

Volume 5 (2018)

Supporting information for article:

Probing accuracy and precision of Hirshfeld Atom Refinement with HARt interfaced to Olex2

Malte Fugel, Dylan Jayatilaka, Emanuel Hupf, Jacob Overgaard, Venkatesha R. Hathwar, Piero Macchi, Michael J. Turner, Judith A. K. Howard, Oleg V. Dolomanov, Horst Puschmann, Bo B. Iversen, Hans-Beat Bürgi and Simon Grabowsky

Supporting information for: Probing accuracy and precision of Hirshfeld Atom Refinement with HARt interfaced to Olex2

Malte Fugel^a, Dylan Jayatilaka^b, Emanuel Hupf^a, Jacob Overgaard^c, Venkatesha R. Hathwar^{c,d}, Piero Macchi^e, Michael J. Turner^b, Judith A. K. Howard^f, Oleg V. Dolomanov^f, Horst Puschmann^f, Bo B. Iversen^c, Hans-Beat Bürgi^{e,g}, and Simon Grabowsky^{a*}

^aDepartment 2: Biology/Chemistry, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany ^bSchool of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, 6009 Perth, Australia ^cCenter for Materials Crystallography, Department of Chemistry and iNano, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark

^dDivision of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 305-8571, Tsukuba, Japan ^eDepartment of Chemistry and Biochemistry, University of Bern, Freiestraße 3, 3012 Bern, Switzerland ^fDepartment of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

^gDepartment of Chemistry, University of Zürich, Winterthurerstraße 190, 8057 Zürich, Switzerland

1 Residual density representations in different molecular planes for BIPa

Figure S1. Residual density maps in the ring planes of BIPa for the MM/SHADE model and HAR (def2-TZVP, charges), calculated with the full resolution as given in Table 2, contour intervals = $0.05 \text{ e}^{\text{Å}-3}$, blue = positive, red = negative

2 Discussion of a multipole model with hydrogen ADPs from the neutron data for rubrene

One may argue that the accuracy and precision of the non-hydrogen ADPs in MMs are affected by the origin of the hydrogen ADPs. Here we show that the measures of accuracy and precision for the non-hydrogen ADPs are essentially the same whether the H-ADPs are obtained from the SHADE procedure or from a neutron diffraction experiment (Table S1, bottom). The respective residual density maps show no significant differences; the same features appear in both (Figure S2). It can thus be concluded that comparisons of non-hydrogen ADPs with those of MM/SHADE models are not biased by the choice of H-ADPs.

Table S1. Anisotropic displacement parameters for non-hydrogen atoms and parameters of accuracy and precision of	the MM
with the hydrogen ADPs fixed to values from neutron diffraction, units $Å^2$	

	U11	U22	U33	U12	U13	U23
C(1)	0.00994(8)	0.00904(9)	0.01080(9)	0	0	0.00129(7)
C(2)	0.01055(6)	0.00976(7)	0.01102(7)	0.00073(5)	-0.00006(5)	0.00127(5)
C(3)	0.01219(7)	0.00929(7)	0.01055(7)	0.00081(5)	0.00020(5)	0.00135(5)
C(4)	0.01503(8)	0.01164(8)	0.01386(8)	0.00274(6)	0.00110(6)	0.00330(6)
C(5)	0.01872(9)	0.01132(8)	0.01539(8)	0.00205(6)	0.00073(6)	0.00397(6)
C(6)	0.01084(7)	0.01185(7)	0.01171(7)	0.00132(5)	-0.00026(5)	0.00051(5)
C(7)	0.01225(7)	0.01440(8)	0.01759(9)	0.00173(6)	0.00201(6)	-0.00103(7)
C(8)	0.01156(8)	0.02023(11)	0.02494(11)	0.00268(7)	0.00224(7)	0.00167(9)
C(9)	0.01259(9)	0.02714(13)	0.02326(12)	0.00033(8)	-0.00323(8)	0.00373(10)
C(10)	0.01672(10)	0.02707(13)	0.01694(10)	-0.00134(9)	-0.00507(7)	-0.00140(9)
C(11)	0.01461(8)	0.01874(9)	0.01328(8)	0.00127(7)	-0.00176(6)	-0.00238(7)
	$\langle U_X^{ii}/U_N^{ii} angle$	$ \Delta U_{X-N}^{ij} $	$ \Delta U_{X-N}^{ii} $	wRMSD		
MM/neutron	1.01(3)	0.00021(18)	0.00026(20)	1.81		
MM/SHADE	0.99(3)	0.00021(17)	0.00026(19)	1.84		

Figure S2. Residual density maps of two planes of rubrene from the MMs with the hydrogen ADPs obtained from neutron diffraction and the SHADE approach, alternatively; contour intervals = $0.05 \text{ e}^{\text{A}^{-3}}$, blue = positive, red = negative, full resolution as given in Table 2

3 Individual anisotropic displacement parameters

Figure S3. Anisotropic displacement parameters (90% probability surface) obtained from the refinement of the neutron diffraction data of rubrene (left), BIPa (middle) and KHOx (right)

	U11	U22	U33	U12	U13	U23
C1	0.00972(14)	0.00961(16)	0.01000(12)	0	0	0.00128(10)
C2	0.01055(10)	0.00988(11)	0.01081(9)	0.00085(8)	0.00014(7)	0.00104(7)
C3	0.01197(10)	0.00962(11)	0.01017(9)	0.00081(8)	0.00030(7)	0.00145(7)
C4	0.01527(12)	0.01163(12)	0.01362(10)	0.00258(9)	0.00125(8)	0.00323(8)
C5	0.01890(13)	0.01151(13)	0.01519(11)	0.00195(10)	0.00095(9)	0.00431(9)
C6	0.01057(10)	0.01180(12)	0.01127(9)	0.00134(8)	-0.00027(7)	0.00068(8)
C7	0.01196(11)	0.01435(14)	0.01764(11)	0.00161(9)	0.00217(9)	-0.00129(9)
C8	0.01101(12)	0.02017(16)	0.02509(14)	0.00269(10)	0.00259(10)	0.00194(11)
C9	0.01212(13)	0.02789(19)	0.02328(13)	-0.00009(11)	-0.00322(10)	0.00430(12)
C10	0.01691(14)	0.02736(19)	0.01664(11)	-0.00163(12)	-0.00526(10)	-0.00124(11)
C11	0.01433(13)	0.01907(15)	0.01303(10)	0.00120(10)	-0.00179(9)	-0.00265(9)
H4	0.0205(3)	0.0317(4)	0.0400(3)	0.0049(3)	0.0018(3)	0.0113(3)
H5	0.0346(4)	0.0264(4)	0.0415(4)	0.0077(3)	0.0003(3)	0.0152(3)
H7	0.0301(4)	0.0336(4)	0.0349(3)	0.0016(3)	0.00100(3)	-0.0146(3)
H8	0.0239(4)	0.0387(5)	0.0560(5)	0.0087(3)	0.00800(3)	-0.0074(4)
H9	0.0201(4)	0.0592(6)	0.0495(5)	0.0011(3)	-0.00970(3)	0.0017(4)
H10	0.0379(5)	0.0575(6)	0.0343(4)	-0.0046(4)	-0.0126(3)	-0.0157(4)
H11	0.0297(4)	0.0417(5)	0.0342(3)	0.0082(3)	0.0004(3)	-0.0156(3)

Table S2. Anisotropic displacement parameters of the neutron data of rubrene, units = $Å^2$

Table S3. Anisotropic displacement parameters of the independent atom model of rubrene, units = $Å^2$

	U11	U22	U33	U12	U13	U23
C1	0.01014(13)	0.00929(13)	0.01065(13)	0	0	0.00102(10)
C2	0.01080(10)	0.00999(10)	0.01095(10)	0.00082(7)	-0.00002(7)	0.00112(7)
C3	0.01246(11)	0.00946(10)	0.01041(10)	0.00084(7)	0.00021(7)	0.00113(7)
C4	0.01538(12)	0.01186(11)	0.01366(11)	0.00291(9)	0.00094(9)	0.00294(9)
C5	0.01903(14)	0.01152(11)	0.01520(13)	0.00216(9)	0.00071(10)	0.00363(9)
C6	0.01105(10)	0.01185(10)	0.01183(10)	0.00121(8)	-0.00015(8)	0.00087(8)
C7	0.01257(11)	0.01445(12)	0.01752(13)	0.00167(9)	0.00216(9)	-0.00068(10)
C8	0.01188(12)	0.02010(16)	0.02504(17)	0.00266(11)	0.00250(11)	0.00220(13)
C9	0.01262(13)	0.0273(2)	0.02365(18)	0.00001(12)	-0.00312(11)	0.00449(15)
C10	0.01724(14)	0.0271(2)	0.01695(15)	-0.00160(13)	-0.00491(11)	-0.00100(13)
C11	0.01496(12)	0.01863(14)	0.01332(12)	0.00102(10)	-0.00164(9)	-0.00200(10)

Table S4. Anisotropic displacement parameters of the MM of rubrene (hydrogen ADPs are obtained from SHADE), units = $Å^2$

	U11	U22	U33	U12	U13	U23
C1	0.00998(9)	0.00910(9)	0.01081(10)	0	0	0.00125(8)
C2	0.01054(7)	0.00972(7)	0.01108(7)	0.00075(5)	-0.00007(5)	0.00129(6)
C3	0.01219(8)	0.00926(7)	0.01055(7)	0.00080(5)	0.00019(5)	0.00134(6)
C4	0.01505(9)	0.01165(8)	0.01380(8)	0.00274(6)	0.00108(6)	0.00331(6)
C5	0.01874(10)	0.01127(8)	0.01533(9)	0.00204(7)	0.00075(7)	0.00393(7)
C6	0.01083(7)	0.01184(8)	0.01174(7)	0.00135(6)	-0.00026(6)	0.00060(6)
C7	0.01219(8)	0.01442(9)	0.01763(9)	0.00173(7)	0.00203(7)	-0.00101(7)
C8	0.01155(9)	0.02026(12)	0.02488(12)	0.00272(8)	0.00222(8)	0.00168(10)
C9	0.01243(9)	0.02714(14)	0.02339(13)	0.00033(9)	-0.00325(8)	0.00378(11)
C10	0.01675(10)	0.02705(14)	0.01691(11)	-0.00130(10)	-0.00506(8)	-0.00137(9)
C11	0.01449(9)	0.01874(10)	0.01328(9)	0.00124(7)	-0.00175(7)	-0.00236(7)
H4	0.020528	0.029586	0.036105	0.006668	-0.001335	0.003129
H5	0.035014	0.024093	0.038192	0.012973	-0.003162	0.006032
H7	0.026733	0.035666	0.03504	-0.014106	0.002014	-0.000367
H8	0.022902	0.038456	0.052812	-0.007858	0.005226	0.008128
H9	0.018521	0.051708	0.043601	0.002324	-0.008475	0.002817
H10	0.029899	0.056191	0.032861	-0.015203	-0.008727	-0.00233
H11	0.023989	0.038364	0.034177	-0.013843	-0.001371	0.004924

Table S5. Anisotropic displacement parameters of the HAR (HF/def2-SVP) of rubrene, units = $Å^2$

