
 

 

IUCrJ (2017). 4, 604-613, doi:10.1107/S2052252517008107        Supporting information 

IUCrJ 
Volume 4 (2017) 

Supporting information for article: 

Coherent amplification of X-ray scattering from meso-structures 

Julien R. Lhermitte, Aaron Stein, Cheng Tian, Yugang Zhang, Lutz Wiegart, 
Andrei Fluerasu, Oleg Gang and Kevin G. Yager 

 

 

 

http://journals.iucr.org/m
http://dx.doi.org/10.1107/S2052252517008107


1

Coherent Amplification of X-ray Scattering from

Meso-structures

Julien Lhermitte,a Aaron Stein,a Cheng Tian,a Yugang Zhang,b

Lutz Wiegart,b Andrei Fluerasu,b Oleg Ganga,c,d and Kevin G. Yager a*

aCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton,

New York 11973 US, bNational Synchrotron Light Source II, Brookhaven National

Laboratory, Upton, New York 11973 US, cDepartment of Chemical Engineering,

Columbia University, New York, NY, 10027, USA US, and dDepartment of Applied

Physics and Applied Mathematics, Columbia University, New York, NY, 10027 US.

E-mail: kyager@bnl.gov

1. Intuitive explanation of the boost factor

To gain a better understanding, one can also examine the noise terms separately:

σs/a/bg =
√

Is/a/bg. Assuming the criterion is Creq = 1, then the signal must exceed

each of these noise values. Figure 1 schematically represents the relative intensities

of the signals and noises being discussed. The noise terms are the dashed lines, while

the corresponding signal is shown as a solid line of the same color (with the total

noise being the red dashed curve). When the sample is greater than the noise criterion

(here Is >
√
Is), then it is successfully amplified above all noise. However, if the sample

signal is weaker than its self-noise, then although it is amplified above the background

noise, it unfortunately remains below the noise introduced by the amplifier, and hence

below the overall noise criterion. Thus samples whose intrinsic signal-to-noise make
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them unmeasurable cannot be salvaged with X-amp; but weakly scattering samples

obscured by strong background noise can be amplified into a measurable regime.

a) b)

Fig. 1. A schematic of the amplification procedure, showing the relative intensities of
the signal and noise terms. The noise terms are shown as dashed lines, while the
corresponding signals are shown as solid lines of the same color. The total noise
is shown as a dashed red line. (a) When the sample signal (solid black) is at least
above its self-noise (Is > σs =

√
Is), the amplification procedure brings it above

all noise terms (dashed lines). (b) However, when the sample signal is below its
self-noise term, it can be boosted above the background noise (dashed purple) but
it cannot be boosted above the amplifier’s noise (dashed blue).

2. Amplifier Design

In designing a suitable amplifier, numerous structures were proposed. We investigate

the simulated scattering of a few of these. We know that the intensity is related to

the scattering cross section which is given by (Als-Nielsen & McMorrow, 2011):

I = Φ0 tan
2
(

a

R

)

dσ

dΩ
(1)

(2)

where Φ0 is the flux (photons/s/m2, assumed constant over the samples measured),

a the size of a pixel (75µm for EIGER 4M) and R is the sample to detector dis-

tance (4.81 m). The scattering cross section, in the far field, is given by the Born
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approximation (Als-Nielsen & McMorrow, 2011):

dσ

dΩ
= |r0F(~q)|2 (3)

F(~q) =

∫

V
δρ′(~q)ei~q·~rd~r (4)

δρ′(~r) = ρ′s(~r)− ρ′m(~r) (5)

ρ′s,m =
fs,m − |f ′

s,m|
fs,m

ρs,m (6)

where r0 is the classical Thomson radius, ρ is the electron density and δρ is the effective

electron density difference between the sample (s) and medium (m), which depends

on the energy dependent dispersion correction f’ (Als-Nielsen & McMorrow, 2011).

