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1. Scattering Features

Fig. S1. Experimental example demonstrating the position of various scattering fea-
tures on the detector image (qz) as a function of the grazing-incidence angle (θi).
The reflected beam (R, red) appears at 2θi, while the horizon (H, gray dashed line)
is at half this angle (θi). The transmitted beam (T, blue) is roughly at the direct
beam position (qz = 0), but is slightly shifted due to refraction. The Yoneda (Y, yel-
low) appears at θc above the horizon (i.e. at total angle θi+θc); that is, the Yoneda
is defined as the position on the detector when the exit angle matches the critical
angle. This detector position probes scattering rays that were traveling nominally
within the film plane, and thus probing a larger scattering volume. As can be seen
in the experimental data, there is a strong enhancement of all scattering signals
along this line (whether viewed along qx or along θi). Of note also is the position of
the various scattering peaks, which can be seen to shift as a function of θi. Peaks
can be seen to ‘split’ into two branches: one which shifts to higher qz (and decrease
in intensity) as θi is increased, and one which decay to a constant value of qz and
intensity as θi is increased. The former are peaks from the reflected channel (Rc),
where the peaks shift along qz as the reflected beam moves along the detector (and
decrease in intensity since |R(θi)| decreases in value). The latter peaks are from the
transmitted channel (Tc), where the peaks are shifted slightly at small θi due to
refraction of the incident beam.

2. Refraction Correction

Scattering from the sample reciprocal-space at Qz = 2k sinαs (where 2αs = αi + αf )

is measured on the detector at qz = 2k sin θs (where 2θs = θi + θf ). The difference

between the two values is due to refraction of the incident (i) and scattered (f) beams
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(Lu et al., 2013). The refractive shift for the transmitted channel (Tc) is:
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where θc is the critical angle for the film-ambient interface (cos θc = n1/n0). For the

reflection channel (Rc) the scattering is shifted by:
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Notice that the difference is (where small-angle approximations are used repeatedly):
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As can be seen, the reflected channel pattern is shifted by the expected amount (∼ 2θi)

such that it is centered about the specular reflected beam.
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3. Reflectivity Calculation

To compute the scattering intensity at the detector for GISAXS experiments, one must

compute the relative intensity of scattering terms that are modulated by transmission

and reflectivity factors. In particular, we must estimate the intensity of the transmitted

and reflected beams that pass through the sample, since the scattering signal is pro-

portional to the photon flux in these channels. We review here the standard method for

computing the reflectivity for a thin film (Rauscher et al., 1999; Renaud et al., 2009).

First considering the reflectivity at a single interface, the vertical component of the

incoming wave vector and the wave vector in the substrate are:

kz = −
√
k2 − |k‖|2

k̃z = −
√
n2sk

2 − |k‖|2
(4)

where k = 2π/λ, ns = 1− δ− jβ = cos θc is the refractive index of the substrate (j =

√
−1), and k‖ = k cosα is the in-plane component. The transmission and reflection

coefficients can then be written:

ts =
2kz

kz + k̃z

rs =
kz − k̃z
kz + k̃z

(5)

For interfaces with roughness σ > 0, these values can be adjusted to:

tσ = tse
−1/2σ2(k̃z−kz)2

rσ = rse
−2σ2kz k̃z

(6)

The coefficients are complex numbers, which can give rise to non-trivial interference

effects when multiplied by other factors in the DWBA equation. When generalizing

to a multi-layer model, the coefficients for the interface of layer i and i+ 1 become:

ti,i+1 =
2kz,i

kz,i + kz,i+1

ri,i+1 =
kz,i − kz,i+1

kz,i + kz,i+1

(7)
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Reflections at different interfaces interfere with each other, with the phase offset being

determined by the layer thickness. When layer thickness is taken into account, the

coefficients become:

Ti,i+1 =
ti,i+1ti+1,i+2e

jhi+1ki+1

1 + ri,i+1Ri+1,i+2e2jhi+1ki+1

Ri,i+1 =
ri,i+1 +Ri+1,i+2e

2jhi+1ki+1

1 + ri,i+1Ri+1,i+2e2jhi+1ki+1

(8)

where hi is the thickness of layer i. The transmission and reflection coefficients (T and

R) are complex-valued. However, in the simplified DWBA only their magnitudes |T |2

and |R|2 are required.

Fig. S2. Examples of the reflection (r) and transmission (t) coefficients for a single
interface. These coefficients are complex-valued and may be negative or positive.