	U11	U22	U33	U12	U13	U23
C1	0.00993(8)	0.00908(9)	0.01042(9)	0	0	0.00123(7)
C2	0.01044(6)	0.00967(6)	0.01079(6)	0.00073(5)	-0.00005(5)	0.00129(5)
C3	0.01212(7)	0.00920(7)	0.01027(7)	0.00085(5)	0.00022(5)	0.00137(5)
C4	0.01493(7)	0.01150(7)	0.01359(7)	0.00266(6)	0.00107(6)	0.00329(6)
C5	0.01867(9)	0.01115(8)	0.01511(8)	0.00206(6)	0.00077(6)	0.00398(6)
C6	0.01079(6)	0.01172(7)	0.01145(7)	0.00133(5)	-0.00023(5)	0.00048(5)
C7	0.01219(7)	0.01432(8)	0.01727(8)	0.00168(6)	0.00207(6)	-0.00110(6)
C8	0.01146(7)	0.0201(1)	0.0246(1)	0.00278(7)	0.00226(7)	0.00165(8)
C9	0.01230(8)	0.0272(1)	0.0230(1)	0.00016(8)	-0.00329(7)	0.00385(9)
C10	0.01677(9)	0.0270(1)	0.01668(9)	-0.00136(8)	-0.00499(7)	-0.00139(8)
C11	0.01442(8)	0.01874(9)	0.01306(8)	0.00130(6)	-0.00178(6)	-0.00246(6)
H4	0.028(3)	0.025(3)	0.035(3)	0.007(2)	0.002(2)	0.016(3)
H5	0.032(3)	0.033(3)	0.045(4)	0.008(3)	0.002(3)	0.016(3)
H7	0.031(3)	0.041(4)	0.041(4)	-0.006(3)	0.007(3)	-0.004(3)
H8	0.022(3)	0.048(4)	0.059(4)	0.004(3)	0.008(3)	-0.006(4)
H9	0.032(3)	0.064(5)	0.042(4)	-0.002(3)	-0.005(3)	0.000(4)
H10	0.043(4)	0.057(5)	0.033(4)	-0.012(3)	-0.011(3)	-0.010(3)
H11	0.025(3)	0.048(4)	0.034(3)	0.004(3)	-0.008(3)	-0.005(3)
	•					

	U11	U22	U33	U12	U13	U23
C1	0.00988(8)	0.00902(9)	0.01038(9)	0	0	0.00126(7)
C2	0.01039(6)	0.00961(6)	0.01076(6)	0.00072(5)	-0.00006(5)	0.00132(5)
C3	0.01205(7)	0.00914(6)	0.01024(7)	0.00085(5)	0.00022(5)	0.00139(5)
C4	0.01485(7)	0.01145(7)	0.01358(7)	0.00264(6)	0.00107(6)	0.00334(6)
C5	0.01860(9)	0.01109(8)	0.01509(8)	0.00204(6)	0.00079(6)	0.00403(6)
C6	0.01074(6)	0.01167(7)	0.01139(7)	0.00135(5)	-0.00024(5)	0.00041(5)
C7	0.01212(7)	0.01430(8)	0.01723(8)	0.00170(6)	0.00205(6)	-0.00116(6)
C8	0.01138(7)	0.0201(1)	0.0245(1)	0.00279(7)	0.00223(7)	0.00156(8)
C9	0.01223(8)	0.0272(1)	0.0229(1)	0.00019(8)	-0.00332(7)	0.00375(9)
C10	0.01666(9)	0.0269(1)	0.01662(9)	-0.00133(8)	-0.00499(7)	-0.00145(8)
C11	0.01434(8)	0.01871(9)	0.01302(8)	0.00132(6)	-0.00181(6)	-0.00252(6)
H4	0.027(3)	0.027(3)	0.038(3)	0.008(2)	0.001(2)	0.016(3)
H5	0.031(3)	0.036(3)	0.049(4)	0.010(3)	-0.000(3)	0.018(3)
H7	0.035(3)	0.042(4)	0.042(4)	-0.007(3)	0.006(3)	-0.008(3)
H8	0.023(3)	0.051(4)	0.061(4)	0.007(3)	0.008(3)	-0.007(4)
H9	0.032(3)	0.064(5)	0.044(4)	-0.001(3)	-0.006(3)	0.000(4)
H10	0.045(4)	0.061(5)	0.034(4)	-0.014(4)	-0.012(3)	-0.012(3)
H11	0.026(3)	0.048(4)	0.037(3)	0.004(3)	-0.006(3)	-0.007(3)

Table S6. Anisotropic displacement parameters of the HAR (HF/def2-TZVP) of rubrene, units = $Å^2$

Table S7. Anisotropic displacement parameters of the HAR (HF/def2-TZVP, with charges) of rubrene, units = $Å^2$

	U11	U22	U33	U12	U13	U23
C1	0.00987(8)	0.00900(8)	0.01044(9)	0	0	0.00126(7)
C2	0.01038(6)	0.00960(6)	0.01082(6)	0.00072(5)	-0.00007(5)	0.00133(5)
C3	0.01205(7)	0.00913(6)	0.01030(6)	0.00075(5)	0.00018(5)	0.0014(5)
C4	0.01485(7)	0.01144(7)	0.01364(7)	0.00264(6)	0.00106(6)	0.00334(6)
C5	0.01859(9)	0.01108(8)	0.01519(8)	0.00206(6)	0.00079(6)	0.00406(6)
C6	0.01072(6)	0.01166(7)	0.01147(7)	0.00136(5)	-0.00024(5)	0.0004(5)
C7	0.01210(7)	0.01429(8)	0.01733(8)	0.00171(6)	0.00206(6)	-0.00117(6)
C8	0.01137(7)	0.0201(1)	0.0247(1)	0.00279(7)	0.00223(7)	0.00158(8)
C9	0.01221(9)	0.0272(1)	0.0230(1)	0.00020(8)	-0.00334(8)	0.00376(8)
C10	0.01665(8)	0.0269(1)	0.01669(9)	-0.00133(8)	-0.005(6)	-0.00148(6)
C11	0.01432(8)	0.01871(9)	0.01309(8)	0.00134(6)	-0.00181(8)	-0.00255(9)
H4	0.027(3)	0.027(3)	0.039(3)	0.008(2)	0.002(2)	0.016(3)
H5	0.031(3)	0.035(3)	0.049(4)	0.01(3)	0.000(3)	0.018(3)
H7	0.034(3)	0.042(3)	0.042(4)	-0.007(3)	0.006(3)	-0.007(3)
H8	0.023(3)	0.051(4)	0.061(4)	0.007(3)	0.008(3)	-0.006(4)
H9	0.032(4)	0.063(5)	0.044(4)	-0.001(3)	-0.006(3)	0.000(3)
H10	0.045(3)	0.059(4)	0.034(3)	-0.015(3)	-0.012(3)	-0.012(3)
H11	0.026(3)	0.048(5)	0.037(4)	0.004(3)	-0.006(3)	-0.008(4)

	U11	U22	U33	U12	U13	U23
08	0.0127(3)	0.0111(3)	0.0192(3)	-0.0005(3)	0.0050(3)	0.0005(3)
09	0.0104(3)	0.0195(4)	0.0204(4)	0.0002(3)	0.0076(3)	0.0040(3)
N7	0.0144(2)	0.01136(18)	0.0114(2)	0.00137(16)	0.0035(2)	-0.00007(16)
C12	0.0092(2)	0.0118(2)	0.0103(2)	-0.0010(2)	0.0033(2)	0.0007(2)
C13	0.0093(2)	0.0113(3)	0.0127(3)	-0.00009(19)	0.0040(2)	0.0013(2)
C14	0.0136(3)	0.0181(3)	0.0153(3)	0.0038(3)	0.0033(2)	0.0038(3)
C15	0.0187(3)	0.0138(3)	0.0273(4)	-0.0033(3)	0.0030(3)	0.0048(3)
C16	0.0445(6)	0.0214(4)	0.0166(3)	0.0061(4)	0.0136(4)	-0.0051(3)
N1A	0.0119(2)	0.0153(2)	0.01235(19)	0.00197(16)	0.0028(2)	0.00096(16)
N3A	0.0115(2)	0.0160(2)	0.0175(2)	0.00161(16)	0.0043(2)	-0.00093(18)
C2A	0.0154(3)	0.0145(3)	0.0152(3)	0.0013(2)	0.0068(2)	0.0023(2)
C4A	0.0155(3)	0.0243(4)	0.0113(3)	0.0057(3)	0.0022(2)	0.0020(3)
C5A	0.0146(3)	0.0243(3)	0.0133(3)	0.0044(3)	0.0060(2)	0.0028(3)
O1A	0.0124(3)	0.0175(3)	0.0121(3)	0.0054(3)	0.0050(3)	0.0036(3)
O2A	0.0171(4)	0.0349(5)	0.0144(3)	0.0070(4)	0.0063(3)	0.0114(4)
O3A	0.0204(4)	0.0244(4)	0.0180(4)	0.0029(3)	0.0132(3)	0.0073(3)
O4A	0.0161(4)	0.0377(5)	0.0236(4)	0.0131(4)	0.0084(3)	0.0040(4)
O5A	0.0185(4)	0.0228(4)	0.0169(4)	0.0084(3)	0.0021(3)	0.0071(3)
06A	0.0221(4)	0.0380(5)	0.0126(3)	-0.0045(4)	0.0108(3)	-0.0014(4)
O7A	0.0121(3)	0.0307(4)	0.0197(4)	0.00266(3)	0.0089(3)	0.0051(4)
N4A	0.0145(2)	0.01537(19)	0.01119(18)	0.00113(17)	0.0066(2)	0.0032(2)
N5A	0.0114(2)	0.0169(2)	0.0142(2)	0.00415(16)	0.0015(2)	0.00013(17)
N6A	0.0134(2)	0.0164(2)	0.01228(18)	-0.00020(16)	0.0076(2)	0.00050(16)
C6A	0.0090(2)	0.0110(2)	0.0083(2)	0.00128(19)	0.00339(19)	0.00058(19)
C7A	0.0099(2)	0.0109(2)	0.0092(2)	0.00084(19)	0.0042(2)	0.0015(2)
C8A	0.0094(3)	0.0129(3)	0.0110(3)	0.0010(2)	0.0043(2)	0.0007(2)
C9A	0.0096(2)	0.0121(2)	0.0104(2)	0.0018(2)	0.0030(2)	0.0010(2)
C10A	0.0111(3)	0.0125(3)	0.0092(2)	0.0010(2)	0.0032(2)	0.0019(2)
C11A	0.0100(2)	0.0115(2)	0.0086(2)	0.0007(2)	0.00415(19)	0.0010(2)
N1B	0.0121(2)	0.01323(19)	0.01258(19)	0.0012(2)	0.00415(15)	0.00189(16)
N3B	0.0198(2)	0.0151(2)	0.01242(19)	0.0034(2)	0.00597(17)	0.00289(17)
C2B	0.0148(3)	0.0132(3)	0.0154(2)	-0.0002(2)	0.0084(2)	0.0005(2)
C4B	0.0151(3)	0.0173(3)	0.0159(3)	0.0013(2)	0.0090(2)	0.0024(3)
C5B	0.0124(3)	0.0207(3)	0.0176(3)	0.0045(2)	0.0051(2)	0.0016(3)
O1B	0.0108(3)	0.0217(4)	0.0154(3)	0.0047(3)	0.0060(3)	0.0063(3)
O2B	0.0149(4)	0.0343(5)	0.0127(3)	0.0024(3)	0.0043(3)	0.0068(3)
O3B	0.0169(4)	0.0278(4)	0.0246(4)	0.0026(3)	0.0124(3)	0.0120(4)
O4B	0.0131(4)	0.0274(4)	0.0295(5)	0.0074(3)	0.0093(3)	0.0086(4)
O5B	0.0210(4)	0.0241(4)	0.0204(4)	0.0086(3)	0.0065(3)	0.0086(4)
O6B	0.0235(4)	0.0179(4)	0.0191(4)	-0.0001(3)	0.0145(3)	0.0030(3)
O7B	0.0222(4)	0.0322(5)	0.0270(4)	0.0112(4)	0.0177(4)	0.0095(4)
N4B	0.0129(2)	0.01375(19)	0.0120(2)	0.0014(2)	0.00647(16)	0.00173(16)
N5B	0.0114(2)	0.0142(2)	0.0176(2)	0.0029(2)	0.00364(17)	0.00243(17)
N6B	0.01333(19)	0.0158(2)	0.01299(18)	-0.0007(2)	0.00753(16)	-0.00028(17)
C6B	0.0089(2)	0.0115(2)	0.0113(3)	0.0006(2)	0.0045(2)	0.0008(2)
C7B	0.0099(2)	0.0108(2)	0.0117(3)	0.0006(2)	0.0050(2)	0.0007(2)
C8B	0.0099(3)	0.0115(3)	0.0143(3)	0.0009(2)	0.0056(2)	0.0013(2)
C9B	0.0098(3)	0.0113(3)	0.0139(3)	0.0009(2)	0.0043(2)	0.0010(2)
C10B	0.0118(3)	0.0121(3)	0.01200(3)	0.0005(2)	0.0046(2)	0.0015(2)
C11B	0.0010(2)	0.0115(2)	0.0115(2)	0.0003(2)	0.0051(2)	0.0005(2)