Absorption is ignored due to the thin nature of the samples. Note, the absolute value

is used due to the possible ambiguity in sign definition of f ′ (usually negative). The

absolute scattering is not of importance so these will be ignored.

The simplest of these structures is a pinhole. The equivalent to this would be a gold

post. The analytic structure factor of a pinhole of depth D and radius r is:

Fpost(qR) =

∫

V
δρ′(~r)ei~q·~rd~r (7)

= 2πDδρ′
∫ R

0
circ(

r

R
)ei~q·~rd~r (8)

= 2πDR2
∫ R

0
δρ′circ(

r

R
)ei(~qR)·~r′d~r′ (9)

= 2πR2Dδρ′
J1(qR)

qR
(10)

circ(r) =

{

1, r ≤ 1
0, r > 1

(11)

where J1 refers to the first order Bessel function of the first kind. Note that limqR→0
J1(qR)
qR =

1
2 and thus F(qR = 0) = δρπR2D = δρVpost. For no medium and negligible dispersion

corrections, this is equivalent to the number of electrons in the sample, which is what

is expected. The rings may be summed one by one. One ring is the difference of two

posts:

Fring(q,R1R2) = Fpost(qR2)− Fpost(qR1) (12)
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where R1 and R2 are the inner and outer radii, respectively. A sum of rings is just

computed by summing Fring over the appropriate rings, spaced ds apart:

Frings(q,R1R2) =

Nring
∑

i=1

Fring(q, ids −
∆R

2
, ids +

∆r

2
) (13)

A plot of the comparison of the form factor of a post versus 5 rings is plotted in

figure 2. Near the first order peak in the scattering of the rings, the scattering is a

factor of 50 times stronger than the disc. The peak is at 2π
ds

(the inverse ring spacing).

This parameter may be tuned to match the desired wave vector to amplify. The only

way to increase the intensity of the disc at that q is to increase the radius (see the

trend in figure 3). Thus for every disc of a fixed radius there always exists a ring that

may scatter stronger in certain regions of reciprocal space. For this proof of principle

experiment, it was more desirable to increase the scattering of our amplifiers as much

as possible for one region in q in order to increase the number of samples that may be

amplified. The final extent of the rings was chosen to be near 1µm in diameter.
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=
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9μ
m

)

disc
5̀rings
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Fig. 2. The form factor of a disc versus a ring. The radius of the disc rd is made to
match the outer edge of the ring: rd = r0 + ds ∗Nrings +

dr
2 .
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Fig. 3. A plot of the scattering of a disc versus radius R at wave vector qmax. Decreas-
ing the radius decreases the scattering. When the radius reaches 2π

2r = qmax, the
intensity increase becomes less favorable, trending as R as opposed to R4.

Anisotropic amplifiers were also considered. The anisotropy resulted in a loss of

amplified scattering for all wave vectors φ but a slight increase in wave vectors q. The

anisotropy is now sensitive to sample orientation and could be an interesting amplifier

to use when a certain orientation is desired. A simulation of rings and chevrons with

the same extent are found in figure 4. These were not chosen since they require the

sample to have a specific symmetry and orientation in order to detect a signal.
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Fig. 4. Top row left to right: A plot of a real space image of chevrons, the simulated
scattering, and a zoom. Bottom row left to right: A plot of the real space image of
rings, the simulated scattering and a zoom. Both peak similar in scattering. The
rings cover all azimuth φ whereas the chevrons do not, but cover slightly larger q.

750 nm

Fig. 5. A plot of the chevron pattern and its scattering (log scale).

3. Maximum longitudinal displacement

There is a strong advantage to minimizing the longitudinal displacement between

the sample and amplifier. In particular, when the longitudinal displacement is large,
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the ∆~r vector has a significant component along the beam direction. The resulting

interference term of course oscillates along this displacement vector. As a result, the

measured interference pattern will be ‘non-uniform,’ with different apparent fringe

periodicities in different parts of the image. This is simply due to the intersection

between the curved surface of the Ewald sphere, and the (highly longitudinal) inter-

ference oscillation.

