Volume 4 (2017)
Supporting information for article:

The potential of hexatungstotellurate(VI) to induce a significant entropic gain during protein crystallization

Christian Molitor, Aleksandar Bijelic and Annette Rompel

S1. Figures

Figure S1 Structures of $\left[\mathrm{TeW}_{\mathbf{6}} \mathbf{O}_{\mathbf{2 4}}\right]^{\mathbf{6}}$. TEW is shown in ball and stick (left) and polyhedra (right) representation. Color code: tungsten, cyan; tellurium; brown; oxygen, red.

Figure $\mathbf{S} 2$ Graphic representation of the $\triangle A S A$ calculation results for all three structures of $\boldsymbol{c g}$ AUS1. The crystal contacts ($\triangle \mathrm{ASA}$) of the respective crystal form were determined by AREAIMOL. The protein structures are shown as green cartoons, whereas the calculated crystal contacts are illustrated as red surfaces.

Figure S3 Impact of TEW on the crystal packing of $\boldsymbol{c g}$ AUS1. Both TEW anions (GluTEW is the TEW ion which is covalently bound to a glutamic acid) strongly influence the crystal packing of cgAUS1 in CrystTEW, as both mediate new crystal contacts between symmetry related crystallographic dimers.

Figure S4 Schematic illustration of the water release event upon TEW binding. Before the binding event both, TEW (or the additive in general) and the protein, are hydrated, that is, surrounded by a hydration shell (indicated by water molecules shown as small spheres with the red sphere being the oxygen atom and the white spheres being the hydrogen atoms). Upon TEW-protein binding, the release of water molecules from their hydration shells causes a gain in solvent entropy. The protein (cgAUS1) is shown as a green cartoon, which is surrounded by a grey transparent surface to illustrate the binding site of TEW and the crystal contact. TEW is illustrated in ball and stick representation with the following color code: tellurium, grey; tungsten, black; oxygen, red. The figure is inspired by Figure 3 from (Matsarskaia et al., 2016).

Figure S5 Structure of the Eu containing dipicolinate complexes.

S2. Tables

Table S1 Crystal contacts of all crystal forms of $\boldsymbol{c g}$ AUS1 calculated by PISA.

Crystal form	Contact (by chain)	Contact area (PISA) ${ }^{\mathbf{a}}$	No. of contact residues (PISA)
CrystTEW	A-B ${ }^{\text {b }}$	$726 \AA^{2}$	50
	A-A	$350 \AA^{2}$	33
Cryst1	A-B ${ }^{\text {b }}$	$690 \AA^{2}$	44
	C-D ${ }^{\text {b }}$	$668 \AA^{2}$	43
	B-D	$570 \AA^{2}$	41
	B-B	492 A ${ }^{2}$	31
	D-D	$487 \AA^{2}$	30
	A-C	$419 \AA^{2}$	38
Cryst2	C-E ${ }^{\text {b }}$	$701 \AA^{2}$	44
	D-F ${ }^{\text {b }}$	$683 \AA^{2}$	46
	B- ${ }^{\text {b }}$	$665 \AA^{2}$	41
	A-G ${ }^{\text {b }}$	$629 \AA^{2}$	40
	D-H	$630 \AA^{2}$	51
	C-G	$572 \AA^{2}$	47
	E-E	$490 \AA^{2}$	32
	B-B	$483 \AA^{2}$	30
	F-F	$471 \AA^{2}$	29
	A-A	$466 \AA^{2}$	27

[^0]Table S2 \triangle ASA values of reference HEWL structures. Representatives chosen from every reported space group.