Table S8. Non-hydrogen anisotropic displacement parameters of the neutron data of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
H131	0.0187(7)	0.0274(7)	0.0314(8)	-0.0018(6)	-0.0025(6)	0.0052(6)
H132	0.0383(9)	0.0253(7)	0.0328(8)	0.0021(6)	0.0255(7)	0.0014(6)
H141	0.0376(10)	0.0271(8)	0.0488(12)	0.0147(8)	0.0080(9)	0.0094(8)
H142	0.0211(8)	0.0437(10)	0.0420(10)	-0.0044(7)	0.0087(7)	0.0090(9)
H143	0.0362(10)	0.0566(12)	0.0184(7)	0.0048(9)	0.0088(7)	-0.0006(8)
H151	0.0267(9)	0.0362(9)	0.0503(12)	-0.0085(8)	-0.0060(8)	0.0095(9)
H152	0.0388(10)	0.0185(7)	0.0583(13)	-0.0004(7)	0.0102(9)	0.0059(8)
H153	0.0454(12)	0.0399(10)	0.0499(12)	-0.0070(9)	0.0283(10)	0.0074(9)
H161	0.0622(15)	0.0510(12)	0.0438(12)	0.0040(11)	0.0375(11)	-0.0011(10)
H162	0.1052(22)	0.0301(10)	0.0536(14)	0.0202(12)	0.0427(15)	-0.0056(10)
H163	0.0682(16)	0.0588(14)	0.0220(8)	-0.0002(12)	0.0058(9)	-0.0082(9)
H1A	0.0213(7)	0.0290(7)	0.0259(7)	0.0048(6)	0.0042(6)	0.0035(6)
H2A	0.0404(10)	0.0430(10)	0.0319(9)	0.0044(8)	0.0217(8)	0.0133(8)
H3A	0.0200(7)	0.0287(7)	0.0389(9)	0.0015(6)	0.0119(6)	0.0002(7)
H4A	0.0360(10)	0.0623(13)	0.0206(8)	0.0179(9)	0.0042(7)	0.0140(8)
H5A	0.0335(10)	0.0622(13)	0.0359(9)	0.0076(9)	0.0232(8)	0.0077(10)
H8A	0.0228(7)	0.0364(8)	0.0292(8)	0.0040(6)	0.0166(6)	0.0035(7)
H10A	0.0321(8)	0.0326(8)	0.0195(6)	0.0053(7)	0.0108(6)	0.0111(6)
H1B	0.0221(7)	0.0275(7)	0.0247(7)	0.0057(6)	0.0037(6)	0.0058(6)
H2B	0.0296(9)	0.0374(9)	0.0453(10)	-0.0027(7)	0.0259(8)	0.0027(8)
H3B	0.0589(13)	0.0306(9)	0.0245(8)	0.0096(8)	0.0170(8)	0.0103(7)
H4B	0.0410(10)	0.0422(10)	0.0423(10)	0.0033(8)	0.0294(9)	0.0154(9)
H5B	0.0218(8)	0.0511(11)	0.0468(11)	0.0123(8)	0.0098(8)	0.0088(10)
H8B	0.0223(7)	0.0311(8)	0.0324(8)	0.0037(6)	0.0177(6)	0.0055(7)
H10B	0.0307(8)	0.0330(8)	0.0260(7)	0.0051(7)	0.0138(6)	0.0124(7)

Table S9. Hydrogen anisotropic displacement parameters of the neutron data of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
08	0.01445(15)	0.01241(12)	0.01920(15)	-0.00035(10)	0.00510(12)	0.00042(10)
09	0.01104(15)	0.02086(16)	0.01971(15)	0.00021(11)	0.00674(12)	0.00339(11)
N7	0.01536(17)	0.01205(13)	0.01155(13)	0.00090(11)	0.00370(12)	-0.00022(10)
C12	0.01048(17)	0.01350(14)	0.01036(13)	-0.00108(11)	0.00288(12)	0.00047(10)
C13	0.01131(17)	0.01170(14)	0.01332(15)	0.00014(11)	0.00400(12)	0.00135(11)
C14	0.0142(2)	0.01906(19)	0.01538(17)	0.00363(14)	0.00299(15)	0.00399(13)
C15	0.0190(2)	0.01482(18)	0.0277(3)	-0.00394(15)	0.00340(19)	0.00463(16)
C16	0.0446(4)	0.0221(2)	0.0175(2)	0.0057(2)	0.0148(2)	-0.00436(17)
N1A	0.01276(16)	0.01575(14)	0.01261(13)	0.00193(11)	0.00295(12)	0.00114(11)
N3A	0.01283(17)	0.01613(15)	0.01794(16)	0.00172(12)	0.00442(13)	-0.00108(12)
C2A	0.0170(2)	0.01481(16)	0.01628(17)	0.00147(13)	0.00694(15)	0.00188(13)
C4A	0.0167(2)	0.0245(2)	0.01183(16)	0.00486(16)	0.00260(14)	0.00127(14)
C5A	0.0164(2)	0.0243(2)	0.01349(17)	0.00381(16)	0.00630(15)	0.00221(14)
O1A	0.01315(14)	0.01756(13)	0.01276(12)	0.00544(10)	0.00440(11)	0.00309(10)
O2A	0.01776(18)	0.0349(2)	0.01456(14)	0.00640(15)	0.00520(13)	0.01070(14)
O3A	0.02067(19)	0.02442(18)	0.01942(16)	0.00224(13)	0.01332(14)	0.00626(12)
O4A	0.0178(2)	0.0386(2)	0.02345(19)	0.01243(17)	0.00870(15)	0.00346(17)
O5A	0.02136(19)	0.02355(17)	0.01638(15)	0.00678(14)	0.00215(13)	0.00673(12)
O6A	0.0249(2)	0.0369(2)	0.01223(14)	-0.00407(16)	0.01057(14)	-0.00134(13)
O7A	0.01305(17)	0.0298(2)	0.02114(17)	0.00198(13)	0.00858(13)	0.00491(14)
N4A	0.01511(17)	0.01513(14)	0.01128(13)	0.00076(11)	0.00604(12)	0.00275(10)
N5A	0.01274(17)	0.01731(15)	0.01338(14)	0.00377(12)	0.00146(12)	-0.00020(11)
N6A	0.01499(17)	0.01570(14)	0.01265(13)	0.00011(11)	0.00774(12)	0.00063(10)
C6A	0.01110(16)	0.01134(13)	0.00901(12)	0.00039(11)	0.00359(11)	0.00026(10)
C7A	0.01154(17)	0.01247(14)	0.00956(13)	0.00010(11)	0.00433(12)	0.00123(10)
C8A	0.01117(17)	0.01397(15)	0.01140(14)	0.00039(11)	0.00439(12)	0.00035(11)
C9A	0.01063(17)	0.01310(14)	0.01100(14)	0.00162(11)	0.00260(12)	0.00070(10)
C10A	0.01292(17)	0.01275(14)	0.00962(13)	0.00056(11)	0.00363(12)	0.00105(10)
C11A	0.01154(17)	0.01279(14)	0.00956(13)	-0.00008(11)	0.00469(12)	0.00035(10)
N1B	0.01333(16)	0.01406(14)	0.01295(14)	0.00148(11)	0.00415(12)	0.00146(10)
N3B	0.02002(19)	0.01569(15)	0.01234(14)	0.00281(13)	0.00577(13)	0.00248(11)
C2B	0.0163(2)	0.01362(15)	0.01608(17)	-0.00060(13)	0.00830(15)	-0.00008(12)
C4B	0.0167(2)	0.01852(18)	0.01645(17)	0.0013/(14)	0.00926(15)	0.00208(14)
C5B	0.0147(2)	0.0204(2)	0.01844(19)	0.00349(15)	0.00588(16)	0.00110(15)
OIB	0.01247(15)	0.02135(16)	0.01652(14)	0.00495(11)	0.00582(12)	0.00550(11)
02B	0.0158/(17)	0.0348(2)	0.01282(14)	0.00266(14)	0.00319(12)	0.00644(13)
03B 04D	0.01/28(18)	0.02724(19)	0.02397(19)	0.00100(14)	0.01238(15)	0.01028(15)
04B	0.01400(18)	0.0272(2)	0.0307(2)	0.00088(14)	0.01031(10)	0.00/31(10)
058	0.02145(19)	0.02520(18)	0.01980(17)	0.00/95(14)	0.00555(14)	0.00887(13)
00B	0.02483(19)	0.01831(15)	0.01902(15)	-0.00089(13)	0.01390(14)	0.00281(11)
U/B N/D	0.0217(2)	0.0332(2)	0.0274(2)	0.01210(10) 0.00127(11)	0.01023(17)	0.00938(10)
IN4D N5D	0.01432(10) 0.01257(16)	0.01384(13)	0.01203(15)	0.00157(11) 0.00210(11)	0.00000(12) 0.00242(12)	0.00114(10)
N6P	0.01237(10) 0.01422(17)	0.01430(14) 0.01600(15)	0.01703(10) 0.01320(14)	0.00219(11) 0.00104(11)	0.00343(13) 0.00704(12)	0.00130(11) 0.00081(10)
C6R	0.01423(17)	0.01009(13)	0.01320(14) 0.01176(14)	-0.00104(11)	0.00704(12) 0.00431(12)	-0.00031(10)
C7B	0.01007(10) 0.011/6(17)	0.01100(13) 0.01167(14)	0.01170(14) 0.01187(14)	0.00010(11) 0.00053(11)	0.00431(12) 0.00518(12)	0.00024(10) 0.00070(10)
C2B	0.01140(17) 0.0118/(17)	0.01107(14) 0.01106(14)	0.01107(14) 0.01433(15)	0.00033(11) 0.00040(11)	0.00310(12) 0.00583(13)	0.00079(10) 0.00038(11)
COR	0.01104(17) 0.01085(17)	0.01190(14) 0.01218(14)	0.01+33(13) 0.01438(15)	0.000+0(11) 0.00135(11)	0.00303(13) 0.00403(13)	0.00030(11) 0.00120(11)
C10R	0.01003(17) 0.01318(18)	0.01210(14) 0.01236(14)	0.01420(13) 0.01238(14)	0.00135(11) 0.00056(12)	0.00+0.0(13) 0.004/3(13)	0.00129(11) 0.00081(11)
C11R	0.01310(10) 0.01170(17)	0.01230(14) 0.01216(14)	0.01230(14) 0.01105(14)	-0.00030(12)	0.00++3(13) 0.00553(12)	0.00031(11) 0.00020(10)
CIID	0.011/0(17)	0.01210(14)	0.01193(14)	-0.00027(11)	0.000000(12)	0.00020(10)

