

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information

IUCrJ
Volume 4 (2017)

Supporting information for article:

Classification of crystal structure using a convolutional neural
network

Woon Bae Park, Jiyong Chung, Jaeyoung Jung, Keemin Sohn, Satendra Pal
Singh, Myungho Pyo, Namsoo Shin and Kee-Sun Sohn

http://journals.iucr.org/m
http://dx.doi.org/10.1107/S205225251700714X
http://dx.doi.org/10.1107/S205225251700714X

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-1

S1. Indexing of the synchrotron X-ray powder diffraction data on Ca1.5Ba0.5Si5N6O3 system

 The auto-peak-search was first carried out using proper peak profile parameters (peak

threshold, background threshold and shoulder threshold) so as to exclude some of the weak

intensity peaks of the Ca1.5Ba0.5Si5N6O3 system as shown in Figure S1 (a). The peaks so

obtained were then indexed using TREOR program. The indexing result ended up with no

acceptable solution, but few probable solutions with very low figure of merits. The

alternative choice of the profile parameter in the auto-peak-search procedure was then made

to account for weaker intensity peaks as shown in Figure S1 (b) followed by indexing with

TREOR program. The later choice also ended with no acceptable solution. However, the

indexing result in the later case ended up with large number of probable solutions compared

to former but having very low figure of merits. The output results obtained for the two case

are shown in Table S1 and Table S2.The crystal structure of Ca1.5Ba0.5Si5N6O3 system was

later indexed with monoclinic crystal structure in the Cm space group with a great deal of

human intervention.

Figure S1 Peak positions of the XRD pattern obtained under different auto-peak-search

parameters(peak threshold, background threshold and shoulder threshold) for the

Ca1.5Ba0.5Si5N6O3 system.

(a)

(b)

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-2

Table S1: Output of indexing results using peak positions of the Ca1.5Ba0.5Si5N6O3 system

shown in Figure S1 (a)

Peak

Positions

Results Lattice parameters Unit Cell

Volume

(Å3)

M

(20)

F

(20)

Unindexed

Peaks

Crystal

System a (Å) b (Å) c(Å) α () β () ()

13.807770

17.388229

19.530661

20.079321

20.923000

22.719839

22.974279

24.653040

27.280600

27.388439

27.556770

27.824011

28.579519

29.414089

29.512011

29.908590

30.056101

30.778820

31.469900

33.035568

33.126801

35.203629

35.364738

35.817169

36.102379

36.584320

37.608681

39.156448

39.547901

40.604530

40.830780

41.232979

41.383121

1 13.271821 11.932581 9.739318 90 90 90 5951.85 9 17 5 Orthorhom

bic

2 9.224786 23.865963 5.684216 90 98.038 90 1239.13 8 16 2 Monoclinic

Comment: Some of the unindexed peaks in the above results do not belong to any impurity phase

but the main phase, its negligence in the peak indexing should not be ignored. Thus the indexing

results ended up with no acceptable solution. Please note unacceptably low figure of merit in the

output results.

.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-3

Table S2: Output of indexing results using peak positions of the Ca1.5Ba0.5Si5N6O3 system

shown in Figure S1 (b)

Peak

Positions

Results Lattice parameters Unit Cell

Volume

(Å3)

M

(20)

F

(20)

Unindexed

Peaks

Crystal

System a (Å) b (Å) c(Å) α () β () ()

