Analysis of XFEL serial diffraction data from individual crystalline fibrils

DAVID H. WOJTAS ,^a KARTIK AYYER ,^b MENGNING LIANG ,^c ESTELLE MOSSOU ,^{d,i} FILIPPO ROMOLI ,^k CAROLIN SEURING ,^b KENNETH R. BEYERLEIN ,^b RICHARD J. BEAN ,^g ANDREW J. MORGAN ,^b DOMINIK OBERTHUER ,^b HOLGER FLECKENSTEIN ,^b MICHAEL HEYMANN ,^{b,h} CORNELIUS GATI ,^b OLEKSANDR YEFANOV ,^b MIRIAM BARTHELMESS ,^b EIRINI ORNITHOPOULOU ,^j LORENZO GALLI ,^b P. LOURDU XAVIER ,^{b,m} W. L. LING ,ⁿ MATTHIAS FRANK ,^l CHUN HONG YOON ,^c THOMAS A. WHITE ,^b SAŠA BAJT ,^p ANNA MITRAKI ,^j SEBASTIEN BOUTET ,^c ANDREW AQUILA ,^c ANTON BARTY ,^b V. TREVOR

^aDepartment of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand, ^bCenter for Free-Electron Laser Science, DESY, Hamburg, Germany, ^cLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA, ^dInstitut Laue-Langevin, Grenoble, France, ^eDepartment of Physics, University of Hamburg, Hamburg, Germany, ^fCentre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany,

Forsyth $i^{i,d}$ Henry N. Chapman b,e,f and Rick P. Millane a*

^gEuropean XFEL GmbH, Hamburg, Germany, ^hMax Planck Institute of Biochemistry, Martinsried, Germany, ⁱFaculty of Natural Sciences, Keele University, UK, ^jDepartment of Materials Science and Technology, University of Crete and IESL/FORTH, Crete, Greece, ^kEuropean Synchrotron Radiation Facility, Grenoble, France, ^lLawrence Livermore National Laboratory, Livermore, California, USA, ^mMax-Planck Institute for the Structure and Dynamics of Matter, Hamburg, $Germany,\ ^{n}Universit\acute{e}\ Grenoble\ Alpes,\ Grenoble,\ France,\ and\ ^{p}Photon\ Science,$

 $DESY,\ Hamburg,\ Germany.\ E\text{-mail: } rick.millane@canterbury.ac.nz$

1. Supplementary information

(h,k)	$R_{hk}(\text{\AA}^{-1})$	$R_i^{obs}(\mathrm{\AA}^{-1})$	$\Delta R(\text{\AA}^{-1})$	Intensity	$R_{\rm i}({\rm \AA}^{-1})$	$\Delta R(\text{\AA}^{-1})$	Intensity
(0,1)	0.0385	0.0387	0.0002	?			
(1,0)	0.0559	0.0557	-0.0002	m	0.0500	0.003	
(-1,1)	0.0604	0.0605	0.0001	m	0.0589	-0.0015	vs
(1,1)	0.0745	0.0704	0.0019		0.0740	-0.0002	
(0,2)	0.077	0.0764	-0.0006	w	0.0743	-0.0027	W
(-1,2)	0.0845	0.0843	-0.0002	s	0.0843	-0.0002	m
(1,2)	0.1047						
(-2.1)	0.1098	0.4000	0.0000		0.4400	0.0005	
(2,0)	0.1117	0.1098	-0.0019	s	0.1103	-0.0014	m
(0,3)	0.1155				0.4470	0.0001	
(-1,3)	0.1166				0.1156	-0.001	w
(-2,2)	0.1208	0.1207	-0.0001	w			
(2,1)	0.126						
(1,3)	0.139				0.1.41.0	0.0026	
(-2,3)	0.1417				0.1416	-0.0001	W
(2,2)	0.1491	0.1510	0.0021			0.0026	
(-1,4)	0.1517	0.1512	-0.0005	m	0.1517	0	m
(0,4)	0.1539					-0.0022	
(-3,1)	0.1634						
(3.0)	0.1676		0.0006			0	
(-3,2)	0.1682	0.1682	0.0000	s	0.1676	-0.0006	w
(-2,4)	0.1689		-0.0007			-0.0013	
(1.4)	0.175						
(2.3)	0.1776		0.0006				
(3.1)	0.1801	0.1782	-0.0019	vw			
(-3,3)	0.1812		-0.0030				
(-1.5)	0.1881						
(0.5)	0.1924						
(-2.5)	0.1993		0.0003			-0.0004	
(3.2)	0.1999	0.2	0.0001	s	0.1989	-0.001	vw
(-3,4)	0.2008	-	-0.0007			-0.0019	
(2,4)	0.2093						
(1,5)	0.2119						
(-4,1)	0.2181						
(-4,2)	0.2196						
(4,0)	0.2234						
(3,3)	0.2236						
(-3,5)	0.2254						
(-4,3)	0.2276						
(4,1)	0.235						
(-4,4)	0.2416						
(2,5)	0.243						
(3,4)	0.2515						
(4,2)	0.252						
(-4,5)	0.2605	0.261	0.0005	vw			
(-5,2)	0.2727						
(-5,1)	0.2733						
(4,3)	0.2733						
(-5,3)	0.2775	0.2774	-0.0001	337			
(5,0)	0.2793	0.2114	-0.0019	vv			
(3,5)	0.2818						
(-5,4)	0.2874	0.2875	0.0001	m			
(5,1)	0.2903	0.2010	-0.0028	111			