Table S10. Anisotropic displacement parameters of the IAM of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
08	0.0128(3)	0.0117(2)	0.0196(2)	-0.00044(17)	0.0054(2)	0.00023(17)
O9	0.0103(3)	0.0192(3)	0.0196(3)	-0.00024(19)	0.0068(2)	0.0034(2)
N7	0.01402(18)	0.01092(14)	0.01081(13)	0.00080(11)	0.00309(13)	-0.00014(10)
C12	0.00942(17)	0.01201(15)	0.01062(14)	-0.00072(12)	0.00316(12)	0.00069(11)
C13	0.00976(17)	0.01106(15)	0.01233(15)	-0.00008(11)	0.00365(13)	0.00122(11)
C14	0.0136(2)	0.01816(19)	0.01491(18)	0.00355(15)	0.00296(16)	0.00371(14)
C15	0.0181(2)	0.01387(19)	0.0263(3)	-0.00323(16)	0.0027(2)	0.00493(17)
C16	0.0446(4)	0.0213(2)	0.0170(2)	0.0055(3)	0.0152(3)	-0.00416(18)
N1A	0.01148(18)	0.01503(16)	0.01199(15)	0.00241(12)	0.00253(13)	0.00130(12)
N3A	0.01152(19)	0.01607(17)	0.01668(17)	0.00168(13)	0.00387(15)	-0.00049(13)
C2A	0.0149(2)	0.01480(17)	0.01598(18)	0.00144(14)	0.00699(16)	0.00259(14)
C4A	0.0156(2)	0.0239(2)	0.01112(17)	0.00543(17)	0.00239(16)	0.00174(15)
C5A	0.0150(2)	0.0241(2)	0.01269(17)	0.00390(17)	0.00593(16)	0.00237(15)
O1A	0.0123(2)	0.0173(2)	0.01180(19)	0.00585(18)	0.00434(18)	0.00362(16)
O2A	0.0170(3)	0.0344(4)	0.0135(2)	0.0065(3)	0.0064(2)	0.0111(2)
O3A	0.0209(3)	0.0228(3)	0.0183(3)	0.0032(3)	0.0132(3)	0.0074(2)
O4A	0.0167(4)	0.0371(5)	0.0227(4)	0.0137(3)	0.0080(3)	0.0041(3)
O5A	0.0192(3)	0.0227(3)	0.0167(3)	0.0073(2)	0.0022(2)	0.0072(2)
06A	0.0226(4)	0.0368(4)	0.0123(2)	-0.0044(3)	0.0104(3)	-0.0010(2)
O7A	0.0127(3)	0.0305(4)	0.0194(3)	0.0027(2)	0.0094(3)	0.0050(3)
N4A	0.01374(19)	0.01497(15)	0.01022(13)	0.00095(12)	0.00553(13)	0.00334(11)
N5A	0.01178(18)	0.01683(17)	0.01252(15)	0.00445(13)	0.00165(13)	0.00054(12)
N6A	0.01344(19)	0.01590(16)	0.01146(14)	0.00033(12)	0.00710(13)	0.00070(11)
C6A	0.00976(16)	0.01074(14)	0.00850(13)	0.00121(11)	0.00353(12)	0.00089(10)
C7A	0.00996(17)	0.01163(14)	0.00892(13)	0.00054(11)	0.00405(12)	0.00122(10)
C8A	0.00964(17)	0.01344(16)	0.01062(14)	0.00112(12)	0.00415(13)	0.00097(11)
C9A	0.00984(18)	0.01262(15)	0.00969(14)	0.00161(12)	0.00261(13)	0.00096(11)
C10A	0.01152(18)	0.01244(15)	0.00867(13)	0.00118(12)	0.00333(12)	0.00181(11)
C11A	0.01022(17)	0.01180(14)	0.00840(13)	0.00075(11)	0.00400(12)	0.00106(10)
N1B	0.01227(18)	0.01325(15)	0.01230(14)	0.00170(12)	0.00391(13)	0.00192(11)
N3B	0.0195(2)	0.01482(16)	0.01143(15)	0.00328(14)	0.00571(15)	0.00299(12)
O1B	0.0111(3)	0.0217(3)	0.0161(2)	0.0056(2)	0.0063(2)	0.0068(2)
O2B	0.0145(3)	0.0345(4)	0.0125(2)	0.0019(3)	0.0039(2)	0.0072(2)
O3B	0.0173(3)	0.0256(3)	0.0235(3)	0.0024(3)	0.0113(3)	0.0105(3)
O4B	0.0140(3)	0.0264(4)	0.0295(4)	0.0080(3)	0.0099(3)	0.0087(3)
O5B	0.0199(4)	0.0247(3)	0.0196(3)	0.0089(3)	0.0058(3)	0.0087(3)
O6B	0.0239(3)	0.0177(3)	0.0189(3)	0.0002(2)	0.0144(3)	0.0029(2)
O7B	0.0224(4)	0.0314(4)	0.0263(4)	0.0118(3)	0.0171(3)	0.0097(3)
OIB	0.0111(3)	0.0217(3)	0.0161(2)	0.0056(2)	0.0063(2)	0.0068(2)
O2B	0.0145(3)	0.0345(4)	0.0125(2)	0.0019(3)	0.0039(2)	0.0072(2)
O3B	0.0173(3)	0.0256(3)	0.0235(3)	0.0024(3)	0.0113(3)	0.0105(3)
O4B	0.0140(3)	0.0264(4)	0.0295(4)	0.0080(3)	0.0099(3)	0.0087(3)
O2B	0.0199(4)	0.0247(3)	0.0196(3)	0.0089(3)	0.0058(3)	0.0087(3)
O6B	0.0239(3)	0.0177(3)	0.0189(3)	0.0002(2)	0.0144(3)	0.0029(2)
O/B	0.0224(4)	0.0314(4)	0.0263(4)	0.0118(3)	0.01/1(3)	0.0097(3)
C2B	0.0149(2)	0.01301(16)	0.0152/(17)	-0.00028(13)	0.00/90(16)	0.000/6(13)
C4B	0.0153(2)	0.01/96(19)	0.01504(18)	0.00153(15)	0.00890(16)	0.00306(15)
COR	0.0131(2)	0.0203(2)	0.01093(19)	0.00410(16)	0.00511(17)	0.00198(16)
C0B	0.00923(17)	0.01128(14)	0.01110(14)	0.0008/(11)	0.0041/(12)	0.00114(11)
	0.0099/(1/)	0.0109/(14)	0.01139(14)	0.00092(11)	0.00490(13)	0.00129(11)
	0.01021(18)	0.01130(15)	0.013/0(10)	0.00100(12) 0.00171(12)	0.00540(14)	0.0010/(12) 0.00105(12)
C10D	0.01033(18) 0.01125(19)	0.01133(13)	0.01324(10)	0.001/1(12)	0.00410(13)	0.00193(12)
	0.01133(18) 0.01052(18)	0.01191(13) 0.01121(14)	0.01198(13)	0.00101(12) 0.00001(11)	0.00428(13)	0.00104(12) 0.00029(11)
CHR	0.01032(18)	0.01121(14)	0.01097(14)	0.00001(11)	0.00464(13)	0.00038(11)

Table S11. Non-hydrogen anisotropic displacement parameters of the MM of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
H131	0.040787	0.03027	0.033358	0.002626	0.026543	0.000576
H132	0.021534	0.03048	0.031609	-0.00367	-0.004487	0.005556
H141	0.043051	0.026026	0.051305	0.013399	0.009673	0.006372
H142	0.042228	0.054338	0.021036	0.005453	0.011875	-0.00077
H143	0.024681	0.046948	0.0455	-0.004271	0.010312	0.013709
H151	0.034106	0.046419	0.048803	-0.013213	-0.007998	0.013075
H152	0.049523	0.044397	0.051425	-0.007212	0.031751	0.001975
H153	0.049052	0.020668	0.066732	0.003369	0.018673	0.008672
H161	0.066334	0.045327	0.047756	-0.004635	0.040395	-0.00692
H162	0.067116	0.053989	0.022966	0.002254	0.003045	-0.007358
H163	0.096903	0.025887	0.051247	0.016033	0.038039	-0.0027
H1A	0.021344	0.034622	0.026395	0.007845	0.002617	0.005924
H2A	0.041833	0.041304	0.031752	0.004268	0.02252	0.012703
H3A	0.018162	0.038154	0.04423	0.002831	0.012137	0.000268
H4A	0.036805	0.053809	0.019979	0.014531	0.003088	0.010759
H5A	0.03257	0.057958	0.036011	0.007125	0.023474	0.007602
H8A	0.022781	0.039449	0.029346	0.005375	0.01716	0.004159
H10A	0.032016	0.033248	0.019641	0.004824	0.010754	0.011393
H1B	0.020901	0.03169	0.024287	0.005926	0.006178	0.009555
H2B	0.023034	0.033284	0.032512	0.000048	0.016187	0.00475
H3B	0.031887	0.032525	0.022999	0.00627	0.010972	0.011693
H4B	0.030058	0.035333	0.029388	0.001986	0.017977	0.010391
H5B	0.018974	0.039798	0.033044	0.008558	0.008333	0.007312
H8B	0.021487	0.035974	0.03423	0.003714	0.017734	0.006451
H10B	0.032373	0.029315	0.022673	0.004664	0.012428	0.01035