10.435100

13.807770

14.894670

17.388229

19.530661

20.079321

20.923000

22.426849

22.719839

22.974279

24.653040

27.280600

27.388439

27.556770

27.824011

28.579519

29.414089

29.512011

29.908590

30.056101

30.778820

31.469900

33.035568

33.126801

35.203629

35.364738

35.817169

36.102379

36.584320

37.608681

37.826149

38.377480

39.156448

39.547901

39.661140

40.074989

40.415131

40.604530

40.830780

41.232979

41.383121

1 16.880354 16.880354 20.887634 90 90 90 5951.85 9 19 4 Tetragonal

2 15.286790 11.938805 9.134131 90 90 90 1667.03 7 14 5 Orthorho

mbic

3 15.797421 11.932431 4.711424 90 104.566 90 859.57 17 33 6 Monoclinic

4 15.807192 11.935061 9.430994 90 104.659 90 1721.33 7 14 2 Monoclinic

5 13.837232 11.949532 6.787256 90 99.192 90 1107.85 7 15 5 Monoclinic

6 13.492250 9.127168 12.479813 90 107.227 90 1467.89 6 13 0 Monoclinic

7 9.200842 12.858434 8.940390 90 96.439 90 1051.05 6 12 8 Monoclinic

Comment: Some of the unindexed peaks in the above results do not belong to any impurity phase

but the main phase, its negligence in the peak indexing should not be ignored. Thus the indexing

results ended up with no acceptable solution. Please note unacceptably low figure of merit in the

output results.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-4

 In conclusion, human intervention is initially required to identify each peak correctly

(even the peaks with very weak intensities). After extensive analysis the final crystal structure

was indexed with a monoclinic in the Cm space group having lattice parameters a =

7.07033(2) Å, b = 23.86709(7) Å, c = 4.825304(15) Å, α = = 90 and β = 109.0647(2) and

with figures of merit as M(20) = 225 and F(20) = 432.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-5

S2. Indexing of the synchrotron X-ray powder diffraction data on BaAlSi4O3N5:Eu2+

system

 Indexing of the peaks obtained through an auto-peak-search for the BaAlSi4O3N5:Eu2+

system shown in Figure S2 using the TREOR program ended up with a probable structural

solution for the crystal system as monoclinic. In addition to this there were other solutions

with identical figure of merit in the output file. All the solutions obtained in the output file of

the TREOR program is shown in Table S3. The suggested solution (monoclinic crystal

system) was not found to be valid since the observed and calculated data do not show good

match in the structural refinement. The crystal structure of BaAlSi4O3N5:Eu2+ system was

later indexed with orthorhombic system in the A21am space group, having the lattice

parameters a = 9.48461(3) Å, b = 13.47194(6) Å, c = 5.77323(2) Å, and α = β = γ = 90° and

figure of merit M(20) = 110 and F(20) =179. This brilliant solution was totally obtained by

human intervention (i.e. our expertise), and the computational auto-peak-search can never

reach this level.

Figure S2 Peak positions of the XRD pattern obtained with an auto-peak-search for the

BaAlSi4O3N5:Eu2+ system.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-6

Table S3: Output of indexing results using peak positions of the BaAlSi4O3N5:Eu2+

system shown in Figure S2.

Peak

Positions

Result Lattice parameters Unit Cell

Volume

(Å3)

M

(20)

F

(20)

Unindexed

Peaks

Crystal

System a (Å) b (Å) c(Å) α () β () ()

13.188150

16.194180

16.761641

18.773069

19.228790

23.013981

25.197500

25.270580

26.545000

26.581079

26.946289

28.207331

28.237869

31.092190

31.363951

31.615000

31.639490

32.725319

32.755211

33.100208

33.908539

35.252048

36.572929

36.981800

38.084770

39.037060

39.046349

40.358879

40.469971

41.320000

41.368370

41.800320

41.874779

1 15.030773 15.030773 20.887634 90 90 90 2144.50 6 12 7 Tetragonal

2 9.496901 9.496901 19.174593 90 90 90 1729.38 7 14 6 Tetragonal

3 13.462188 9.488531 5.772748 90 90 90 737.39 20 39 4 Orthorhom

bic

4 13.474647 11.543999 9.488491 90 90 90 1475.95 16 32 5 Orthorhom

bic

5 7.174809 9.493328 6.809177 90 98.870 90 458.25 14 28 7 Monoclin

ic

Comment: Among all the above five solutions given in the output file, the best solution for the crystal

