

Volume 4 (2017)

Supporting information for article:

The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization

Christian Molitor, Aleksandar Bijelic and Annette Rompel

S1. Figures

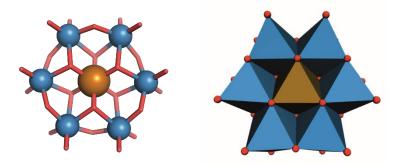


Figure S1 Structures of $[TeW_6O_{24}]^{6-}$. TEW is shown in ball and stick (left) and polyhedra (right) representation. Color code: tungsten, cyan; tellurium; brown; oxygen, red.

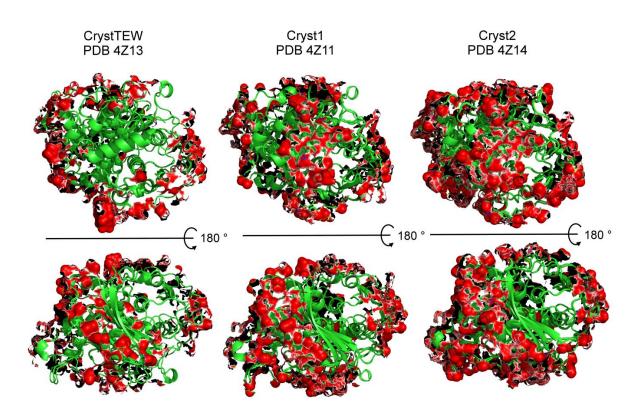
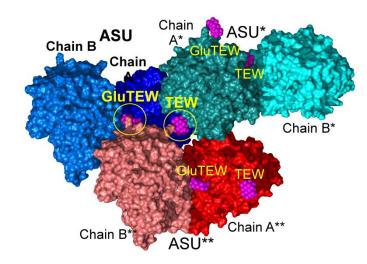
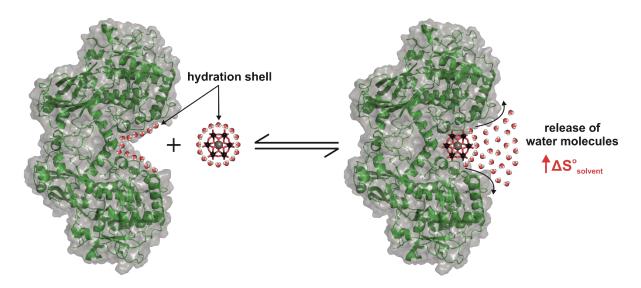




Figure S2 Graphic representation of the \triangle ASA calculation results for all three structures of *cg*AUS1. The crystal contacts (\triangle ASA) of the respective crystal form were determined by AREAIMOL. The protein structures are shown as green cartoons, whereas the calculated crystal contacts are illustrated as red surfaces.

Figure S3 Impact of TEW on the crystal packing of *cg***AUS1.** Both TEW anions (GluTEW is the TEW ion which is covalently bound to a glutamic acid) strongly influence the crystal packing of *cg*AUS1 in CrystTEW, as both mediate new crystal contacts between symmetry related crystallographic dimers.

Figure S4 Schematic illustration of the water release event upon TEW binding. Before the binding event both, TEW (or the additive in general) and the protein, are hydrated, that is, surrounded by a hydration shell (indicated by water molecules shown as small spheres with the red sphere being the oxygen atom and the white spheres being the hydrogen atoms). Upon TEW-protein binding, the release of water molecules from their hydration shells causes a gain in solvent entropy. The protein (*cgAUS1*) is shown as a green cartoon, which is surrounded by a grey transparent surface to illustrate the binding site of TEW and the crystal contact. TEW is illustrated in ball and stick representation with the following color code: tellurium, grey; tungsten, black; oxygen, red. The figure is inspired by Figure 3 from (Matsarskaia *et al.*, 2016).