Table S12. Hydrogen anisotropic displacement parameters obtained from SHADE of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
08	0.0133(1)	0.0120(1)	0.0194(1)	-0.00091(8)	0.0053(1)	0.00029(9)
O9	0.0109(1)	0.0193(1)	0.0197(1)	-0.00022(9)	0.0069(1)	0.0034(1)
N7	0.0146(1)	0.0116(1)	0.0110(1)	0.00092(9)	0.0031(1)	-0.00019(9)
C12	0.0100(1)	0.0124(1)	0.0113(1)	-0.00062(9)	0.0033(1)	0.0008(1)
C13	0.0103(1)	0.0118(1)	0.0129(2)	-0.00022(9)	0.0039(1)	0.0013(1)
C14	0.0145(2)	0.0184(2)	0.0154(2)	0.0034(1)	0.0035(1)	0.0037(1)
C15	0.0191(2)	0.0141(2)	0.0271(2)	-0.0029(1)	0.0032(2)	0.0049(1)
C16	0.0437(3)	0.0219(2)	0.0178(3)	0.0054(2)	0.0146(2)	-0.0042(2)
N1A	0.0122(1)	0.0154(1)	0.0122(1)	0.0023(1)	0.0025(1)	0.0012(1)
N3A	0.0120(1)	0.0160(1)	0.0174(2)	0.0016(1)	0.0040(1)	-0.0008(1)
C2A	0.0158(2)	0.0155(1)	0.0162(2)	0.0016(1)	0.0071(1)	0.0026(1)
C4A	0.0160(2)	0.0245(2)	0.0116(2)	0.0054(1)	0.0022(1)	0.0017(1)
C5A	0.0155(2)	0.0248(2)	0.0133(2)	0.0042(1)	0.0060(1)	0.0026(1)
O1A	0.0130(1)	0.0174(1)	0.0121(1)	0.00522(9)	0.0049(1)	0.00345(9)
O2A	0.0181(1)	0.0340(2)	0.0137(1)	0.0062(1)	0.0065(1)	0.0107(1)
O3A	0.0202(1)	0.0238(2)	0.0181(2)	0.0031(1)	0.0122(1)	0.0075(1)
O4A	0.0169(1)	0.0369(2)	0.0224(2)	0.0129(1)	0.0073(1)	0.0045(2)
O5A	0.0190(2)	0.0232(2)	0.0169(1)	0.0074(1)	0.0021(1)	0.0064(1)
O6A	0.0222(2)	0.0373(2)	0.0128(2)	-0.0042(1)	0.0103(1)	-0.0012(1)
O7A	0.0133(1)	0.0310(2)	0.0193(2)	0.0024(1)	0.0093(1)	0.0048(1)
N4A	0.0142(1)	0.0157(1)	0.0105(1)	0.00110(9)	0.0057(1)	0.0035(1)
N5A	0.0122(1)	0.0175(1)	0.0129(1)	0.0046(1)	0.0018(1)	0.0009(1)
N6A	0.0138(1)	0.0171(1)	0.0115(1)	0.00021(9)	0.0072(1)	0.0007(1)
C6A	0.0102(1)	0.0115(1)	0.0090(1)	0.00136(9)	0.0036(1)	0.0011(1)
C/A	0.0108(1)	0.0121(1)	0.0095(1)	0.00026(9)	0.0041(1)	0.0010(1)
C8A	0.0101(1)	0.0144(1)	0.0110(1)	0.0013(1)	0.0042(1)	0.0013(1)
C9A	0.0105(1)	0.0129(1)	0.0104(1)	0.00150(9)	0.0027(1)	0.0007(1)
CIUA	0.0121(1)	0.0131(1)	0.0093(1)	0.0013(1)	0.0037(1)	0.0022(1)
UIIA N1D	0.0111(1)	0.0122(1)	0.0090(1)	0.00048(9)	0.0040(1)	0.0008(1)
N1D N2D	0.0128(1)	0.0157(1)	0.0123(1)	0.00181(9)	0.0040(1)	0.0017(1)
COD	0.0198(2)	0.0131(1) 0.0130(1)	0.0121(2)	0.0028(1)	0.0039(1)	0.0020(1)
C2D C4P	0.0133(2)	0.0139(1)	0.0138(2)	-0.0001(1)	0.0082(1)	0.0008(1)
C4D C5P	0.0139(2)	0.0164(2)	0.0101(2) 0.0174(2)	0.0014(1)	0.0089(1)	0.0031(1) 0.0017(1)
O1B	0.0138(2)	0.0200(2)	0.0174(2)	0.0041(1)	0.0052(1)	0.0017(1)
01D 02B	0.0129(1)	0.0210(1) 0.0340(2)	0.0100(1)	0.0040 J(J)	0.0003(1)	0.0002(1)
O2D O3B	0.0130(1)	0.0340(2) 0.0270(2)	0.0120(1) 0.0239(2)	0.0022(1)	0.0044(1)	0.0071(1) 0.0114(1)
O4B	0.0170(1)	0.0270(2) 0.0267(2)	0.0293(2)	0.0020(1)	0.0114(1) 0.0092(1)	0.0114(1) 0.0087(1)
O5B	0.0199(1)	0.0207(2) 0.0249(2)	0.0293(2) 0.0202(2)	0.0077(1)	0.0052(1)	0.0087(1)
O6B	0.0190(2) 0.0236(1)	0.0219(2) 0.0185(1)	0.0202(2) 0.0190(2)	0.0000(1)	0.0037(1) 0.0143(1)	0.0003(1)
00B 07B	0.0230(1)	0.0105(1) 0.0326(2)	0.0190(2) 0.0269(2)	0.0000(1)	0.0174(1)	0.0023(1) 0.0103(2)
N4B	0.0223(1) 0.0131(1)	0.0320(2) 0.0144(1)	0.0123(1)	0.00131(9)	0.0064(1)	0.0021(1)
N5B	0.0119(1)	0.0145(1)	0.0120(1) 0.0173(2)	0.0031(1)	0.0037(1)	0.0027(1)
N6B	0.0134(1)	0.0159(1)	0.0137(2)	0.00002(9)	0.0076(1)	0.0002(1)
C6B	0.0098(1)	0.0120(1)	0.0117(1)	0.00087(9)	0.0044(1)	0.0012(1)
C7B	0.0107(1)	0.0112(1)	0.0120(1)	0.00071(9)	0.0050(1)	0.0010(1)
C8B	0.0107(1)	0.0124(1)	0.0143(2)	0.00123(9)	0.0057(1)	0.0016(1)
C9B	0.0109(1)	0.0118(1)	0.0138(2)	0.0014(1)	0.0041(1)	0.0015(1)
C10B	0.0118(1)	0.0129(1)	0.0125(2)	0.0011(1)	0.0047(1)	0.0019(1)
C11B	0.0111(1)	0.0119(1)	0.0114(1)	-0.00004(9)	0.0047(1)	0.0003(1)

Table S13. Non-hydrogen anisotropic displacement parameters of the HAR (HF/def2-SVP) of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
H131	0.029(5)	0.026(5)	0.027(6)	-0.005(4)	0.010(4)	0.007(4)
H132	0.018(4)	0.013(4)	0.032(5)	-0.010(3)	0.000(4)	0.000(4)
H141	0.038(6)	0.048(7)	0.039(8)	-0.004(5)	0.012(5)	0.000(6)
H142	0.040(6)	0.050(7)	0.025(6)	-0.002(5)	0.008(5)	-0.008(5)
H143	0.031(5)	0.034(6)	0.024(6)	0.010(4)	0.007(4)	0.011(5)
H151	0.047(7)	0.016(5)	0.051(7)	-0.010(5)	-0.002(5)	0.006(5)
H152	0.048(6)	0.036(6)	0.041(8)	-0.005(4)	0.029(6)	0.002(6)
H153	0.043(7)	0.053(8)	0.051(8)	-0.006(6)	0.003(6)	-0.002(6)
H161	0.065(6)	0.061(9)	0.04(1)	0.038(6)	0.039(7)	0.006(7)
H162	0.082(8)	0.045(7)	0.032(9)	0.001(6)	0.025(7)	-0.015(6)
H163	0.12(1)	0.036(7)	0.04(1)	0.010(6)	0.046(9)	0.002(7)
H1A	0.028(6)	0.022(7)	0.042(9)	0.011(5)	0.021(6)	0.013(6)
H2A	0.046(7)	0.11(1)	0.024(7)	0.003(7)	0.008(6)	-0.008(7)
H3A	0.034(5)	0.022(5)	0.041(7)	0.008(4)	0.022(5)	0.003(5)
H4A	0.052(6)	0.054(8)	0.038(9)	0.028(5)	0.023(6)	0.016(6)
H5A	0.027(5)	0.032(6)	0.024(6)	0.008(4)	0.010(4)	0.004(5)
H8A	0.037(5)	0.026(5)	0.034(7)	0.006(4)	0.015(5)	0.005(5)
H10A	0.005(4)	0.022(6)	0.033(7)	-0.003(4)	0.010(4)	0.003(5)
H1B	0.030(5)	0.012(5)	0.037(9)	-0.015(4)	0.023(5)	-0.012(5)
H2B	0.055(5)	0.024(5)	0.045(9)	-0.015(4)	0.040(5)	-0.003(5)
H3B	0.073(8)	0.037(8)	0.030(9)	-0.007(6)	0.027(7)	-0.006(6)
H4B	0.048(5)	0.030(6)	0.034(7)	-0.008(4)	0.022(5)	0.005(5)
H5B	0.030(5)	0.054(8)	0.040(7)	0.011(5)	0.011(5)	0.002(6)
H8B	0.013(4)	0.021(5)	0.029(6)	0.000(3)	0.006(4)	0.003(4)
H10B	0.032(5)	0.018(5)	0.029(6)	0.004(4)	0.015(4)	0.008(4)