system was suggested as monoclinic (result no 5) by the TREOR program, even though it has 7

unindexed peaks. It should be noted that some of the unindexed peak in peak list do not belong to any

impurity phase so its negligence in the peak indexing should not be ignored. The suggestion for the

monoclinic system was perhaps based on the smallest cell volume obtained during indexing, in spite

of the unacceptable figure of merit. However, further structural analysis using suggested parameters

resulted in very bad match between the observed and experimental data, and it turned out to be an

orthorhombic system.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-7

S3. Basics of Artificial Neural Networks (ANNs) (Some of the text is taken from

http://cs231n.github.io/)

Artificial neural network (ANN) is a machine learning approach that models human brain and

consists of a number of artificial neurons (an information-processing unit that is fundamental

to the operation of a neural network) that are linked together according to a specific network

architecture. The objective of the neural network is to transform the inputs into meaningful

outputs. ANNs are utilized in many scientific disciplines to solve a variety of problems such

as pattern recognition, prediction, optimization etc.

Biological systems (humans/animals) are able to react adaptively to changes in their external

and internal environment, and they use their nervous system to perform these behaviours. The

basic computational unit of the brain is a neuron (about 86 billion neurons in human

nervous system) are connected to synapses (1014 -1015). Each neuron receives input signals

from its dendrites and produces output signals along its single axon. The axon eventually

branches out and connects via synapses to dendrites of other neurons. A schematic drawing

of a biological neuron and a common mathematical model) is shown in Figure S3.

Figure S3 Schematic drawing of (a) a biological neuron and (b) a common mathematical model

of neuron [Figures reproduced from http://cs231n.github.io/neural-networks-1/].

In the computational model of a neuron shown in Figure S3 (b), the neuron, input, output, and

weight (w) are analogous to the cell body (also called soma), dendrite, axon and synapse

respectively, to a biological system. The input signals that travel along the axons (e.g. x0)

interact multiplicatively (e.g. w0x0) with the dendrites of the other neuron based on the

synaptic strength at that synapse (e.g. w0). The idea is that the synaptic strengths (the

weights w) are learnable and control the strength of influence (and its direction: excitory

(positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic

model, the dendrites carry the signal to the cell body where they all get summed. If the final

sum is above a certain threshold, the neuron can fire, sending a spike along its axon and

frequency of the firing communicates information. Similarly, the neuron computes the

weighted sum of the input signals and compares the result with a threshold value. If the net

input is less than the threshold, the neuron output is –1. But if the net input is greater than or

equal to the threshold, the neuron becomes activated and its output attains a value +1.

Commonly used activation functions in neural networks are step function, Sigmoid function,

σ(x)=1/(1+e−x) (it takes a real-valued number and “squashes” it into range between 0 and 1),

tanh (it squashes a real-valued number to the range [-1, 1]), etc. The Rectified Linear Unit

(ReLu) has become very popular in the last few years, it computes the

function f(x)=max(0,x). In other words, the activation is simply thresholded at zero.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-8

Neural Networks are modeled as collections of neurons that are connected in an acyclic

graph. For regular neural networks, the most common layer type is the fully-connected

layer in which neurons between two adjacent layers are fully pair wise connected, but

neurons within a single layer share no connections. Figure S4 shows two example of Neural

Network topologies that use a stack of fully-connected layers.

Figure S4 (a) A 2-layer Neural Network consisting of three inputs, one hidden layer of 4

neurons (or units) and one output layer with 2 neurons.

(b)A 3-layer neural network consisting of three inputs, two hidden layers of 4 neurons each

and one output layer. [Figures reproduced from http://cs231n.github.io/neural-networks-1/]

S4. Detailed description of the Convolutional Neural Networks (CNNs) [Some of the text

is taken from http://cs231n.github.io/)]

Convolutional Neural Networks are very similar to an ordinary Neural Networks described in

the previous section: they are made up of neurons that have learnable weights and biases.