4. DWBA Terms

The DWBA equation can be regrouped into the set of independent-terms and the

cross-terms:

Id(qz) = Id,ind(qz) + Id,cross(qz) (9)
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Where:

Id,ind(qz) = |TiTf |2|F+1|2 + |TiRf |2|F−2|2 + |RiTf |2|F+2|2 + |RiRf |2|F−1|2

= |TiTf |2IR(Qz1) + |TiRf |2IR(Qz2) + |RiTf |2IR(Qz2) + |RiRf |2IR(Qz1)

Id,cross(qz) = + 2|Ti|2Re[TfR
∗
fF+1F

∗
−2] + 2|Tf |2Re[TiR

∗
iF+1F

∗
+2]

+ 2|Ri|2Re[TfR
∗
fF
∗
−1F+2] + 2|Rf |2Re[TiR

∗
iF
∗
−1F−2]

+ 2Re[TiR
∗
i TfR

∗
fF+1F

∗
−1] + 2Re[TiR

∗
i T
∗
fRfF

∗
+2F−2]

(10)

In general, the independent terms dominate the ultimate scattering, with the cross-

terms playing a more minor role. This occurs because the independent terms are

constructive: the four terms are all purely-real and strictly positive. The cross-terms,

however, may be positive or negative, and have different net phases, causing them to

partially or fully cancel one another. An example is shown in Figure S3, where for a par-

ticular real-space configuration of material, the corresponding scattering (amplitude

and phase components) are shown. The predicted GISAXS when including all DWBA

terms (Fig. S3d, black) is only slightly different from the case where the cross-terms are

neglected (Fig. S3d, purple). Moreover, in a real GISAXS experiment, the beam aver-

ages over an ensemble of statistically-independent volumes, where the nanostructures

are randomly different in each sub-volume. In such a case, the overall scattering arises

from the (incoherent) sum of the scattering from each sub-volume. The Id,ind(qz) com-

ponent is essentially the same in each sub-volume and is thus retained upon ensemble

averaging. The Id,cross(qz) component varies randomly in each sub-volume, and thus

this contribution becomes less significant after ensemble averaging (Fig. S3e). Overall,

this thus justifies neglecting the Id,cross(qz) terms, since they are minor contributions

compared to the dominant Id,ind(qz) component.
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Fig. S3. Relative contributions of terms in a DWBA calculation. (a) An example real-
space structure (thin film of hexagonally-packed dots/cylinders) is converted into
reciprocal-space scattering in the usual manner (Fourier transform). The complex
scattering can be divided into two components: the magnitude of the scattering (b)
and the phase of the complex amplitude (c). The square of the magnitude is what is
measured experimentally; however the phases of individual scattering components
interfere with one another. (d) The GISAXS pattern computed when including
all scattering terms (independent and cross) is shown in black. The approxima-
tion when using only the independent terms is shown in purple (residuals shown
above). As can be seen, neglecting the cross-terms leads to only a minor difference
in the prediction. (e) When averaging the GISAXS curves over multiple indepen-
dent realizations (randomizing particle size and positions), the difference becomes
even smaller.

5. Transformation Function

The experimental effect of GISAXS can be thought of in terms of refraction distortion

(which maps from Qz to qz) and multiple scattering (multiple terms of DWBA).

This transformation can be thought of as a single function (which we denote D) that

converts the ‘true’ reciprocal-space scattering IR(Qz) into the experimental image
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Id(qz). Specifically, the transformation for incident angle θi is:

D[IR(Qz), θi] =
[
|T (αi)T (αf )|2 + |R(αi)R(αf )|2

]
IR(qz −∆qz,Tc(θi))

+
[
|T (αi)R(αf )|2 + |R(αi)T (αf )|2

]
IR(qz −∆qz,Rc(θi))

= |Tc|2Id,Tc(qz) + |Rc|2Id,Rc(qz)

= Id(qz, θi)

(11)

6. Scaling of Fit Error

The mismatch between a candidate reconstruction (Id,test(qz)) and the experimental