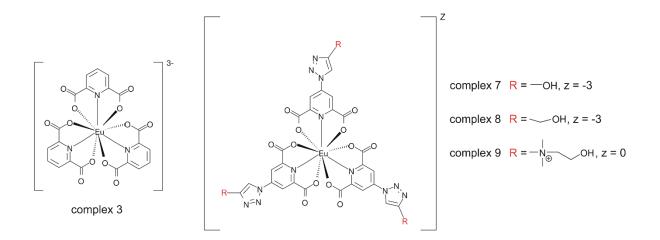


Figure S5 Structure of the Eu containing dipicolinate complexes.

S2. Tables

Constal fame:	Contact	Contact area	No. of contact residues		
Crystal form	(by chain)	(PISA) ^a	(PISA)		
CrystTEW	A-B ^b	726 \AA^2	50		
	A-A	350 \AA^2	33		
Cryst1	A-B ^b	690 Å ²	44		
	C-D ^b	668 Å ²	43		
	B-D	570 Å ²	41		
	B-B	492 Å ²	31		
	D-D	487 Å ²	30		
	A-C	419 Å ²	38		
Cryst2	C-E ^b	701 Å ²	44		
	D-F ^b	683 Å ²	46		
	B-H ^b	665 Å ²	41		
	A-G ^b	629 Å ²	40		
	D-H	630 \AA^2	51		
	C-G	572 Å ²	47		
	E-E	$490~\text{\AA}^2$	32		
	B-B	$483~\text{\AA}^2$	30		
	F-F	471 Å ²	29		
	A-A	466 Å ²	27		

Table S1Crystal contacts of all crystal forms of *cg*AUS1 calculated by PISA.

^a Note that only the largest contacts (> 400 Å²) were considered, however, with exemption of CrysTEW where a smaller contact is shown due to the lack of further large/strong contacts.

^b This crystal contact represents a crystallographic dimer building up each crystal form.

	HEWL PDB 4LZT	HEWL PDB 1B2K	HEWL PDB 1PS5	HEWL PDB 2FBB	HEWL PDB 1AKI	HEWL PDB 4WM6	HEWL PDB 5EBH
Space group	P1	P12 ₁ 1	C121	P6122	P212121	P4 ₃	P4 ₃ 2 ₁ 2
Additive	NO ₃ -	I-	SO4 ²⁻	NO ₃ -	-	-	-
No. of additives within interfaces	5 of 6	9 of 17	1 of 2	9 of 16	-	-	-
Reference	[(Walsh <i>et al.</i> , 1998)]	[(Vaney <i>et</i> <i>al.</i> , 2001)]	[(Majeed et al., 2003)]	[(Brinkman n <i>et al.</i> , 2006)]	[(Artym iuk <i>et</i> <i>al.</i> , 1982)]	[(Yama da <i>et al</i> ., 2015)]	[(Zander <i>et al.</i> , 2016)]
Crystal contacts of ASU ^c							
$\Delta ASA(ASU) [Å^2]$	-3256.7 (-3039.9) ^a	-5754.6 (-5152.7) ^a	-2434.8 (-2402.4) ^a	-2442,4 (-2142.3) ^a	-2315.3	-7310.0	-1842.3
Per monomer [Å ²]	-3256.7 (-3039.9)ª	-2877.3 (-2576.4)ª	-2434.8 (-2402.4)ª	-2442.4 (-2142.3) ^a	-2315.3	-1827.5	-1842.3
Crystal contacts within ASU ^d							
$\Delta ASA($ within ASU $)$ [Å ²]		-1663.5 (-552.6) ^a	_ b	_ b	_ b	-1389.7	_ b
Per monomer [Å ²]		-831.8 (-276.3) ^a	_ b	_ b	_ b	-347.4	_ b
ΔASA_{total}^{e}							
Per monomer [Å ²]	-3256.7 (-3039.9)ª	-3709.1 (-2852.7) ^a	-2434.8 (-2402.4) ^a	-2442.4 (-2142.3) ^a	-2315.3	-2174.9	-1842.3
Additive contribution to ΔASA per molecule [Å ²] ^f	-43.4	-95.2	-16.2	-33.3	_ b	_ b	_ b

Table S2	ΔASA values	of reference	HEWL	structures.	Representatives	chosen from every
reported sp	ace group.					

