KG2 :	DSKGYGIATPKGSSLGTPVNLAVLKLSEQGLLDKLKNKWWYDKGECGAKDSGSKEKTSAL	778
4U2P:	DSKGYGIATPKGSSLGTPVNLAVLKLSEQG <mark>V</mark> LDKLKNKWWYDKGECGAKDSGSKEKTSAL	780
5WEO:	DSKGYGIATPKGSSLGTPVNLAVLKLSEQG <mark>V</mark> LDKLKNKWWYDKGECGAKDSGSKEKTSAL	778
5VHZ:	DSKGYGIATPKGSSLGTPVNLAVLKLSEQG <mark>V</mark> LDKLKNKWWYDKGECGAKDSGSKEKTSAL	778
5L1H:	DSKGYGIATPKGSSLGTPVNLAVLKLSEQG <mark>V</mark> LDKLKNKWWYDKGECGAKDSGSKEKTSAL	759
2802.		
SWEO.		
SWED:		
5712.		
2014:	SIGNARGATILLAGIGLERILAALLEECIASKALAAKMAGLAPK- 803	

Figure S4 Sequence alignment of GluA2 structures used in present study. The alignment was made using Clustal Omega (Goujon, M., McWilliam. H., Li, W., Valentin, F., Squizzato, S., Paern, J. & Lopez, R. A new bioinformatics analysis tools framework at EMBL-EBI (2010) *Nucl. Acids Res.* W695-699). Residues in green are differing from the target sequence (3kg2). The residues marked in italics were not seen in the structures (for chain A, similar for the other chains).

Figure S5 SANS data of GluA2 in the presence of 1 mM AMPA at pH 7.5 (black) and 10 mM AMPA at pH 5.5 (red)

Figure S6 Additional fits to SANS data of GluA2 in the AMPA bound state at pH 5.5 (grey). The data were fitted with models of tetrameric GluA2 in combination with fractal oligomers. Models included GluA2 in the resting state (cyan, pdb-code 4u2p, $\chi_r^2 = 5.2$), GluA2 in the activated state (black; pdb-code 5weo; $\chi_r^2 = 4.6$), GluA2 in the desensitized state (red; pdb-code 5lhv; $\chi_r^2 = 4.8$) and the class 3 EM structure (magenta; EMD-2688; $\chi_r^2 = 1.9$).

Figure S7 Theoretical SANS scattering for all investigated structures. GluA2 in the resting state (X-ray; cyan; pdb-code 4u2p), in the activated state (EM; black; pdb-code 5weo), in the desensitized state (EM; pdb-code 5vhz), in the GYKI-53655 bound state (X-ray; orange; pdb-code 511h) and GluA2 in the class 3 state (EM; magenta; EMDB-2688). Data are normalized and a constant background of $0.01 \cdot I(0)$ is subtracted (grey dashed line). The compact forms are similar, whereas the scattering curve for the more open EM class 3 structure is clearly distinguishable by eye. The compact structures differs only at high *q*-values, where the the signal to noise ratio is low.

Figure S8 Generated structure of GluA2 in the resting state. Due to missing residues in the X-ray structure of GluA2 in the resting state (cyan; pdb-code 4u2p), a model structure was generated of GluA2 (black) using Modeller (Fiser et al., 2000), with the missing residues inserted as loops.

References

Fischer, H., de Oliveira Neto, M., Napolitano, H. B., Polikarpov, I. & Craievich, A. F. (2010). J. Appl. Cryst. 43, 101-109.

Fiser, A., Do, R.K.G. & Šali, A. (2000). Protein Sci. 9, 1753-1773.

Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G., Gajda, M., Gorba, C., Mertens, H. D., Konarev, P.V. & Svergun, D. I. (2012). *J. Appl. Cryst.* **45**, 342-350.

Porod, G. (1982). *Small Angle X-ray Scattering* (Glatter, O. & Kratky, O., ed.), New York: Academic Press, Chapter 2, 17-52.