Figure 6 shows an example of this effect, obtained by co-aligning a sample and

amplifier fabricated on two separate substrates. By aligning both close to the beam

center, they occupy the same coherence volume and interfere coherently; this can be

confirmed by noting the appearance of fringes in the total scattering pattern. However,

by increasing the longitudinal displacement between the sample and amplifier, the

spacing and direction of the fringes become non-uniform across the detector image.

However, one can still clearly see the enhanced visibility of the symmetry of the sample

where the fringes are visible. Angular correlation analysis on this data still extracts

the symmetries of the sample. This is confirmed with simulations described further

along this document.
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Fig. 6. Example of the total scattering (right) for a sample and amplifier separated by
≈ 450µm in the longitudinal direction (along the beam direction). The observed
fringes arise from the intersection of the Ewald sphere (left, blue) and the interfer-
ence pattern, which can be thought of as a plane wave, ei~q·∆~r (beige planes). When
the displacement vector has a substantial longitudinal component, this intersection
gives rise to concentric circles of scattering intensity. In the right image, the con-
tours of the peaks in the frequency modulation are overlaid as cyan curves. For ease
of viewing, only every second contour is plotted. These effects can also give rise to
interference fringes oscillating with a higher frequency that would be predicted if
considering only the x and y components of the displacement.

In X-amp, the highest-frequency components are due to the phase term in Equation

9 of the main text. The sampling in reciprocal-space is determined by the experimental

setup:

qx,y =
2π

λ
sin

(

tan−1
[

Npixdpix
Rdet

])

≈ qSAXS (14)

∆qx,y ≈ 2π

λ

dpix
Rdet

(15)

qz =
2π

λ

(

1− cos

(

tan−1
[

Npixdpix
Rdet

]))

≈ 2π

λ

(

Npixdpix
Rdet

)2

(16)

∆qz ≈ 4π

λ

Npixd
2
pix

R2
det

= 2qSAXS
dpix
Rdet

(17)

qSAXS =
2π

λ

Npixdpix
Rdet

(18)

where λ is the x-ray wavelength, dpix the pixel size (75µm in our experiment), Npix

the number of pixels away from the the q = 0 center on the detector, Rdet the sample-

to-detector distance, and qSAXS is the wave vector assuming the small angle approx-

imation. The requirement of sampling 4 points per period entails (where r⊥ is the
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direction perpendicular to the incoming beam, in the detector plane):

2π

∆r⊥
> ∆q⊥ (19)

∆r⊥ <
1

4
λ
Rdet

dpix
(20)

2π

∆z
> ∆qz (21)

∆z <
1

4

π

qSAXS

(

Rdet

dpix

)

. (22)

For example, for the setup described herein, with Rdet = 4.81 m, dpix = 75 µm,

wavelength λ = 1.4 Å, and maximum wave vectors of qSAXS = .01 Å
−1

(resolutions

down to 62 nm), the restrictions are ∆r⊥ ≈ 2 µm and ∆z ≈ 500µm. These restrictions

can be relaxed by either reducing the detector pixel size or increasing sample-detector

distance. This is done at the cost of a reduction of flux per pixel. It is important then

to ensure that the signal-to-noise criteria of the sample and amplifier are still met.

4. Simulations

The planar interference terms were simulated by Fourier transforming the projection

of the density. The scattering is again given by equation 4. We ignore the scaling

constants and replace them by an arbitrary constant C and consider only the form

factor:

I = C|F (~q)|2 (23)

F (~q) =

∫

δρ(~r)ei~q·~rd~r (24)

At small angle and small longitudinal displacements, we can approximate ei~q·~r ≈

ei~q⊥·~r = ei(qxx+qyy):

F (~q) ∼ 1

V

∫

A

(∫

z
δρ(~r)dz

)

ei~q·~rd~r (25)

=
1

A

∫

A
ρ⊥(x, y)e

i~q·~r⊥d~r⊥ (26)

δρ⊥ =
1

∆z

∫

z
ρ(x, y, z)dz (27)
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where A is the area and δρ⊥ is the projection of the density onto the xy plane.