^a The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ^b ASU contains only one monomer. ^c Crystal contacts of ASU (= Δ ASA(ASU)) describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ^d Crystal contacts within ASU (= Δ ASA(within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1B). ^e Δ ASA_{total} = Δ ASA(ASU) + Δ ASA(within ASU) as described in equation (3). ^f This value was obtained by simply subtracting the Δ ASA_{total} per monomer value for the system ignoring the additive (value in parentheses) from that including the additive.

Please note that Table S2 is just a selection of the examined HEWL structures. Only one structure per space group is provided in order to show Δ ASA values for all reported space groups. Commonly applied additives in HEWL structures are mostly different anions (e.g. NO₃⁻, I⁻, Br⁻, SCN⁻, Cl⁻, etc.), however, they do not significantly contribute to Δ ASA and were therefore omitted.

	HEWL PDB 2PC2	HEWL PDB 4BAD	HEWL PDB 4BAF	HEWL PDB 4BAP
Space group	C2	P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2
Additive	Eu(dpa) ₃ complex 3 ^c	Eu(dpa) ₃ Complex 7 ^c	Eu(dpa) ₃ complex 8 ^c	Eu(dpa) ₃ complex 9 ^c
No. of additives within interfaces	4 of 5	1 of 1	1 of 1	1 of 1
Reference	[(Talon <i>et al.</i> , 2012)]	[(Talon <i>et al.</i> , 2012)]	[(Talon <i>et al</i> ., 2012)]	[(Talon <i>et al.</i> , 2012)]
Crystal contacts of ASU ^d				
$\Delta ASA(ASU) [Å^2]$	-4259.3 (-2202.3) ^a	-3074.1 (-2361.4) ^a	-2991.1 (-2179.5) ^a	-3287.9 (-2301.2)ª
Per monomer [Å ²]	-4259.3 (-2202.3) ^a	-3074.1 (-2361.4) ^a	-2991.1 (-2179.5) ^a	-3287.9 (-2301.2)ª
Crystal contacts within ASU ^d				
ΔASA(within ASU) [Å ²]	_b	_b	_b	_b
Per monomer [Å ²]	_b	_b	_b	_b
ΔASA _{total} ^e				
Per monomer [Å ²]	-4259.3 (-2202.3) ^a	-3074.1 (-2361.4) ^a	-2991.1 (-2179.5) ^a	-3287,9 (-2301.2) ^a
Additive contribution to ΔASA per molecule [Ų] ^f	-533.5	-712.7	-811.6	-986.7

Table S3 Impact of different Eu(dpa)₃ complexes on ΔASA of HEWL due to crystal packing

^a The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ^b ASU contains only one monomer. ^c For structure see Figure S3. ^d Crystal contacts of ASU (= Δ ASA(ASU)) describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ^e Crystal contacts within ASU (= Δ ASA(within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1B). ^f Δ ASA_{total} = Δ ASA(ASU) + Δ ASA(within ASU) as described in equation (3). ^g This value was obtained by simply subtracting the Δ ASA_{total} = Δ ASA(ASU) + Δ ASA(within ASU) as described in equation (3).

Please note that during the investigation of HEWL structures also other additives were found and analysed, however, they did not significantly contribute to Δ ASA and were therefore omitted.