Each neuron receives some inputs, performs a dot product and optionally follows it with a

non-linearity. The whole network still expresses a single differentiable score function: from

the raw image pixels on one end to class scores at the other. And they still have a loss

function (e.g. Support vector matrix (SVM)/Softmax) on the last (fully-connected) layer and

all the tips/tricks that were developed for learning regular Neural Networks still apply. The

only difference is that the CNN architectures make the explicit assumption that the inputs are

images, which allows to encode certain properties into the architecture. These then make the

forward function more efficient to implement and vastly reduce the amount of parameters in

the network.

As describes in the previous section that a Neural Networks receive an input (a single vector),

and transform it through a series of hidden layers. Each hidden layer was made up of a set of

neurons, where each neuron was fully connected to all neurons in the previous layer, and

where neurons in a single layer function completely independently and do not share any

connections. The last fully-connected layer is called the “output layer” and in classification

settings it represents the class scores. Regular Neural Nets could work well with images with

small size. For example, images with size 32x32x3 (32 wide, 32 high, 3 color channels), a

single fully-connected neuron in a first hidden layer of a regular Neural Network would have

32*32*3 = 3072 weights and could be manageable. However, an image with large size for

example 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights. We

certainly want to have several such neurons, so the parameters would add up quickly. Clearly,

this full connectivity is wasteful and the huge number of parameters would quickly lead to

overfitting.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-9

Convolutional Neural Networks on the other hand take advantage of the fact that the input

consists of images and they constrain the architecture in a more sensible way. In particular,

unlike a regular Neural Network, the layers of a CNN have neurons arranged in 3

dimensions: width, height, depth as shown in Figure S5. The word depth here refers to the

third dimension of an activation volume, not to the depth of a full Neural Network, which can

refer to the total number of layers in a network.

Figure S5(a) A regular 3-layer Neural Network, (b) A CNN arranges its neurons in three

dimensions (width, height, depth), as visualized in one of the layers. Every layer of a CNN

transforms the 3D input volume to a 3D output volume of neuron activations. In this

example, the red input layer holds the image, so its width and height would be the dimensions

of the image, and the depth would be 3 (Red, Green, Blue channels). [Figures reproduced from

http://cs231n.github.io/convolutional-networks/]

 A simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of

activations to another through a differentiable function. Basically three main types of layers

are used to build CNN architectures: Convolutional Layer, Pooling Layer, and Fully-

Connected Layer (exactly as seen in regular Neural Networks). All these layers are stacked

to form a full CNN architecture. Example of CNN for classification of image of a car is

shown Figure S6. CNNs transform the original image layer by layer from the original pixel

values to the final class scores. The parameters in the CONV/FC layers will be trained with

gradient descent so that the class scores that the CNN computes are consistent with the labels

in the training set for each image.

Example:

A simple CNN for image classification could have the architecture [INPUT - CONV - RELU

- POOL - FC].

 INPUT [e.g 32x32x3 image size] will hold the raw pixel values of the image, in this case

an image of width 32, height 32, and with three color channels R,G,B.

 CONV layer will compute the output of neurons that are connected to local regions in the

input, each computing a dot product between their weights and a small region they are

connected to in the input volume. This may result in volume such as [32x32x12] if we

decided to use 12 filters.

 RELU layer will apply an element wise activation function, such as the max(0,x)

thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-10

 POOL layer will perform a downsampling operation along the spatial dimensions (width,

height), resulting in volume such as [16x16x12].

 FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size

with class score.

Figure S6 The initial volume stores the raw image pixels (left) and the last volume stores the

class scores (right). Each volume of activations along the processing path is shown as a column.

Since it's difficult to visualize 3D volumes, each volume's slices is laid out in rows. The last

layer volume holds the scores for each class for the sorted top 5 scores [Figures reproduced

from http://cs231n.github.io/convolutional-networks/].