	$\begin{aligned} & \text { HEWL } \\ & \text { PDB 4LZT } \end{aligned}$	HEWL PDB 1B2K	HEWL PDB 1PS5	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 2FBB } \end{gathered}$	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 1AKI } \end{gathered}$	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 4WM6 } \end{gathered}$	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 5EBH } \end{gathered}$
Space group	P1	P12, 1	C121	P6122	$\mathrm{P} 2{ }_{1} 2{ }_{1}{ }_{1}$	P 43	P 43212
Additive	$\mathrm{NO}_{3}{ }^{-}$	I^{-}	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{NO}_{3}{ }^{-}$	-	-	-
No. of additives within interfaces	5 of 6	9 of 17	1 of 2	9 of 16	-	-	-
Reference	[(Walsh et al., 1998)]	[(Vaney et al., 2001)]	[(Majeed et al., 2003)]	$\begin{aligned} & \text { [(Brinkman } \\ & \text { n et al., } \\ & 2006)] \end{aligned}$	$\begin{gathered} {[(\text { Artym }} \\ \text { iuk et } \\ \text { al., } \\ 1982)] \end{gathered}$	$\begin{aligned} & \text { [(Yama } \\ & \text { da et al., } \\ & 2015)] \end{aligned}$	$\begin{gathered} {[(\text { Zander }} \\ \text { et al., } \\ 2016)] \end{gathered}$
Crystal contacts of $\mathbf{A S U}^{\mathbf{c}}$							
$\triangle \mathrm{ASA}(\mathrm{ASU})\left[\AA^{2}\right]$	$\begin{gathered} -3256.7 \\ (-3039.9)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -5754.6 \\ (-5152.7)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2434.8 \\ (-2402.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2442,4 \\ (-2142.3)^{\mathrm{a}} \end{gathered}$	-2315.3	-7310.0	-1842.3
Per monomer [\AA^{2}]	$\begin{gathered} -3256.7 \\ (-3039.9)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2877.3 \\ (-2576.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2434.8 \\ (-2402.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2442.4 \\ (-2142.3)^{\mathrm{a}} \end{gathered}$	-2315.3	-1827.5	-1842.3
Crystal contacts within $\mathbf{A S U}^{\text {d }}$							
$\begin{aligned} & \Delta \mathrm{ASA}(\text { within } \mathrm{ASU}) \\ & {\left[\AA^{2}\right]} \end{aligned}$		$\begin{gathered} -1663.5 \\ (-552.6)^{\mathrm{a}} \end{gathered}$	- b	- b	- b	-1389.7	- ${ }^{\text {b }}$
Per monomer [\AA^{2}]		$\begin{gathered} -831.8 \\ (-276.3)^{\mathrm{a}} \end{gathered}$	- b	- b	- b	-347.4	- b
Δ ASAtotal $^{\text {e }}$							
Per monomer [\AA^{2}]	$\begin{gathered} -3256.7 \\ (-3039.9)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3709.1 \\ (-2852.7)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2434.8 \\ (-2402.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2442.4 \\ (-2142.3)^{\mathrm{a}} \end{gathered}$	-2315.3	-2174.9	-1842.3
Additive contribution to Δ ASA per molecule $\left[\AA^{2}\right]^{\mathrm{f}}$	-43.4	-95.2	-16.2	-33.3	- b	- b	- ${ }^{\text {b }}$

[^1]Please note that Table S 2 is just a selection of the examined HEWL structures. Only one structure per space group is provided in order to show \triangle ASA values for all reported space groups. Commonly applied additives in HEWL structures are mostly different anions (e.g. $\mathrm{NO}_{3}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{SCN}^{-}, \mathrm{Cl}^{-}$, etc.), however, they do not significantly contribute to \triangle ASA and were therefore omitted.