The simulations are discretized into a finite grid. The projection of the density was

obtained from either computational modeling or by taking the SEM images. Both

yielded similar results. The results using the computed images are not limited by the

resolution of the SEM images taken and so thus will be considered here.

Fig. 7. A plot of the images (top row) and their caclulated scattering (bottom rown)
for the sample on its own (left), the amplifier (middle) and their interference (right).

A sample image of the simulated images may be seen in figure 7. A 3x3 hexagonal

arrangement of dots was used with a set of 5 concentric rings. The spacing of the

concentric rings was set so that the peak in the scattering from the rings matched

that of the sample. The circular averaged structure factors are seen in figure 8 where

it is clear that the peak in the scattering of the rings coincides that of the sample.

The scattering intensity was also rescaled so that the average count rate at the ring

which the sample and amplifier coincide are approximately 50 counts for the sample

and 4000 for the amplifier. Note that the peak in figure 8 is lower due to the circular

average of the scattering peaks.
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Fig. 8. A plot of the azimuthally averaged structure factors

Next, a background of 4 × 104 cts was added. The scattering was computed for 15

different combinations of sample, amplifier and sample and amplifier scattering. In

each combination, the sample, amplifier were independently rotated. In the case of

the sample and amplifier, the sample was also randomly translated. The scattering

was computed by a 2D Fourier transform using the python numpy library.

The correlation around the ring of maximum scattering was computed and the

results are seen in figure 9. The blue curve in each plot is the correlation of the

sample without background. The correlation of the sample on its own C1,s(∆φ) is

not visible, nor is the first order correlation of the sample and amplifier C1,s+a(∆φ).

However, the second order correlation C2,s+a(∆φ) is clearly visible. The curves were

subtracted by their average 〈C〉∆φ and normalized: c(∆φ) = C(∆φ)−〈C〉∆φ
A , where A is

a normalization constant. From appendix B, assuming the sample scattering is much

smaller than the amplifier scattering and subtracting the average background, the

IUCr macros version 2.1.10: 2016/01/28
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second order correlation function should be:

C2(∆φ) = 4Ī4totX
2
aX

2
s cs(∆φ)ca(∆φ) (28)

Xs =
Īs
Ītot

(29)

Xa =
Īa
Ītot

(30)

Ītot = Ībg + Īs + Īa. (31)

We thus normalize the computed correlation function from the simulation by the

expected amplitude A = Ī4totX
2
aX

2
s . With this normalization, we see that the theoret-

ical (blue) and simulated curves (magenta) agree (rightermost plot in figure 9). This

result confirms that the second order correlation C2,s+a(∆φ) function does indeed

show the symmetry of the sample, and that its amplitude is what is expected from

Appendix B.

Finally, the approximate expected signal to noise of the image itself is calculated

for the sample with background, interference term with background and the theoretical

limit of a very large amplifier, in figure 10, which are again:

SNsam =
Is

√

Ibg + Ia + Is
(32)

SNsam,nobg =
Is√

Ia + Is
(33)

SNinterference =
2
√
IsIa

√

Ibg + Ia + Is
(34)

SNtheoreticallimit =
2
√
IsIa√

Ia + Is
(35)

Note the theoretical limit of the interference term will always be twice that of the

sample.
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C1,H3R5(Δϕ)

0 90 180 270 360
Δϕ

C2,H3R5(Δϕ)
C1,H3(Δϕ)̀(nòbg)

Fig. 9. A plot of the correlation functions for the sample on its own (left) with (red)
and without (blue) background, the first order correlation function (middle) of the
interference term (black), compared with the sample on its own witout background
(blue) and the second order correlation function (right) of the interference term
(magenta) compared with the correlation function of the sample on its own (blue).
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Fig. 10. A plot of the signal to noise of the sample, the interference, and the theoretical
limit (in limit of large and perfect amplifier).