Table 1. Measured and predicted R values.

 R_{hk} are values for the derived unit cell and R_i^{obs} are the measured values. $\Delta R = R_i^{obs} - R_{hk}$. Peak intensities are denoted: vw = very weak, w = weak, m = medium, s = strong, vs = very strong.

(h,k)	R_{hk} (Å ⁻¹)	F_{hk0}	F_{hk1}
(0, 0)	0.0	U	Т
(0,1)	0.0384	U	T
(0, 2)	0.0769	38	T
(0,3) (0,4)	0.1155	51	T
(0,4)	0.1922	24	33
(0,6)	0.2306	Т	-
(0,7)	0.2691	Т	-
(1, -7)	0.2626	Т	-
(1, -6)	0.2251	Т	-
(1,-5)	0.1881	18	06
(1,-4)	0.1517	54	19 T
(1,-3)	0.0846	65	25
(1,-2)	0.0604	U	U
(1,0)	0.0558	Ŭ	54
(1,1)	0.0743	14	06
(1, 2)	0.1044	61	13
(1, 3)	0.1386	T	Т
(1,4)	0.1746	74	Т
(1,5)	0.2115	18	T
(1,6)	0.2488	14	
(1, i) (2, -7)	0.2600	20 T	
(2, -7) (2, -6)	0.2332	T	
(2,-5)	0.2	65	Т
(2,-4)	0.1691	17	01
(2,-3)	0.1419	03	18
(2, -2)	0.1209	12	Т
(2,-1)	0.1098	55	Т
(2,0)	0.1116	68	T
(2,1)	0.1257	22	12
(2, 2) (2, 3)	0.1487	20 53	- 09 T
(2, 3) (2, 4)	0.2087	21	T
(2,5)	0.2424	T	-
(2,6)	0.2772	07	
(3,-7)	0.2841	Т	
(3,-6)	0.2537	Т	
(3, -5)	0.2256	Т	
(3,-4)	0.201	38	
(3, -3)	0.1813	16	T
(3, -2) (3, 1)	0.1633	07	T
(3,0)	0.1673	100	T
(3,1)	0.1797	16	T
(3,2)	0.1988	48	Т
(3,3)	0.223	Т	
(3, 4)	0.2508	14	
(3,5)	0.281	Т	
(4,-6)	0.2837	T	
(4,-5)	0.2608	T	
(4,-4)	0.2410	T	
(4,-2)	0.2196	T	
(4,-1)	0.218	T	
(4,0)	0.2231	02	
(4, 1)	0.2345	06	
(4,2)	0.2514	08	
(4,3)	0.2726	1'	
(4,4)	0.2973	T 21	
(3, -4) (5, 3)	0.2876	31 T	
(5,-2)	0.2727	T T	
(5, -2) (5, -1)	0.2731	15	
(5,0)	0.2789	T	
(5,1)	0.2897	24	

Table 2. Measured structure amplitudes $|F_{hkl}|$.

Unmeasured and below threshold values are denoted U and T, respectively. For l = 1, the values $|F_{hk1}|$ represent $\sqrt{|F_{hk1}|^2 + |F_{\bar{h}\bar{k}1}|^2}$, as described in the text.