Table S3 Impact of different $\mathrm{Eu}(\mathrm{dpa})_{3}$ complexes on $\triangle \mathrm{ASA}$ of HEWL due to crystal packing

	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 2PC2 } \end{gathered}$	HEWL PDB 4BAD	HEWL PDB 4BAF	$\begin{gathered} \text { HEWL } \\ \text { PDB } \\ \text { 4BAP } \end{gathered}$
Space group	C2	$\mathrm{P} 4_{3} 212$	$\mathrm{P} 4_{3} 212$	P 43212
Additive	$\begin{aligned} & \mathrm{Eu}(\mathrm{dpa})_{3} \\ & \text { complex } 3^{\mathrm{c}} \end{aligned}$	$\begin{gathered} \mathrm{Eu}(\mathrm{dpa})_{3} \\ \text { Complex } 7^{\mathrm{c}} \end{gathered}$	$\underset{\text { complex } 8^{\text {c }}}{\mathrm{Eu}(\mathrm{dpa})_{3}}$	$\begin{aligned} & \mathrm{Eu}(\mathrm{dpa})_{3} \\ & \text { complex } 9^{\text {c }} \end{aligned}$
No. of additives within interfaces	4 of 5	1 of 1	1 of 1	1 of 1
Reference	[(Talon et al., 2012)]	$\begin{gathered} {[(\text { Talon et al. },} \\ 2012)] \end{gathered}$	$\begin{gathered} {[(\text { Talon } \text { et al. },} \\ 2012)] \end{gathered}$	$\begin{gathered} {[(\text { Talon } \text { et al. },} \\ 2012)] \end{gathered}$
Crystal contacts of $\mathbf{A S U}^{\mathrm{d}}$				
$\triangle \mathrm{ASA}(\mathrm{ASU})\left[\AA^{2}\right]$	$\begin{gathered} -4259.3 \\ (-2202.3)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3074.1 \\ (-2361.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2991.1 \\ (-2179.5)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3287.9 \\ (-2301.2)^{\mathrm{a}} \end{gathered}$
Per monomer [\AA^{2}]	$\begin{gathered} -4259.3 \\ (-2202.3)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3074.1 \\ (-2361.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2991.1 \\ (-2179.5)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3287.9 \\ (-2301.2)^{a} \end{gathered}$
Crystal contacts within $\mathbf{A S U}^{\mathrm{d}}$				
$\triangle \mathrm{ASA}$ (within ASU) $\left[\AA^{2}\right]$	- b	- b	- b	-b
Per monomer [\AA^{2}]	- ${ }^{\text {b }}$			
Δ ASA $_{\text {total }}{ }^{\text {e }}$				
Per monomer [\AA^{2}]	$\begin{gathered} -4259.3 \\ (-2202.3)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3074.1 \\ (-2361.4)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -2991.1 \\ (-2179.5)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} -3287,9 \\ (-2301.2)^{a} \end{gathered}$
Additive contribution to Δ ASA per molecule $\left[\AA^{2}\right]^{\mathbf{f}}$	-533.5	-712.7	-811.6	-986.7

${ }^{\text {a }}$ The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ${ }^{\text {b }} \mathrm{ASU}$ contains only one monomer. ${ }^{\mathrm{c}}$ For structure see Figure S3. ${ }^{\text {d }}$ Crystal contacts of $\operatorname{ASU}(=\triangle \mathrm{ASA}(\mathrm{ASU}))$ describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ${ }^{e}$ Crystal contacts within ASU ($=\triangle \mathrm{ASA}$ (within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1 B$) .{ }^{\mathrm{f}} \Delta \mathrm{ASA}_{\text {total }}=\triangle \mathrm{ASA}(\mathrm{ASU})+\triangle \mathrm{ASA}($ within ASU$)$ as described in equation (3). ${ }^{\mathrm{g}}$ This value was obtained by simply subtracting the $\Delta \mathrm{ASA}_{\text {total }}$ per monomer value for the system ignoring the additive (value in parentheses) from that including the additive. ${ }^{\mathrm{e}} \Delta \mathrm{ASA}_{\text {total }}=\triangle \mathrm{ASA}(\mathrm{ASU})+\triangle \mathrm{ASA}$ (within ASU) as described in equation (3).