4.1. Simulations with planarly displaced samples

In the three-dimensional reciprocal-space, the interference term is modulated by:

ei~q·∆~r = ei(qx∆x+qy∆y+qz∆z) (36)

where:

qx = sin 2θ cosφ (37)

qy = sin 2θ sinφ (38)

qz = (1− cos 2θ) (39)

In small-angle scattering, the qz component is very small (at least two orders of mag-

nitude smaller than the qx,y components, for conditions examined here). Thus, the qz

component is normally neglected. However, if the longitudinal ∆z is much larger than
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the ∆x and ∆y displacements, the product qz∆z may add a non-negligible contribu-

tion to the phase. This effect can be modeled.

To demonstrate the validity of the correlation analysis, the analysis was performed

on simulated data. The simulations were performed again adding planar displacement.

The planar displacement was added by adding an extra phase term to the simulated

scattered field terms:

I = |Fs|2 + |Fa|2 +
(

FsF
∗
a e

i(qx∆x+qy∆y+qz∆z) + c.c.
)

.

The amplifier subtracted scattering can be seen in figure 11, for one instance of a

simulated 5x5 array and amplifier. The sample was placed randomly between 1.5 µm-

2 µm from the center of the reference. The dimensions of the sample and reference

were the same as seen in the SEM images.

−0.010 −0.005 0.000 0.005 0.010

qx (Å −1)

−0.010

−0.005

0.000

0.005

0.010

q y
(Å

−1
)

Fig. 11. A plot of the reference subtracted scattering.
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Fig. 12. A plot of the correlations at the 1st order peak for the sample on its own
(black), sample with reference (red) and the 2nd moment correlation function of
the sample with the reference (magenta).

The correlation analysis presented above is robust with respect to non-uniform oscil-

lations throughout the image, provided that one averages over an ensemble of sample

realizations with different in-plane (x and y) displacement amounts. Even though the

interference fringes may not be uniform within a particular image, their apparance

throughout the image is still a representation of the sample scattering; correlating

between regions of high variance (where the fringes appear) will recover the sample

symmetry. Experimentally, the high-frequency oscillations that can be introduced by

the longitudinal displacement can, however, reduce data quality. In the limit of very

high-frequency oscillations, the detector pixel resolution will become insufficient. Thus,

there is a clear advantage to minimizing the sample-amplifier longitudinal displace-

ment. Experimentally, we find that a modest and readily acheivable displacement (100

to 500µm) yields interference fringes of sufficient visibility to be amenable to analysis.
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4.2. Simulation of the Boost Factor

To save on computation time, the simulation of the boost factor for the angular

correlations was simplified to a 1D example, which is here assumed to be a ring

of constant wave vector magnitude q. The sample chosen was a 6 fold symmetric

arrangement of Gaussian peaks:

Es(φ, ~q,~rs, φ0, σφ) =
√

Ase
i~q·~rs

6
∑

j=1

e
−

(φ+2π
6

j−φ0)
2

2σ2
φ

where σφ = .08rad,
√
As is the maximum amplitude of the electric field and ~rs is

the position of the sample, consistent with the Born approximation (Als-Nielsen &

McMorrow, 2011). The intensity (ignoring constant factors) is:

Is(φ, φ0, σφ) = |Es|2 = As





6
∑

j=1

e
−

(φ−φ0)
2

2σ2
φ





2

.

The maximum intensity is As. The field of the amplifier is chosen to be:

Ea(φ, ~q,~ra) =
√

Aae
i~q·~ra

where the intensity of the amplifier is:

Ia(φ, φ0, σφ) = |Ea|2 = Aa.