S5. Training methods

Both supervised and supervised process may be adopted for the training. In the supervised

training, both the inputs and the outputs are provided. The network then processes the inputs

and compares its resulting outputs against the desired outputs. Errors (the difference of the

desired output and the given output) are then propagated back through the system, causing

the system to adjust the weights which control the network. This process occurs over and

over as the weights are continually tweaked. The set of data which enables the training is

called the training set. During the training of a network the same set of data is processed

many times as the connection weights are ever refined. Whereas, in unsupervised training, the

network is provided with inputs but not with desired outputs. The network is required to self-

organise (i.e. to teach itself) depending on some structure in the input data.This is often

referred to as self-organization or adaption.

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-11

S6. Python source code for the XRD classification

#import basic library
import numpy as np
import pandas as pd
from random import random
import bottleneck as bn
import heapq

#load y_label
docX = []
docY = []

df_out = pd.read_csv('D://JI//newxrd//150000Y.csv',header=None)
filename = df_out[0]
Y_data230 = np.array(df_out[1]) - 1
Y_data7 = np.array(df_out[2]) - 1
Y_data101 = np.array(df_out[3]) – 1

#load X_data
for i in filename :
 filepath = "D://JI//newxrd//fresh_random//" + str(i) + ".csv"
 arr = pd.read_csv(filepath,header=None)
 arr = np.array(arr)
docX.append(arr)
X_data = np.array(docX)
docX = []

#randomly choose 20% test data
tot_ix =range(len(Y_data7))
test_ix = np.random.choice(tot_ix, int(len(Y_data7)*0.2), replace=False)
test_ix = np.sort(test_ix,axis=0)
train_ix = list(set(tot_ix) - set(test_ix))

#write test data index into csv files
test_ix = np.reshape(test_ix, test_ix.shape + (1,))
mat1 = test_ix
dataframe1 = pd.DataFrame(data=mat1.astype(int))
dataframe1.to_csv('choose20percenttestset.csv', sep=',', header=False,
float_format = '%.2f', index = False)

#load test index and convert to hot vector
test_index = pd.read_csv('choose20percenttestset.csv', header=None)
test_ix = test_index[0]

tot_ix = range(len(Y_data7))
train_ix = list(set(tot_ix) - set(test_ix))
test_X = X_data[test_ix]
train_X = X_data[train_ix]

test_Y7 = Y_data7[test_ix]
train_Y7 = Y_data7[train_ix]

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-12

test_Y101 = Y_data101[test_ix]
train_Y101 = Y_data101[train_ix]

test_Y230 = Y_data230[test_ix]
train_Y230 = Y_data230[train_ix]

from keras.utils.np_utils import to_categorical

train_Y7 = to_categorical(train_Y7, 7)
test_Y7 = to_categorical(test_Y7, 7)

train_Y101 = to_categorical(train_Y101, 101)
test_Y101 = to_categorical(test_Y101, 101)

train_Y230 = to_categorical(train_Y230, 230)
test_Y230 = to_categorical(test_Y230, 230)

#shuffle data before training
tot_ix =range(len(train_X))
rand_ix = np.random.choice(tot_ix, len(train_X), replace=False)
train_X = train_X[rand_ix]
train_Y101 = train_Y101[rand_ix]
train_Y7 = train_Y7[rand_ix]
train_Y230 = train_Y230[rand_ix]

#import keras library
from keras.models import Sequential
from keras.layers import Input, Dense, Flatten, Merge, merge
from keras.layers import Dropout, Activation
from keras.layers import Convolution1D, MaxPooling1D, AveragePooling1D
from keras.layers import ZeroPadding1D
from keras.layers.noise import GaussianNoise
from keras.optimizers import SGD
import keras.callbacks
from keras.models import Model

7 label training
model = Sequential()

model.add(Convolution1D(80, 100, subsample_length = 5, border_mode =
'same', input_shape=(10001,1))) #add convolution layer
model.add(Activation('relu')) #activation
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer

model.add(Convolution1D(80, 50, subsample_length = 5, border_mode =
'same'))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

model.add(Convolution1D(80, 25, subsample_length = 2, border_mode =
'same'))
model.add(Activation('relu'))