	BLG PDB 4LZU	BLG PDB 4LZV	BLG PDB 3PH5	BLG PDB 3PH6
Space group	P3221	P3221	P212121	P212121
Additive	Zn^{2+}	Zn^{2+}	Y ³⁺	Y ³⁺
No. of additives within interfaces	1 of 2	1 of 3	4 of 4	4 of 4
Reference	_ a	_ a	[(Zhang <i>et al.</i> , 2011)]	[(Zhang <i>et al.</i> , 2011)]
Crystal contacts of ASU ^c				
$\Delta ASA(ASU) [Å^2]$	-1580.8 (-1577.8) ^b	-2022.9 (-2018.0) ^b	-1696.2 (-1676.2) ^b	-1781.0 (-1760.0) ^b
Per monomer [Å ²]	-1580.8 (-1577.8) ^b	-2022.9 (-2018.0) ^b	-1696.2 (-1676.2) ^b	-890.5 (-880.0) ^b
Crystal contacts within ASU ^d				
$\Delta ASA(within ASU) [Å^2]$	_c	_ ^c	-1087.5 (-942.3)	-1109.9 (-965.0)
Per monomer [Å ²]	_c	_c	-543.8 (-471.2)	-555.0 (-482.5)
ΔASA _{total} ^e				
Per monomer [Å ²]	-1580.8 (-1577.8) ^b	-2022.9 (-2018.0) ^b	-1391.9 (-1309.3) ^b	-1445.5 (-1362.5) ^b
Additive contribution to ΔASA per molecule [Ų] ^f	-3.0	-2.2	-41.3	-41.5

Table S4 \triangle ASA values of β -lactoglobulin (BLG) in presence of Y³⁺ and Zn²⁺.

^a PDB entry with no associated publication. ^b The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ^c ASU contains only one monomer. ^d Crystal contacts of ASU (= Δ ASA(ASU)) describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ^e Crystal contacts within ASU (= Δ ASA(within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1B). ^f Δ ASA_{total} = Δ ASA(ASU) + Δ ASA(within ASU) as described in equation (3). ^g This value was obtained by simply subtracting the Δ ASA_{total} per monomer value for the system ignoring the additive (value in parentheses) from that including the additive.

S3. References

Artymiuk, P. J., Blake, C. C. F., Rice, D. W. & Wilson, K. S. (1982). *Acta Crystallogr. B.* **38**, 778–783.

Brinkmann, C., Weiss, M. S. & Weckert, E. (2006). Acta Crystallogr. D Biol. Crystallogr. 62, 349–355.

Majeed, S., Ofek, G., Belachew, A., Huang, C., Zhou, T. & Kwong, P. D. (2003). *Structure*. **11**, 1061–1070.

Matsarskaia, O., Braun, M. K., Roosen-Runge, F., Wolf, M., Zhang, F., Roth, R. & Schreiber, F. (2016). *J. Phys. Chem. B.* **120**, 7731–7736.

Talon, R., Nauton, L., Canet, J.-L., Kahn, R., Girard, E. & Gautier, A. (2012). *Chem. Commun.* 48, 11886–11888.

Vaney, M. C., Broutin, I., Retailleau, P., Douangamath, A., Lafont, S., Hamiaux, C., Prangé, T.,

Ducruix, A. & Riès-Kautt, M. (2001). Acta Crystallogr. D Biol. Crystallogr. 57, 929-940.

Walsh, M. A., Schneider, T. R., Sieker, L. C., Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1998). Acta Crystallogr. D Biol. Crystallogr. 54, 522–546.

Yamada, H., Nagae, T. & Watanabe, N. (2015). Acta Crystallogr. D Biol. Crystallogr. 71, 742–753.

Zander, U., Hoffmann, G., Cornaciu, I., Marquette, J.-P., Papp, G., Landret, C., Seroul, G., Sinoir, J.,

Röwer, M., Felisaz, F., Rodriguez-Puente, S., Mariaule, V., Murphy, P., Mathieu, M., Cipriani, F. & Márquez, J. A. (2016). *Acta Crystallogr. Sect. Struct. Biol.* **72**, 454–466.

Zhang, F., Zocher, G., Sauter, A., Stehle, T. & Schreiber, F. (2011). J. Appl. Crystallogr. 44, 755–762.