The intensity of the amplifier is then Aa. When the amplifier and sample coherently

interfere, the scattered fields are superposed:

E = Es + Ea.

and their intensity:

I = |Es + Ea|2. (40)

= |Es|2 + (EsE
∗
ae

i~q·∆~r + c.c.) + |Ea|2 (41)

∆~r = ~rs − ~ra (42)
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where c.c. stands for complex conjugate. This term fluctuates between (
√
As+

√
Aa)

2

and (
√
As −

√
Aa)

2. In order to simulate the system, values for ~q and ∆~r must be

chosen. The wavevector magnitude q is in the regime of .001− .01Å
−1

, and so q = .005

was chosen. The sample amplifier distance |∆~r| was chosen to range from 0nm −

800nm. Finally, an incoherent background was applied to the sample and interference

intensities:

Inoamp = |Es|2 +Abg (43)

Iamp = |Es|2 + (EsE
∗
ae

i~q·∆~r + c.c.) + |Ea|2 +Abg (44)

∆~r = ~rs − ~ra (45)

The defining parameters for the unamplified scheme simulation (equation 43) are

As, the sample maximum intensity, σφ, the width of the Gaussian peaks, φ0, the

orientation of the sample and Abg, the background intensity. The orientation of the

sample is randomly varied whereas the width is kept fixed. For the amplified scheme,

the defining parameters are the same as that for the unamplified scheme, as well as

Aa, the amplifier intensity, and ∆~r = (∆x,∆y, 0) the sample-amplifier distance. The

latter is varied randomly such that 0nm ≤ |∆~r|2 =
√

∆x2 +∆y2 ≤ 800nm. The

combination of these parameters results in a simulation with free parameters Aa and

Abg. The final intensity is computed by sampling from a Poisson distribution whose

intensity is defined by the simulated intensity in the previous step.

The correlation of the intensity on each simulation of the unamplified scheme is fit

to the expected correlation function assuming no noise. The noise is defined as the χ2

difference between the fit and the sample, and the signal is defined as the standard

deviation of the fit. The same is performed for the amplified scheme, except that the

second order correlation function is taken. The boost factor is then the ratio of these

two values, computed as in figure 5 of the original document.
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Parameter Value or Range fixed, random, varied

As 10 cts fixed
σφ .8 rad fixed
φ0 0− 2π rad random
Aa 10− 104 cts varied
Abg 1− 104 cts varied

5. Location of sample

When conducting these experiments where some samples may not be visible above

background, sample location is crucial. A system was devised where patterns of suc-

cessively weaker scattering and more localized center of mass were patterned. The

layout was as can be seen in figure 13. Since the structures are small to begin with

(the whole grid being 1.28mm in extent), a large “L” shaped pattern of gold is placed

on the pattern. This shape is visible by eye and allows the sample to be placed in the

correct orientation which is crucial. Next, the sample is carefully centered to within

500µm by eye. The xray beam is scanned along the sample in 10 micron increments

at a 10 second exposure by translating the sample until a signature from the grid lines

(in the figure) is found. When found, the xray is scanned until a region of interest

centered on one of the diffraction peaks is maximized. This is done in the vertical and

transverse directions. The sample is often not perfectly horizontal but tilted (in the

directions transverse to the incoming beam). The tilt is also measured by precisely

calculating it from the peaks (there is a 1.5◦ tilt in the image shown). The tilt is taken

into account when translating the motors across the sample.

This accuracy is often not enough for the large number of patterns per substrate.

In order to improve the accuracy, samples localized in both transverse directions and

of fairly strong and known scattering are placed throughout the sample (red squares

in figure 13). The scattering of the sample is strong enough to be observed in a 1

second exposure but not so strong that some of its scattering may be detected when

on a neighbouring sample. This re-optimization of position is performed whenever the
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beam is moved more than 6 spaces (240µm) in the x direction and 2 spaces (80µm)

in the y-direction.

The location the lithographic structures fabricated by electron beam lithography is

accurate to within subnometer resolution. The amplifier structures were scanned with

500 nm step size at the beam line. The resolution of the stage motors is 50 nm. With

interpolation, the samples were then centered with an accuracy better than 500 nm.