Table S14. Hydrogen anisotropic displacement parameters of the HAR (HF/def2-SVP) of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
08	0.0132(1)	0.0118(1)	0.0194(1)	-0.00080(8)	0.0051(1)	0.00032(9)
09	0.0129(1)	0.0173(1)	0.0120(1)	0.00532(9)	0.0048(1)	0.00343(9)
N7	0.0126(1)	0.0137(1)	0.0125(1)	0.00192(9)	0.0039(1)	0.0019(1)
C12	0.0103(1)	0.0129(1)	0.0104(1)	0.00153(9)	0.0028(1)	0.0008(1)
C13	0.0109(1)	0.0121(1)	0.0088(1)	0.00058(9)	0.0040(1)	0.0009(1)
C14	0.0119(1)	0.0130(1)	0.0093(1)	0.0014(1)	0.0036(1)	0.0023(1)
C15	0.0106(1)	0.0120(1)	0.0095(1)	0.00037(9)	0.0042(1)	0.0011(1)
C16	0.0105(1)	0.0111(1)	0.0120(1)	0.00069(9)	0.0050(1)	0.0010(1)
N1A	0.0128(1)	0.0144(1)	0.0121(1)	0.00130(9)	0.0063(1)	0.0021(1)
N3A	0.0135(1)	0.0171(1)	0.0114(1)	0.00013(9)	0.0072(1)	0.0006(1)
C2A	0.0110(1)	0.0117(1)	0.0113(1)	0.00005(9)	0.0047(1)	0.0003(1)
C4A	0.0096(1)	0.0119(1)	0.0115(1)	0.00092(9)	0.0043(1)	0.0012(1)
C5A	0.0100(1)	0.0114(1)	0.0088(1)	0.00141(9)	0.0035(1)	0.0011(1)
O1A	0.0108(1)	0.0192(1)	0.0198(1)	-0.00014(9)	0.0069(1)	0.0035(1)
O2A	0.0122(1)	0.0216(1)	0.0157(1)	0.00501(9)	0.0062(1)	0.0062(1)
O3A	0.0192(2)	0.0232(2)	0.0165(1)	0.0074(1)	0.0020(1)	0.0065(1)
O4A	0.0200(1)	0.0239(2)	0.0181(2)	0.0031(1)	0.0122(1)	0.0075(1)
O5A	0.0179(1)	0.0340(2)	0.0137(1)	0.0063(1)	0.0064(1)	0.0108(1)
O6A	0.0236(1)	0.0183(1)	0.0189(2)	-0.0000(1)	0.0142(1)	0.0025(1)
O7A	0.0168(1)	0.0270(2)	0.0241(2)	0.0027(1)	0.0115(1)	0.0113(1)
N4A	0.0121(1)	0.0155(1)	0.0120(1)	0.0023(1)	0.0025(1)	0.0012(1)
N5A	0.0139(1)	0.0156(1)	0.0103(1)	0.00118(9)	0.0056(1)	0.0036(1)
N6A	0.0118(1)	0.0160(1)	0.0173(2)	0.0016(1)	0.0039(1)	-0.0008(1)
C6A	0.0106(1)	0.0124(1)	0.0142(2)	0.00126(9)	0.0056(1)	0.0016(1)
C7A	0.0100(1)	0.0142(1)	0.0110(1)	0.0013(1)	0.0043(1)	0.0012(1)
C8A	0.0099(1)	0.0123(1)	0.0111(1)	-0.00067(9)	0.0032(1)	0.0006(1)
C9A	0.0153(2)	0.0138(1)	0.0157(2)	-0.0002(1)	0.0082(1)	0.0009(1)
C10A	0.0108(1)	0.0116(1)	0.0138(2)	0.0014(1)	0.0042(1)	0.0016(1)
C11A	0.0117(1)	0.0129(1)	0.0122(1)	0.0011(1)	0.0045(1)	0.0018(1)
N1B	0.0132(1)	0.0157(1)	0.0136(1)	0.00008(9)	0.0076(1)	0.0003(1)
N3B	0.0144(1)	0.0115(1)	0.0109(1)	0.00097(9)	0.0031(1)	-0.00016(9)
C2B	0.0157(2)	0.0155(1)	0.0160(2)	0.0016(1)	0.0071(1)	0.0025(1)
C4B	0.0102(1)	0.0118(1)	0.0127(2)	-0.00026(9)	0.0038(1)	0.0013(1)
C5B	0.0157(2)	0.0183(2)	0.0161(2)	0.0014(1)	0.0089(1)	0.0031(1)
OIB	0.0129(1)	0.0310(2)	0.0195(2)	0.0022(1)	0.0092(1)	0.0047(1)
O2B	0.0157(1)	0.0340(2)	0.0127(1)	0.0022(1)	0.0042(1)	0.00/1(1)
O3B	0.0198(2)	0.0249(2)	0.0200(2)	0.0088(1)	0.0057(1)	0.0087(1)
O4B	0.0137(1)	0.0267(2)	0.0292(2)	0.0076(1)	0.0093(1)	0.0088(1)
O5B	0.0223(2)	0.0373(2)	0.0125(2)	-0.0041(1)	0.0102(1)	-0.0012(1)
O6B	0.0168(1)	0.0371(2)	0.0223(2)	0.0129(1)	0.0074(1)	0.0045(2)
O/B	0.0222(1)	0.0323(2)	0.0269(2)	0.0116(1)	0.0174(1)	0.0104(2)
N4B	0.011/(1)	0.0143(1)	0.0170(1)	0.0031(1)	0.0036(1)	0.0027(1)
NSB	0.0196(2)	0.0152(1)	0.0120(2)	0.0028(1)	0.0059(1)	0.0027(1)
N6B	0.0119(1)	0.01/5(1)	0.0129(1)	0.004/(1)	0.0019(1)	0.0009(1)
COB	0.0157(2)	0.0206(2)	0.01/3(2)	0.0041(1)	0.0052(1)	0.001/(1)
C/B	0.0158(2)	0.0244(2)	0.0115(2)	0.0053(1)	0.0021(1)	0.0016(1)
C8B	0.0144(2)	0.0182(2)	0.0154(2)	0.0034(1)	0.0034(1)	0.003/(1)
C9B	0.0153(2)	0.0247(2)	0.0132(2)	0.0042(1)	0.0060(1)	0.002/(1)
CIUB	0.0189(2)	0.0141(2)	0.02/3(2)	-0.0029(1)	0.0032(2)	0.0051(1)
CHB	0.0435(3)	0.0218(2)	0.0170(3)	0.0052(2)	0.0144(2)	-0.0044(2)

Table S15. Non-hydrogen anisotropic displacement parameters of the HAR (HF/def2-TZVP) of BIPa, units = $Å^2$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U11	U22	U33	U12	U13	U23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H131	0.033(5)	0.031(5)	0.024(6)	-0.001(4)	0.012(4)	0.003(4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H132	0.020(4)	0.014(4)	0.035(5)	-0.009(3)	0.001(4)	-0.000(4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H141	0.040(6)	0.049(7)	0.046(8)	0.003(5)	0.014(5)	-0.000(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H142	0.043(5)	0.049(7)	0.025(6)	-0.006(5)	0.013(5)	-0.007(5)
H151 $0.041(7)$ $0.023(5)$ $0.053(7)$ $-0.006(5)$ $-0.007(5)$ $0.013(5)$ H152 $0.050(5)$ $0.052(7)$ $0.036(8)$ $-0.003(5)$ $0.031(6)$ $0.002(6)$ H153 $0.050(7)$ $0.038(6)$ $0.060(8)$ $-0.002(5)$ $0.007(6)$ $0.002(6)$ H161 $0.060(6)$ $0.058(8)$ $0.05(1)$ $0.026(5)$ $0.040(6)$ $0.005(7)$ H162 $0.080(8)$ $0.055(8)$ $0.030(8)$ $-0.004(6)$ $0.023(7)$ $-0.019(6)$ H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.003(4)$ $0.006(5)$ H1B $0.054(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.001(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.054(5)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.$	H143	0.033(5)	0.043(6)	0.035(7)	0.005(4)	0.012(5)	0.014(5)
H152 $0.050(5)$ $0.052(7)$ $0.036(8)$ $-0.003(5)$ $0.031(6)$ $0.002(6)$ H153 $0.050(7)$ $0.038(6)$ $0.060(8)$ $-0.002(5)$ $0.007(6)$ $0.002(6)$ H161 $0.060(6)$ $0.058(8)$ $0.05(1)$ $0.026(5)$ $0.040(6)$ $0.005(7)$ H162 $0.080(8)$ $0.055(8)$ $0.030(8)$ $-0.004(6)$ $0.023(7)$ $-0.019(6)$ H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.014(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.024(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(7)$ H4B $0.054(5)$ $0.031(5)$ $0.041(8)$ $-0.009(4)$ $0.030(5)$ $0.009(5)$ H3B $0.072(8)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(4)$ $0.003(6)$	H151	0.041(7)	0.023(5)	0.053(7)	-0.006(5)	-0.007(5)	0.013(5)
H153 $0.050(7)$ $0.038(6)$ $0.060(8)$ $-0.002(5)$ $0.007(6)$ $0.002(6)$ H161 $0.060(6)$ $0.058(8)$ $0.05(1)$ $0.026(5)$ $0.040(6)$ $0.005(7)$ H162 $0.080(8)$ $0.055(8)$ $0.030(8)$ $-0.004(6)$ $0.023(7)$ $-0.019(6)$ H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.024(5)$ $0.041(8)$ $-0.009(4)$ $0.030(5)$ $-0.000(7)$ H4B $0.028(5)$ $0.031(5)$ $0.041(8)$ $-0.009(4)$ $0.030(5)$ $0.009(5)$ H3B $0.072(8)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H4B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.003(6)$ $0.003(6)$ <t< th=""><th>H152</th><th>0.050(5)</th><th>0.052(7)</th><th>0.036(8)</th><th>-0.003(5)</th><th>0.031(6)</th><th>0.002(6)</th></t<>	H152	0.050(5)	0.052(7)	0.036(8)	-0.003(5)	0.031(6)	0.002(6)
H161 $0.060(6)$ $0.058(8)$ $0.05(1)$ $0.026(5)$ $0.040(6)$ $0.005(7)$ H162 $0.080(8)$ $0.055(8)$ $0.030(8)$ $-0.004(6)$ $0.023(7)$ $-0.019(6)$ H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.022(6)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H3B $0.010(4)$ $0.031(5)$ $0.030(6)$ $-0.002(3)$ $0.006(4)$ $0.001(4)$ H4B 0.028	H153	0.050(7)	0.038(6)	0.060(8)	-0.002(5)	0.007(6)	0.002(6)
H162 $0.080(8)$ $0.055(8)$ $0.030(8)$ $-0.004(6)$ $0.023(7)$ $-0.019(6)$ H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.028(6)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H3B $0.010(4)$ $0.031(5)$ $0.030(6)$ $-0.002(3)$ $0.006(4)$ $0.001(4)$ H4B $0.038(5)$ $0.016(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$ <th>H161</th> <th>0.060(6)</th> <th>0.058(8)</th> <th>0.05(1)</th> <th>0.026(5)</th> <th>0.040(6)</th> <th>0.005(7)</th>	H161	0.060(6)	0.058(8)	0.05(1)	0.026(5)	0.040(6)	0.005(7)
H163 $0.12(1)$ $0.039(7)$ $0.04(1)$ $0.015(6)$ $0.049(9)$ $0.002(7)$ H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.028(6)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H5B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H8B $0.010(4)$ $0.031(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H162	0.080(8)	0.055(8)	0.030(8)	-0.004(6)	0.023(7)	-0.019(6)
H1A $0.035(6)$ $0.021(6)$ $0.041(9)$ $0.008(5)$ $0.021(6)$ $0.010(6)$ H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.054(5)$ $0.031(5)$ $0.041(8)$ $-0.009(4)$ $0.030(5)$ $0.009(5)$ H5B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H8B $0.010(4)$ $0.031(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H163	0.12(1)	0.039(7)	0.04(1)	0.015(6)	0.049(9)	0.002(7)
H2A $0.061(8)$ $0.09(1)$ $0.022(7)$ $0.017(7)$ $0.005(6)$ $0.004(7)$ H3A $0.036(5)$ $0.043(6)$ $0.035(7)$ $0.010(4)$ $0.023(5)$ $0.004(5)$ H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.054(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.011(4)$ H3B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.003(6)$ H5B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H8B $0.010(4)$ $0.031(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H1A	0.035(6)	0.021(6)	0.041(9)	0.008(5)	0.021(6)	0.010(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H2A	0.061(8)	0.09(1)	0.022(7)	0.017(7)	0.005(6)	0.004(7)
H4A $0.048(6)$ $0.060(8)$ $0.043(8)$ $0.022(5)$ $0.026(6)$ $0.013(6)$ H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.054(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H5B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H8B $0.010(4)$ $0.031(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H3A	0.036(5)	0.043(6)	0.035(7)	0.010(4)	0.023(5)	0.004(5)
H5A $0.028(5)$ $0.035(6)$ $0.026(6)$ $0.009(4)$ $0.012(4)$ $0.001(5)$ H8A $0.042(5)$ $0.029(5)$ $0.032(7)$ $0.007(4)$ $0.015(5)$ $0.007(5)$ H10A $0.004(4)$ $0.023(6)$ $0.028(6)$ $0.002(4)$ $0.003(4)$ $0.006(5)$ H1B $0.035(5)$ $0.024(5)$ $0.024(6)$ $0.007(4)$ $0.014(4)$ $0.011(4)$ H2B $0.054(5)$ $0.026(5)$ $0.046(9)$ $-0.015(4)$ $0.039(5)$ $-0.000(5)$ H3B $0.072(8)$ $0.048(8)$ $0.03(1)$ $0.002(6)$ $0.029(7)$ $-0.000(7)$ H4B $0.054(5)$ $0.031(5)$ $0.041(8)$ $-0.009(4)$ $0.030(5)$ $0.009(5)$ H5B $0.028(5)$ $0.060(8)$ $0.042(7)$ $0.008(5)$ $0.012(5)$ $0.003(6)$ H8B $0.010(4)$ $0.031(5)$ $0.030(6)$ $-0.002(3)$ $0.006(4)$ $0.001(4)$ H10B $0.038(5)$ $0.016(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H4A	0.048(6)	0.060(8)	0.043(8)	0.022(5)	0.026(6)	0.013(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H5A	0.028(5)	0.035(6)	0.026(6)	0.009(4)	0.012(4)	0.001(5)
H10A0.004(4)0.023(6)0.028(6)0.002(4)0.003(4)0.006(5)H1B0.035(5)0.024(5)0.024(6)0.007(4)0.014(4)0.011(4)H2B0.054(5)0.026(5)0.046(9)-0.015(4)0.039(5)-0.000(5)H3B0.072(8)0.048(8)0.03(1)0.002(6)0.029(7)-0.000(7)H4B0.054(5)0.031(5)0.041(8)-0.009(4)0.030(5)0.009(5)H5B0.028(5)0.060(8)0.042(7)0.008(5)0.012(5)0.003(6)H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H8A	0.042(5)	0.029(5)	0.032(7)	0.007(4)	0.015(5)	0.007(5)
H1B0.035(5)0.024(5)0.024(6)0.007(4)0.014(4)0.011(4)H2B0.054(5)0.026(5)0.046(9)-0.015(4)0.039(5)-0.000(5)H3B0.072(8)0.048(8)0.03(1)0.002(6)0.029(7)-0.000(7)H4B0.054(5)0.031(5)0.041(8)-0.009(4)0.030(5)0.009(5)H5B0.028(5)0.060(8)0.042(7)0.008(5)0.012(5)0.003(6)H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H10A	0.004(4)	0.023(6)	0.028(6)	0.002(4)	0.003(4)	0.006(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H1B	0.035(5)	0.024(5)	0.024(6)	0.007(4)	0.014(4)	0.011(4)
H3B0.072(8)0.048(8)0.03(1)0.002(6)0.029(7)-0.000(7)H4B0.054(5)0.031(5)0.041(8)-0.009(4)0.030(5)0.009(5)H5B0.028(5)0.060(8)0.042(7)0.008(5)0.012(5)0.003(6)H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H2B	0.054(5)	0.026(5)	0.046(9)	-0.015(4)	0.039(5)	-0.000(5)
H4B0.054(5)0.031(5)0.041(8)-0.009(4)0.030(5)0.009(5)H5B0.028(5)0.060(8)0.042(7)0.008(5)0.012(5)0.003(6)H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H3B	0.072(8)	0.048(8)	0.03(1)	0.002(6)	0.029(7)	-0.000(7)
H5B0.028(5)0.060(8)0.042(7)0.008(5)0.012(5)0.003(6)H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H4B	0.054(5)	0.031(5)	0.041(8)	-0.009(4)	0.030(5)	0.009(5)
H8B0.010(4)0.031(5)0.030(6)-0.002(3)0.006(4)0.001(4)H10B0.038(5)0.016(5)0.039(9)-0.012(4)0.022(6)-0.010(5)	H5B	0.028(5)	0.060(8)	0.042(7)	0.008(5)	0.012(5)	0.003(6)
H10B $0.038(5)$ $0.016(5)$ $0.039(9)$ $-0.012(4)$ $0.022(6)$ $-0.010(5)$	H8B	0.010(4)	0.031(5)	0.030(6)	-0.002(3)	0.006(4)	0.001(4)
	H10B	0.038(5)	0.016(5)	0.039(9)	-0.012(4)	0.022(6)	-0.010(5)