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-13

model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

model.add(Flatten())
model.add(Dense(700))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(70))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(7))
model.add(Activation('softmax'))

#Compile
model.compile(loss='categorical_crossentropy', optimizer='Adam',
metrics=['accuracy'])

#fit
filepath='D://JI//newxrd//xrd_model//7labelmodel.out'
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath,
monitor='val_loss', verbose=0, save_best_only=True, mode='auto')
history = keras.callbacks.History()
model.fit(train_X, train_Y7, batch_size=500, nb_epoch=5000,
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True)

check the accuracy
a = model.evaluate(train_X, train_Y7)
print(a)
a = model.evaluate(test_X, test_Y7)
print(a)

101 label training
model = Sequential()

model.add(Convolution1D(80, 100, subsample_length = 5, border_mode =
'same', input_shape=(10001,1))) #add convolution layer
model.add(Activation('relu')) #activation
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer

model.add(Convolution1D(80, 50, subsample_length = 5, border_mode =
'same'))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

model.add(Convolution1D(80, 25, subsample_length = 2, border_mode =
'same'))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-14

model.add(Flatten())
model.add(Dense(4040))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(202))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(101))
model.add(Activation('softmax'))

#Compile
model.compile(loss='categorical_crossentropy', optimizer='Adam',
metrics=['accuracy'])

#fit
filepath='D://JI//newxrd//xrd_model//101labelmodel.out'
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath,
monitor='val_loss', verbose=0, save_best_only=True, mode='auto')
history = keras.callbacks.History()
model.fit(train_X, train_Y101, batch_size=800, nb_epoch=5000,
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True)

check the accuracy
a = model.evaluate(train_X, train_Y101)
print(a)
a = model.evaluate(test_X, test_Y101)
print(a)

230 label training
model = Sequential()

model.add(Convolution1D(80, 100, subsample_length = 5, border_mode =
'same', input_shape=(10001,1))) #add convolution layer
model.add(Activation('relu')) #activation
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer

model.add(Convolution1D(80, 50, subsample_length = 5, border_mode =
'same'))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

model.add(Convolution1D(80, 25, subsample_length = 2, border_mode =
'same'))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(AveragePooling1D(pool_length=3, stride=None))

IUCrJ (2017). 4, doi:10.1107/S205225251700714X Supporting information, sup-15

model.add(Flatten())
model.add(Dense(2300))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(1150))
model.add(Activation('relu'))
model.add(Dropout(0.5))

model.add(Dense(230))
model.add(Activation('softmax'))

#Compile
model.compile(loss='categorical_crossentropy', optimizer='Adam',
metrics=['accuracy'])

#fit
filepath='D://JI//newxrd//xrd_model//230labelmodel.out'
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath,
monitor='val_loss', verbose=0, save_best_only=True, mode='auto')
history = keras.callbacks.History()
model.fit(train_X, train_Y230, batch_size=1000, nb_epoch=5000,
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True)

check the accuracy
a = model.evaluate(train_X, train_Y230)
print(a)
a = model.evaluate(test_X, test_Y230)
print(a)

#save log after training
acc_log = history.history['acc']
val_acc_log = history.history['val_acc']
loss_log = history.history['loss']
val_loss_log = history.history['val_loss']
acc_log = np.array(acc_log)
val_acc_log = np.array(val_acc_log)
loss_log = np.array(loss_log)
val_loss_log = np.array(val_loss_log)
mat = np.vstack((loss_log, acc_log, val_loss_log, val_acc_log))
mat = np.transpose(mat)
dataframe1 = pd.DataFrame(data=mat)
dataframe1.to_csv('save_log.csv', sep=',', header=False,
float_format='%.7f', index=False)

The weight values for the three CNN architectures, if needed by the reader, can be provided by email

to the corresponding author.