For a Gaussian beam of standard deviation of 5 µm, this is sufficient.

Finally, prior to measurement, each sample considered in this paper was measured

with SEM. The samples were all located and found to be produced as specified.
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Fig. 13. The schematic of the lithographically patterned structures. The black lines are
meant only to serve as a guide to the eye. Each sample is located on a 32x32 square
grid of 40µm pitch so that when the beam is centered on a sample, is located at
least 8 standard deviations away for a Gaussian beam of standard deviation 5µm.
The blue lines refer to grid lines that are known to scatter strongly. In the regions
of red squares, a strongly scattering sample, an 11x11 hexagonal array of dots is
placed. SEM images and the resultant scattering are shown below the schematic.
The images are 60 second exposures of the diffraction of each sample. One may see
imperfections in the grid lines, as can be seen in the rightermost SEM image. These
artifacts affect the scattering, but do not change the expected unique signature.IUCr macros version 2.1.10: 2016/01/28
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6. Intensity

The intensity of a few structures is presented here in figure 14. One sees that the peak

in scattering from the rings coincides with the first order peaks of the arrays of dots,

as can be seen by the circularly averaged structure factor in the bottom right figure

of figure 14.

5x5 array 5 Rings

7 Rings

10−2 10−1

q (Å−1)

101

102

103

I(q
)

5x5 array
5 rings
7 rings

200 nm 500 nm

750 nm

Fig. 14. The scattered intensity of a 60 second exposure of the hexagonal array (top
left), 5 concentric rings (top right) and 7 concentric rings (bottom left), with the
circularly averaged structure factors plotted (bottom right). The maximum of the
concentric rings coincides with that of the 5x5 array.

7. Coherence

In order for the sample to be resolvable, there must be coherent interference among the

samples in the scattering volume, and this interference must be sampled by at least

2 pixels per sample. The samples considered in this paper are not more than 2µm

in extent. So to test these two criteria, a sample of this extent was measured. The

sample chosen was a 22x22 array of dots of extent ∼ 2.6µm. The highest frequency

terms observed in the diffraction pattern are the intermodal peaks, which are related

to a length scale of the extent of the sample, or ∼ 2.6µm. One sees that at this length

scale, the diffraction pattern is still well preserved. A larger sample, of 5.2 µm in extent

was also measured. There is a clear loss in visibility of the fringes.

IUCr macros version 2.1.10: 2016/01/28



23

1 µm 1 µm

1250

1180

1200

1220

1250

1240 1260 1280
pixel #

102

103

104

105

106

107

108

ct
s

22x22 array
44x44 array

Fig. 15. A plot of the SEM images top row of the 22x22 array (left) and 44x44 array
(right). The middle row is their measured scattering after a 60 second exposure,
with the bottom row being a zoom in the corresponding highlighted blue boxes.
Finally, a plot along the blue line in the zooms are plotted on the right. The fringes
are well resolved for the 22 × 22 case, which confirms that interference effects on
length scales of 22µm can be observed.

8. Correlation of sample on its own

A plot of the angular correlations of the a 3x3 hexagonal arrangement of dots and

the amplifier structure was shown in figure 3 of the main paper. Here, we show the

intensity along with the angular correlation of the same ring for the 3x3 array of dots

on their own, in figure 16. The samples were confirmed to exist by SEM images (such

as the one included in figure 16). The beam was centered with a precision better than

500 nm on the sample using the method described in section 5. Although the samples

cannot be seen in the images, they can be seen through their correlations. In this case,

the background was constant per measurement, and was determined by averaging

measurements together. This is a different case from the results of Fig 4 of the main

text, where the technique was not successful without the amplifier. In that case, the

background changed per measurement, making background subtraction impossible.
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Fig. 16. A plot of the scattering of one of the 3x3 arrays left with its SEM image
(top left), along with a plot the background subtracted intensity along the out-
lined cyan ring (plotted on the top left) and its first order and second correlation
function(bottom right).
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