GISAXS curve (Id,true(qz)) is quantified by χ2
d. We correspondingly denote the mis-

match between the reconstructed scattering curve (IR,test(Qz)) and the true reciprocal-

space scattering (IR,true(Qz)) as χ2
R. This latter quantity is not known during experi-

ments, but can be approximated by measuring the GTSAXS scattering pattern. In the

case of synthetic data, we precisely know IR,test(Qz) and can thus evaluate χ2
R. The

initial value of χ2
d during the reconstruction of course depends strongly on the quality

of the initial guess. Figure S4 shows the decrease of χ2
d during iterative reconstruc-

tion, for a variety of initial guesses. In all cases, χ2
d decreases steadily as the iterative

reconstruction proceeds, with χ2
R decreasing correspondingly. The strong correlation

between these metrics (Figure S5) suggests that fitting by minimizing χ2
d will correctly

reconstruct the true reciprocal-space (small χ2
R). Moreover, we find the iterative fit-

ting to be well-behaved in the sense that different choices of initial guess all converge

to the same ultimate reconstruction (same ultimate value of χ2
d). However, as can be

seen in Figure S4, the number of iterations required to converge to the ultimate fit

varies greatly depending on the initial guess used.
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Fig. S4. Scaling of fit error to the experimental data (χ2
d) and the true scattering (χ2

R)
during iterative reconstruction, for a variety of initial guess strategies. The rightmost
plots focus in on the convergence of the most successful strategies. The upper row
shows an example of reconstructing synthetic data, where the true reciprocal-space
is thus known exactly. The lower row shows an example of fitting experimental data,
where we estimate the true reciprocal-space from the best available fit (lowest χ2

d).
The initial guess strategies are: zero values (IR(Qz) = 0), random noise (initializing
with random intensity values), GISAXS (simply taking the experimental GISAXS
curve as the initial guess, IR(Qz) = Id(qz)), near neighbor (using a previously-
reconstructed nearby column), far neighbor (using a previously-reconstructed col-
umn from a very different value of qx), and w initialization (described below).

Fig. S5. Correlation between the fit error to the experimental data (χ2
d), and the

(estimated) mismatch to the true reciprocal-space scattering (χ2
R). The two metrics

are highly correlated, with low χ2
d corresponding to low χ2

R, which indicates that
iterative fitting with minimization of χ2

d as the target will correctly reconstruct the
true reciprocal-space pattern.
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Fig. S6. Examples of the mismatch with true scattering (χ2
R) when reconstructing dif-

ferent synthetic datasets. In all cases (when reconstructing scattering with sharp or
diffuse features), the iterative reconstruction (purple lines) ultimately correctly gen-
erates an estimate of the true scattering IR(Qz) (black lines), albeit with artifacts
near the edges of the available qz-range. The convergence of the fitting is somewhat
better for sharp scattering features (σ denotes the width of the scattering peaks).

7. w initialization

In order to minimize the number of iterations required during reconstruction, the

initial guess should be as close to the correct IR(Qz) as possible. However, this is a

formally underdefined mathematical problem, since the GISAXS signal Id(qz) at a

particular qz depends on two different positions (Qz values) of the IR(Qz) curve. Each

of these IR(Qz) intensities contributes to the signal at two different qz values. This one-

to-many mapping means that there is an underlying correlation between intensities

across the full qz range, with the corresponding system of equations being underde-

fined. The extreme ends of the Id(qz) curve also have contributions from Qz values

outside the experimental range of qz. Yet, this problem is only weakly underdefined,

meaning that it is solvable with relatively modest assumptions. The w initialization

strategy (presented in the main text) reformulates the problem from attempting to

solve for the two distinct scattering channels (Id,Tc(qz) and Id,Rc(qz)) into attempting

to solve for the ratio of these two components, which we denote w(qz). This method

is able to rapidly converge towards a reasonable guess for IR(Qz) (Figs. S7–S9).
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Fig. S7. Example of the first iteration of the w initialization algorithm, which esti-
mates undistorted scattering (IR(Qz)) from experimental GISAXS data (Id(qz)).
The experimental intensity is first divided into contributions from the transmitted
and reflected channels (Tc and Rc) based on known transmission/reflectivity curves
(|Tc|2 and |Rc|2) and an arbitrary initial guess for the ratio between the channels
(w). The two channel predictions are both undistorted into reciprocal-space, which
provides two predictions for the true scattering (which should agree). The difference
between these predictions is used to compute an improved estimate for IR. This IR
estimate can be distorted to yield new estimates for the contributions from the two
channels, which provides an improved estimate for w. This new w estimate can be
fed back as an improved initial guess. (Thick faded lines show true scattering con-
tributions, while χ shows the corresponding residuals; these are of course not known
during reconstruction of experimental data.) By iterating through this procedure,
we converge towards a self-consistent prediction for w(qz) and IR(Qz).
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Fig. S8. Example of the second iteration of the w initialization algorithm. Even after
only two loops, the method has developed a highly useful estimate for w(qz).
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Fig. S9. Example of guessing the form of the undistorted scattering using the w initial-
ization algorithm (synthetic data used for this example). The input GISAXS data
is shown on the upper-left. The undistorted scattering pattern (SAXS) is shown on
the upper-right. The w initialization rapidly converges (lower row) to a reasonable
approximation of the true SAXS pattern, with doubled peaks disappearing. Some
intensity artifacts persist; these are eliminated once the initial guess is iteratively
reconstructed.
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8. Example Reconstructions