Table S16. Hydrogen anisotropic displacement parameters of the HAR (HF/def2-TZVP) of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
08	0.0132(1)	0.0119(1)	0.0195(1)	-0.00079(8)	0.0052(1)	0.00034(9)
09	0.0108(1)	0.0192(1)	0.0198(1)	-0.00017(9)	0.0070(1)	0.0035(1)
N7	0.0145(1)	0.0114(1)	0.0109(1)	0.00095(9)	0.0032(1)	-0.00016(9)
C12	0.0099(1)	0.0123(1)	0.0113(1)	-0.00056(9)	0.0033(1)	0.0008(1)
C13	0.0102(1)	0.0117(1)	0.0127(1)	-0.00021(9)	0.0037(1)	0.0014(1)
C14	0.0145(2)	0.0182(2)	0.0156(2)	0.0034(1)	0.0036(1)	0.0038(1)
C15	0.0190(2)	0.0140(2)	0.0270(2)	-0.0029(1)	0.0032(2)	0.0049(1)
C16	0.0439(3)	0.0216(2)	0.0178(3)	0.0054(2)	0.0147(2)	-0.0042(2)
N1A	0.0120(1)	0.0154(1)	0.0120(1)	0.0023(1)	0.0024(1)	0.0012(1)
N3A	0.0120(1)	0.0159(1)	0.0173(2)	0.0016(1)	0.0040(1)	-0.0007(1)
C2A	0.0156(2)	0.0156(1)	0.0159(2)	0.0016(1)	0.0069(1)	0.0026(1)
C4A	0.0157(2)	0.0245(2)	0.0115(2)	0.0054(1)	0.0020(1)	0.0017(1)
C5A	0.0154(2)	0.0246(2)	0.0132(2)	0.0042(1)	0.0061(1)	0.0026(1)
O1A	0.0128(1)	0.0173(1)	0.0120(1)	0.00535(9)	0.0048(1)	0.00352(9)
O2A	0.0179(1)	0.0340(2)	0.0135(1)	0.0063(1)	0.0062(1)	0.0108(1)
O3A	0.0200(1)	0.0239(2)	0.0182(2)	0.0031(1)	0.0123(1)	0.0074(1)
O4A	0.0168(1)	0.0371(2)	0.0224(2)	0.0129(1)	0.0075(1)	0.0046(2)
O5A	0.0192(2)	0.0231(2)	0.0168(1)	0.0074(1)	0.0022(1)	0.0065(1)
06A	0.0223(2)	0.0373(2)	0.0126(2)	-0.0042(1)	0.0103(1)	-0.0012(1)
O7A	0.0130(1)	0.0311(2)	0.0193(2)	0.0023(1)	0.0091(1)	0.0049(1)
N4A	0.0139(1)	0.0156(1)	0.0104(1)	0.00121(9)	0.0057(1)	0.0036(1)
N5A	0.0121(1)	0.0174(1)	0.0128(1)	0.0047(1)	0.0020(1)	0.0009(1)
N6A	0.0135(1)	0.0171(1)	0.0113(1)	0.00016(9)	0.0071(1)	0.0007(1)
C6A	0.0100(1)	0.0114(1)	0.0089(1)	0.00142(9)	0.0036(1)	0.0011(1)
C7A	0.0105(1)	0.0121(1)	0.0094(1)	0.00037(9)	0.0041(1)	0.0010(1)
C8A	0.0100(1)	0.0143(1)	0.0109(1)	0.0013(1)	0.0042(1)	0.0013(1)
C9A	0.0103(1)	0.0129(1)	0.0102(1)	0.00150(9)	0.0026(1)	0.0008(1)
C10A	0.0120(1)	0.0130(1)	0.0093(1)	0.0014(1)	0.0037(1)	0.0022(1)
C11A	0.0109(1)	0.0121(1)	0.0088(1)	0.00059(9)	0.0040(1)	0.0009(1)
N1B	0.0126(1)	0.0137(1)	0.0123(1)	0.00180(9)	0.0038(1)	0.0018(1)
N3B	0.0197(2)	0.0151(1)	0.0120(2)	0.0028(1)	0.0060(1)	0.0027(1)
C2B	0.0151(2)	0.0139(1)	0.0156(2)	-0.0001(1)	0.0080(1)	0.0009(1)
C4B	0.0158(2)	0.0182(2)	0.0162(2)	0.0015(1)	0.0090(1)	0.0033(1)
C5B	0.0136(2)	0.0206(2)	0.0172(2)	0.0041(1)	0.0051(1)	0.0018(1)
O1B	0.0122(1)	0.0217(1)	0.0159(1)	0.00503(9)	0.0063(1)	0.0063(1)
O2B	0.0158(1)	0.0340(2)	0.0127(1)	0.0023(1)	0.0043(1)	0.0071(1)
O3B	0.0168(1)	0.0270(2)	0.0240(2)	0.0027(1)	0.0114(1)	0.0114(1)
O4B	0.0136(1)	0.0268(2)	0.0292(2)	0.0076(1)	0.0092(1)	0.0087(1)
O5B	0.0199(2)	0.0249(2)	0.0200(2)	0.0088(1)	0.0058(1)	0.0086(1)
O6B	0.0237(1)	0.0184(1)	0.0190(2)	0.0000(1)	0.0143(1)	0.0025(1)
O7B	0.0221(1)	0.0323(2)	0.0269(2)	0.0115(1)	0.0173(1)	0.0103(2)
N4B	0.0127(1)	0.0144(1)	0.0121(1)	0.00134(9)	0.0063(1)	0.0021(1)
N5B	0.0118(1)	0.0144(1)	0.0171(1)	0.0032(1)	0.0037(1)	0.0028(1)
N6B	0.0132(1)	0.0157(1)	0.0135(1)	0.00012(9)	0.0076(1)	0.0003(1)
C6B	0.0096(1)	0.0119(1)	0.0115(1)	0.00091(9)	0.0043(1)	0.0012(1)
C7B	0.0104(1)	0.0112(1)	0.0119(1)	0.00076(9)	0.0049(1)	0.0010(1)
C8B	0.0105(1)	0.0124(1)	0.0140(2)	0.00123(9)	0.0054(1)	0.0016(1)
C9B	0.0106(1)	0.0118(1)	0.0135(2)	0.00138(9)	0.0040(1)	0.0016(1)
C10B	0.0117(1)	0.0128(1)	0.0124(2)	0.0012(1)	0.0046(1)	0.0019(1)
C11B	0.0109(1)	0.0118(1)	0.0113(1)	0.00007(9)	0.0046(1)	0.0003(1)

Table S17. Non-hydrogen anisotropic displacement parameters of the HAR (HF/def2-TZVP, charges) of BIPa, units = $Å^2$