Please note that during the investigation of HEWL structures also other additives were found and analysed, however, they did not significantly contribute to \triangle ASA and were therefore omitted.

Table S4 $\quad \Delta$ ASA values of $\boldsymbol{\beta}$-lactoglobulin (BLG) in presence of $\mathbf{Y}^{\mathbf{3 +}}$ and $\mathbf{Z n}^{\mathbf{2 +}}$.

	BLG PDB 4LZU	BLG PDB 4LZV	BLG PDB 3PH5	BLG PDB 3PH6
Space group	P 3221	P3221	P 212121	$\mathrm{P} 2{ }_{12} 2^{1} 1$
Additive	Zn^{2+}	Zn^{2+}	Y^{3+}	Y^{3+}
No. of additives within interfaces	1 of 2	1 of 3	4 of 4	4 of 4
Reference	- ${ }^{\text {a }}$	- ${ }^{\text {a }}$	$\begin{aligned} & \text { [(Zhang et al., } \\ & 2011)] \end{aligned}$	$\begin{aligned} & {\left[\left(\begin{array}{l} \text { Zhang } \text { et al. }, \\ \text { 2011) } \end{array}\right.\right.} \\ & \hline \end{aligned}$
Crystal contacts of $\mathbf{A S U}^{\mathbf{c}}$				
$\triangle \mathrm{ASA}(\mathrm{ASU})\left[\AA^{2}\right]$	$\begin{gathered} -1580.8 \\ (-1577.8)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} -2022.9 \\ (-2018.0)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} -1696.2 \\ (-1676.2)^{b} \end{gathered}$	$\begin{gathered} -1781.0 \\ (-1760.0)^{\mathrm{b}} \end{gathered}$
Per monomer [\AA^{2}]	$\begin{gathered} -1580.8 \\ (-1577.8)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} -2022.9 \\ (-2018.0)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} -1696.2 \\ (-1676.2)^{b} \end{gathered}$	$\begin{gathered} -890.5 \\ (-880.0)^{b} \end{gathered}$
Crystal contacts within $\mathbf{A S U}^{\text {d }}$				
$\triangle \mathrm{ASA}$ (within ASU) $\left[\AA^{2}\right]$	-c	-c	$\begin{aligned} & -1087.5 \\ & (-942.3) \end{aligned}$	$\begin{aligned} & -1109.9 \\ & (-965.0) \end{aligned}$
Per monomer [\AA^{2}]	-c	_c	$\begin{gathered} -543.8 \\ (-471.2) \end{gathered}$	$\begin{gathered} -555.0 \\ (-482.5) \end{gathered}$
$\Delta \mathbf{A S A}_{\text {total }}{ }^{\text {e }}$				
Per monomer [\AA^{2}]	$\begin{gathered} -1580.8 \\ (-1577.8)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} -2022.9 \\ (-2018.0)^{b} \end{gathered}$	$\begin{gathered} -1391.9 \\ (-1309.3)^{b} \end{gathered}$	$\begin{gathered} -1445.5 \\ (-1362.5)^{b} \end{gathered}$
Additive contribution to Δ ASA per molecule $\left[\AA^{2}\right]^{\mathbf{f}}$	-3.0	-2.2	-41.3	-41.5

$\overline{\text { a }}$ PDB entry with no associated publication. ${ }^{\mathrm{b}}$ The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ${ }^{\text {c }}$ ASU contains only one monomer. ${ }^{\text {d }}$ Crystal contacts of $\operatorname{ASU}(=\triangle \mathrm{ASA}(\mathrm{ASU}))$ describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ${ }^{e}$ Crystal contacts within ASU (= $\Delta \mathrm{ASA}($ within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1 B$).{ }^{\mathrm{f}} \Delta \mathrm{ASA}$ total $=\triangle \mathrm{ASA}(\mathrm{ASU})+\triangle \mathrm{ASA}($ within ASU$)$ as described in equation (3). ${ }^{\mathrm{g}}$ This value was obtained by simply subtracting the $\Delta \mathrm{ASA}_{\text {total }}$ per monomer value for the system ignoring the additive (value in parentheses) from that including the additive.