Fig. S10. Example reconstructions based on experimental GISAXS data. Each row
shows (from left to right) the set of GISAXS images, the transmission and reflec-
tivity curves (model curves in blue/red; experimentally-measured reflectivity in
black), the reciprocal-space reconstruction (IR(Qz)), select linecuts through the
reconstruction (reconstruction in purple, GTSAXS data in black), and the experi-
mental GTSAXS image. The presented data are (a, b) multilayered inorganic nanos-
tructures obtained by layering self-assembling block-copolymer phases, and (c, d)
an in-plane hexagonal array of inorganic nano-dots.
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9. Reconstruction Sensitivity

Fig. S11. Sensitivity of reconstruction method to changes in the assumed critical angle,
θc (based on synthetic data). The experimental GISAXS data (black curve), Id(qz)
(left) is iteratively fit (purple curve), from which we reconstruct the true reciprocal-
space scattering (IR(Qz), right); the corresponding transmission channel (Id,Tc) and
reflection channel (Id,Rc) components are calculated using the known transmission
(|T |) and reflectivity (|R|) curves. The reconstruction is relativity robust to errors in
the assumed critical angle. For a typical dataset (left) with intentional errors intro-
duced into θc, the reconstruction becomes correspondingly shifted (right, numbers
indicate intentional error in θc). The fit-error (χ2

d) with respect to errors in the
angles has a deep minimum at the true value, allowing this value to be iteratively
refined also.
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Fig. S12. Sensitivity of reconstruction method to film thickness, H (based on syn-
thetic data). The three rows show three different assumed thicknesses during the
reconstruction. The first column shows the reconstruction (purple) compared to
the experimental GISAXS (black), with the Tc and Rc contributions shown. The
second column shows the 4 DWBA contributions. The third column shows the
assumed transmission (blue) and reflectivity (red) curves (true curves in black).
The final column compares the reconstruction in reciprocal-space (purple) to the
true reciprocal-space (black). Overall, the reconstruction method succeeds even with
errors in the assumed thickness. The fit error (d) confirms that the true thickness
yields the minimum error.
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Fig. S13. Sensitivity of reconstruction method to film roughness, σ (based on synthetic
data). The three rows show three different assumed roughness values used during
the reconstruction. The first column shows the reconstruction (purple) compared
to the experimental GISAXS (black), with the Tc and Rc contributions shown.
The second column shows the 4 DWBA contributions. The third column shows the
assumed transmission (blue) and reflectivity (red) curves (true curves in black).
The final column compares the reconstruction in reciprocal-space (purple) to the
true reciprocal-space (black). Overall, the reconstruction method is fairly insensi-
tive to errors in the assumed roughness. The corresponding fit error (d) is fairly
broad. This insensitivity to roughness makes fitting to obtain this value difficult; but
also indicates that exact knowledge of this value is not important for a reasonable
reconstruction.
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Fig. S14. Sensitivity of reconstruction method to film absorption, β (based on syn-
thetic data). The three rows show three different assumed absorption values used
during the reconstruction. The first column shows the reconstruction (purple) com-
pared to the experimental GISAXS (black), with the Tc and Rc contributions
shown. The second column shows the 4 DWBA contributions. The third column
shows the assumed transmission (blue) and reflectivity (red) curves (true curves in
black). The final column compares the reconstruction in reciprocal-space (purple) to
the true reciprocal-space (black). Since the reflectivity curve is fairly insensitive to
absorption (except below the critical angle), this parameter does not strongly influ-
ence the reconstruction. The corresponding fit error (d) confirms that the lowest-
error reconstruction occurs at the correct value of absorption.
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