	U11	U22	U33	U12	U13	U23
H131	0.036(5)	0.030(5)	0.028(6)	-0.001(4)	0.016(4)	0.003(4)
H132	0.021(4)	0.013(4)	0.035(5)	-0.009(3)	0.001(4)	0.001(4)
H141	0.043(6)	0.049(7)	0.044(8)	0.004(5)	0.015(5)	0.000(6)
H142	0.041(5)	0.051(7)	0.023(6)	-0.006(5)	0.010(5)	-0.008(5)
H143	0.033(5)	0.045(6)	0.027(6)	0.004(4)	0.007(4)	0.013(5)
H151	0.043(7)	0.023(5)	0.052(7)	-0.008(5)	-0.006(5)	0.011(5)
H152	0.050(5)	0.049(7)	0.038(8)	-0.002(5)	0.031(5)	0.004(6)
H153	0.052(7)	0.036(6)	0.064(8)	-0.004(5)	0.010(6)	0.002(6)
H161	0.061(6)	0.057(8)	0.05(1)	0.025(5)	0.041(6)	0.004(7)
H162	0.079(8)	0.052(8)	0.032(9)	-0.001(6)	0.024(7)	-0.014(6)
H163	0.12(1)	0.039(7)	0.04(1)	0.016(6)	0.052(9)	0.002(7)
H1A	0.002(4)	0.026(6)	0.027(6)	0.001(4)	0.000(4)	0.007(5)
H2A	0.036(5)	0.040(6)	0.036(7)	0.011(4)	0.023(5)	0.004(5)
H3A	0.033(6)	0.021(6)	0.046(9)	0.007(4)	0.024(6)	0.007(6)
H4A	0.056(8)	0.09(1)	0.026(7)	0.011(6)	0.005(6)	-0.002(7)
H5A	0.049(6)	0.059(8)	0.042(8)	0.023(5)	0.026(6)	0.015(6)
H8A	0.028(4)	0.034(6)	0.029(6)	0.010(4)	0.014(4)	0.004(5)
H10A	0.045(5)	0.028(5)	0.036(7)	0.008(4)	0.020(5)	0.009(5)
H1B	0.033(5)	0.019(6)	0.032(8)	-0.010(4)	0.016(5)	-0.006(5)
H2B	0.056(5)	0.026(5)	0.050(9)	-0.015(4)	0.042(5)	-0.002(5)
H3B	0.075(8)	0.047(8)	0.029(9)	0.001(6)	0.028(7)	0.000(7)
H4B	0.051(5)	0.031(5)	0.040(7)	-0.008(4)	0.026(5)	0.009(5)
H5B	0.025(5)	0.063(8)	0.038(7)	0.010(5)	0.008(5)	0.005(6)
H8B	0.011(4)	0.032(5)	0.033(6)	-0.001(3)	0.010(4)	0.002(4)
H10B	0.038(5)	0.021(5)	0.030(6)	0.006(4)	0.019(4)	0.011(4)

Table S18. Hydrogen anisotropic displacement parameters of the HAR (HF/def2-TZVP, charges) of BIPa, units = $Å^2$

Table S19. Anisotropic displacement parameters of the neutron data of KHOx, units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.0060(6)	0.0051(6)	0.0052(6)	0.0002(5)	0.0000(4)	-0.0007(5)
01	0.0060(4)	0.0052(4)	0.0068(4)	0.0001(3)	-0.0006(3)	-0.0006(3)
O2	0.0087(4)	0.0054(4)	0.0077(4)	0.0012(3)	-0.0026(3)	0.0005(3)
O3	0.0055(4)	0.0066(4)	0.0073(4)	0.0014(3)	-0.0016(3)	-0.0004(3)
O4	0.0072(4)	0.005(4)	0.0067(4)	0.0000(3)	-0.0006(3)	-0.0008(3)
C1	0.0048(3)	0.0055(4)	0.0048(3)	0.0007(3)	-0.0005(3)	-0.0001(3)
C2	0.0042(3)	0.0047(4)	0.0051(3)	0.0001(3)	0.0000(3)	-0.0001(3)
H1	0.0169(9)	0.0161(9)	0.0169(9)	-0.0015(7)	0.0008(7)	-0.0017(7)

Table S20. Anisotropic displacement parameters of the IAM of KHOx, units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.00578(3)	0.00449(2)	0.00541(3)	0.00015(2)	-0.00008(2)	0.00007(2)
01	0.00617(9)	0.00432(8)	0.00669(9)	0.00086(7)	-0.00108(7)	0.00002(7)
O2	0.00868(10)	0.00507(9)	0.00791(10)	-0.00037(7)	-0.00250(8)	-0.00150(7)
03	0.00614(9)	0.00529(8)	0.00751(9)	0.00016(7)	-0.00148(7)	-0.00143(7)
O4	0.00721(9)	0.00450(8)	0.00667(9)	0.00128(7)	-0.00009(7)	0.00023(7)
C1	0.00478(10)	0.00467(10)	0.00483(10)	0.00016(8)	-0.00014(8)	-0.00027(8)
C2	0.00446(9)	0.00451(10)	0.00463(10)	-0.00006(8)	-0.00025(8)	-0.00002(8)

Table S21. Anisotropic displacement parameters of the MM of KHOx (hydrogen ADPs are obtained from SHADE), units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.00575(2)	0.004463(19)	0.00537(2)	-0.000075(16)	-0.000076(14)	-0.000139(15)
01	0.00630(9)	0.00447(9)	0.00681(10)	0.00013(8)	-0.00102(8)	-0.00070(8)
O2	0.00878(11)	0.00514(9)	0.00807(10)	0.00147(8)	-0.00284(8)	0.00018(8)
O3	0.00637(9)	0.00536(9)	0.00759(10)	0.00137(8)	-0.00159(8)	-0.00037(8)
O4	0.00734(9)	0.00466(9)	0.00672(9)	-0.00008(8)	-0.00021(7)	-0.00136(8)
C1	0.00510(9)	0.00464(9)	0.00514(9)	0.00043(7)	-0.00044(7)	-0.00009(7)
C2	0.00474(8)	0.00437(8)	0.00501(9)	0.00026(7)	-0.00038(7)	-0.00005(7)
H1	0.1567	0.15272	0.015607	-0.004963	-0.000048	-0.004397

Table S22. Anisotropic displacement parameters of the HAR (HF/def2-SVP) of KHOx, units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.00539(2)	0.00411(2)	0.00500(2)	-0.00007(2)	-0.00012(2)	-0.00014(2)
01	0.00645(8)	0.00455(7)	0.00689(8)	0.00028(6)	-0.00050(6)	-0.00060(6)
O2	0.00890(9)	0.00492(8)	0.00809(9)	0.00127(7)	-0.00319(7)	-0.00005(7)
O3	0.00625(8)	0.00552(8)	0.00745(8)	0.00112(7)	-0.00179(6)	-0.00055(7)
O4	0.00702(8)	0.00477(8)	0.00680(8)	0.00002(7)	-0.00060(6)	-0.00116(6)
C1	0.00497(9)	0.00471(9)	0.0051(1)	0.00043(7)	-0.00079(7)	-0.00002(7)
C2	0.00480(9)	0.00420(9)	0.00507(9)	0.00026(8)	-0.00047(7)	-0.00020(7)
H1	0.042(9)	0.15(2)	0.008(7)	0.06(1)	0.013(6)	-0.01(1)

Table S23. Anisotropic displacement parameters of the HAR (HF/def2-TZVP) of KHOx, units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.00537(2)	0.00410(2)	0.00498(2)	-0.00007(2)	-0.00012(2)	-0.00014(2)
01	0.00643(8)	0.00450(8)	0.00688(8)	0.00026(6)	-0.00056(7)	-0.00063(6)
O2	0.00890(9)	0.00490(8)	0.00810(9)	0.00134(7)	-0.00320(7)	-0.00001(7)
O3	0.00624(8)	0.00548(8)	0.00751(9)	0.00118(7)	-0.00182(7)	-0.00053(7)
O4	0.00704(8)	0.00472(8)	0.00681(8)	0.00001(7)	-0.00057(6)	-0.00118(7)
C1	0.00498(9)	0.00464(9)	0.0051(1)	0.00045(8)	-0.00079(8)	-0.00000(7)
C2	0.00481(9)	0.00416(9)	0.0051(1)	0.00029(8)	-0.00048(7)	-0.00022(8)
H1	0.035(8)	0.14(2)	0.011(7)	0.05(1)	0.010(6)	-0.011(9)

Table S24. Anisotropic displacement parameters of the HAR (HF/def2-TZVP, cluster) of KHOx, units = $Å^2$

	U11	U22	U33	U12	U13	U23
K1	0.00537(2)	0.00410(2)	0.00501(2)	-0.00007(2)	-0.00013(2)	-0.00014(2)
01	0.00620(8)	0.00464(8)	0.00684(9)	0.00024(7)	-0.00090(7)	-0.00065(7)
O2	0.0088(1)	0.00503(8)	0.00807(9)	0.00126(7)	-0.00292(7)	0.00007(7)
O3	0.00628(8)	0.00537(8)	0.00756(9)	0.00124(7)	-0.00192(7)	-0.00058(7)
O4	0.00708(8)	0.00485(8)	0.00672(9)	-0.00003(7)	-0.00040(7)	-0.00108(7)
C1	0.00501(9)	0.0045(1)	0.0051(1)	0.00037(8)	-0.00079(8)	-0.00012(8)
C2	0.00471(9)	0.00427(9)	0.0050(1)	0.00028(8)	-0.00048(7)	-0.00013(8)
H1	0.011(6)	0.025(7)	0.005(6)	0.003(6)	-0.001(5)	-0.004(5)

4 Hirshfeld rigid bond tests

Table S25. Averages of differences of mean square displacements amplitudes (DMSDA) in $Å^2$ along different kinds of bonds. The values in brackets are sample standard deviations obtained through averaging, not standard uncertainties. The tests are not applicable to the network compound KHOx.

			HAR								
bond type	Neutron	IAM	MM/SHADE	RHF/def2-SVP	RHF/def2-TZVP	RHF/def2-TZVP					
						charges					
Rubrene											
C-C	0.000177(198)	0.000175(145)	0.000172(132)	0.000186(180)	0.000182(177)	0.000176(173)					
C-H	0.0055(3)	-	0.0145(108)	0.0151(51)	0.0139(51)	0.0139(53)					
BIPa											
O-C	0.000300(216)	0.000918(346)	0.000275(171)	0.000410(195)	0.000355(161)	0.000370(226)					
O-N	0.000442(334)	0.000933(299)	0.000633(505)	0.000937(378)	0.000874(390)	0.000936(372)					
N-C	0.000233(175)	0.000478(278)	0.000261(220)	0.000596(523)	0.000527(337)	0.000531(339)					
C-C	0.000393(209)	0.000280(211)	0.000207(153)	0.000478(630)	0.000257(148)	0.000274(169)					
C-H	0.0053(11)	-	0.0048(9)	0.0201(119)	0.0154(80)	0.0155(82)					
N-H	0.0063(11)	-	0.0053(2)	0.0189(136)	0.0200(147)	0.0170(106)					
non-hydrogen	0.000339(245)	0.000565(375)	0.000337(338)	0.000635(521)	0.000516(372)	0.000538(384)					