S3. References

Artymiuk, P. J., Blake, C. C. F., Rice, D. W. \& Wilson, K. S. (1982). Acta Crystallogr. B. 38, 778783.

Brinkmann, C., Weiss, M. S. \& Weckert, E. (2006). Acta Crystallogr. D Biol. Crystallogr. 62, 349355.

Majeed, S., Ofek, G., Belachew, A., Huang, C., Zhou, T. \& Kwong, P. D. (2003). Structure. 11, 1061-1070.

Matsarskaia, O., Braun, M. K., Roosen-Runge, F., Wolf, M., Zhang, F., Roth, R. \& Schreiber, F. (2016). J. Phys. Chem. B. 120, 7731-7736.

Talon, R., Nauton, L., Canet, J.-L., Kahn, R., Girard, E. \& Gautier, A. (2012). Chem. Commun. 48, 11886-11888.

Vaney, M. C., Broutin, I., Retailleau, P., Douangamath, A., Lafont, S., Hamiaux, C., Prangé, T., Ducruix, A. \& Riès-Kautt, M. (2001). Acta Crystallogr. D Biol. Crystallogr. 57, 929-940.

Walsh, M. A., Schneider, T. R., Sieker, L. C., Dauter, Z., Lamzin, V. S. \& Wilson, K. S. (1998). Acta Crystallogr. D Biol. Crystallogr. 54, 522-546.

Yamada, H., Nagae, T. \& Watanabe, N. (2015). Acta Crystallogr. D Biol. Crystallogr. 71, 742-753.
Zander, U., Hoffmann, G., Cornaciu, I., Marquette, J.-P., Papp, G., Landret, C., Seroul, G., Sinoir, J., Röwer, M., Felisaz, F., Rodriguez-Puente, S., Mariaule, V., Murphy, P., Mathieu, M., Cipriani, F. \& Márquez, J. A. (2016). Acta Crystallogr. Sect. Struct. Biol. 72, 454-466.
Zhang, F., Zocher, G., Sauter, A., Stehle, T. \& Schreiber, F. (2011). J. Appl. Crystallogr. 44, 755762.

[^0]: ${ }^{a}$ Note that only the largest contacts (>400 \AA^{2}) were considered, however, with exemption of CrysTEW where a smaller contact is shown due to the lack of further large/strong contacts.
 ${ }^{\mathrm{b}}$ This crystal contact represents a crystallographic dimer building up each crystal form.

[^1]: ${ }^{\text {a }}$ The values in parentheses represent area differences without taking into account the additives by deleting them from the pdb file in order to analyse their impact on the crystal contacts. ${ }^{\mathrm{b}}$ ASU contains only one monomer. ${ }^{\mathrm{c}}$ Crystal contacts of ASU $(=\triangle \mathrm{ASA}(\mathrm{ASU}))$ describes the contacts obtained by equation (1), that is, contacts between monomers originating from different ASUs (see Figure 1A). ${ }^{d}$ Crystal contacts within $\operatorname{ASU}(=\triangle \mathrm{ASA}$ (within ASU)) describes the contacts obtained by equation (2), that is, contacts between NCS mates (only necessary for ASUs containing more than one monomer) (Figure 1 B). ${ }^{\mathrm{e}} \Delta \mathrm{ASA}$ total $=\triangle \mathrm{ASA}(\mathrm{ASU})+\triangle \mathrm{ASA}($ within ASU$)$ as described in equation (3). ${ }^{\mathrm{f}}$ This value was obtained by simply subtracting the $\Delta \mathrm{ASA}_{\text {total }}$ per monomer value for the system ignoring the additive (value in parentheses) from that including the additive.

