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S1. Indexing of the synchrotron X-ray powder diffraction data on Ca1.5Ba0.5Si5N6O3 system 

 The auto-peak-search was first carried out using proper peak profile parameters (peak 

threshold, background threshold and shoulder threshold) so as to exclude some of the weak 

intensity peaks of the Ca1.5Ba0.5Si5N6O3 system as shown in Figure S1 (a). The peaks so 

obtained were then indexed using TREOR program. The indexing result ended up with no 

acceptable solution, but few probable solutions with very low figure of merits. The 

alternative choice of the profile parameter in the auto-peak-search procedure was then made 

to account for weaker intensity peaks as shown in Figure S1 (b) followed by indexing with 

TREOR program. The later choice also ended with no acceptable solution. However, the 

indexing result in the later case ended up with large number of probable solutions compared 

to former but having very low figure of merits. The output results obtained for the two case 

are shown in  Table S1 and  Table S2.The crystal structure of Ca1.5Ba0.5Si5N6O3 system was 

later indexed with monoclinic crystal structure in the Cm space group with a great deal of 

human intervention.  

 

 

 

 

Figure S1 Peak positions of the XRD pattern obtained under different auto-peak-search 

parameters(peak threshold, background threshold and shoulder threshold) for the 

Ca1.5Ba0.5Si5N6O3 system. 

(a) 

(b) 
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Table S1: Output of indexing results using peak positions of the Ca1.5Ba0.5Si5N6O3 system 

shown in Figure S1 (a) 

Peak 

Positions 

Results Lattice parameters Unit Cell 

Volume 

(Å3) 

M 

(20) 

F 

(20) 

Unindexed 

Peaks 

Crystal 

System a (Å) b (Å) c(Å) α () β ()  () 

       

13.807770 

17.388229     

19.530661       

20.079321      

20.923000      

22.719839      

22.974279      

24.653040       

27.280600      

27.388439       

27.556770       

27.824011       

28.579519       

29.414089       

29.512011      

29.908590       

30.056101      

30.778820      

31.469900       

33.035568      

33.126801       

35.203629       

35.364738       

35.817169      

36.102379       

36.584320       

37.608681       

39.156448       

39.547901       

40.604530      

40.830780      

41.232979      

41.383121        

1 13.271821   11.932581   9.739318   90 90 90 5951.85 9 17 5 Orthorhom

bic 

2 9.224786   23.865963   5.684216   90 98.038 90 1239.13 8 16 2 Monoclinic 

 

Comment: Some of the unindexed peaks in the above results do not belong to any impurity phase 

but the main phase, its negligence in the peak indexing should not be ignored. Thus the indexing 

results ended up with no acceptable solution. Please note unacceptably low figure of merit in the 

output results. 
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Table S2: Output of indexing results using peak positions of the Ca1.5Ba0.5Si5N6O3 system 

shown in Figure S1 (b) 

 

Peak 

Positions 

Results Lattice parameters Unit Cell 

Volume 

(Å3) 

M 

(20) 

F 

(20) 

Unindexed 

Peaks 

Crystal 

System a (Å) b (Å) c(Å) α () β ()  () 

10.435100      

13.807770      

14.894670      

17.388229       

19.530661      

20.079321      

20.923000      

22.426849      

22.719839       

22.974279       

24.653040      

27.280600      

27.388439      

27.556770      

27.824011      

28.579519      

29.414089      

29.512011      

29.908590      

30.056101       

30.778820      

31.469900      

33.035568      

33.126801      

35.203629      

35.364738      

35.817169       

36.102379      

36.584320      

37.608681      

37.826149      

38.377480      

39.156448      

39.547901      

39.661140      

40.074989       

40.415131       

40.604530      

40.830780      

41.232979      

41.383121  

1 16.880354   16.880354   20.887634   90 90 90 5951.85 9 19 4 Tetragonal 

2 15.286790 11.938805   9.134131   90 90 90 1667.03 7 14 5 Orthorho

mbic 

3 15.797421   11.932431   4.711424   90 104.566 90 859.57 17 33 6 Monoclinic 

4 15.807192   11.935061   9.430994   90 104.659 90 1721.33 7 14 2 Monoclinic 

5 13.837232   11.949532 6.787256   90 99.192  90 1107.85 7 15 5 Monoclinic 

6 13.492250   9.127168   12.479813   90 107.227 90 1467.89 6 13 0 Monoclinic 

7 9.200842   12.858434   8.940390   90 96.439 90 1051.05 6 12 8 Monoclinic 

 

Comment: Some of the unindexed peaks in the above results do not belong to any impurity phase 

but the main phase, its negligence in the peak indexing should not be ignored. Thus the indexing 

results ended up with no acceptable solution. Please note unacceptably low figure of merit in the 

output results. 
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 In conclusion, human intervention is initially required to identify each peak correctly 

(even the peaks with very weak intensities). After extensive analysis the final crystal structure 

was indexed with a monoclinic in the Cm space group having lattice parameters a = 

7.07033(2) Å, b = 23.86709(7) Å, c = 4.825304(15) Å, α =  = 90 and β = 109.0647(2) and 

with figures of merit as M(20) = 225 and F(20) = 432. 
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S2. Indexing of the synchrotron X-ray powder diffraction data on BaAlSi4O3N5:Eu2+ 

system 

 Indexing of the peaks obtained through an auto-peak-search for the BaAlSi4O3N5:Eu2+ 

system shown in Figure S2 using the TREOR program ended up with a probable structural 

solution for the crystal system as monoclinic. In addition to this there were other solutions 

with identical figure of merit in the output file. All the solutions obtained in the output file of 

the TREOR program is shown in Table S3. The suggested solution (monoclinic crystal 

system) was not found to be valid since the observed and calculated data do not show good 

match in the structural refinement. The crystal structure of BaAlSi4O3N5:Eu2+ system was 

later indexed with orthorhombic system in the A21am space group, having the lattice 

parameters a = 9.48461(3) Å, b = 13.47194(6) Å, c = 5.77323(2) Å, and α = β = γ = 90° and 

figure of merit M(20) = 110 and F(20) =179. This brilliant solution was totally obtained by 

human intervention (i.e. our expertise), and the computational auto-peak-search can never 

reach this level. 

 
 

 

 

 
  

Figure S2 Peak positions of the XRD pattern obtained with an auto-peak-search for the 

BaAlSi4O3N5:Eu2+ system. 
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Table S3:  Output of indexing results using peak positions of the BaAlSi4O3N5:Eu2+ 

system shown in Figure S2.  

 

Peak 

Positions 

Result Lattice parameters Unit Cell 

Volume 

(Å3) 

M 

(20) 

F 

(20) 

Unindexed 

Peaks 

Crystal 

System a (Å) b (Å) c(Å) α () β ()  () 

       

13.188150      

16.194180       

16.761641      

18.773069      

19.228790      

23.013981       

25.197500      

25.270580      

26.545000       

26.581079       

26.946289      

28.207331      

28.237869      

31.092190      

31.363951       

31.615000      

31.639490      

32.725319       

32.755211      

33.100208 

33.908539       

35.252048      

36.572929       

36.981800       

38.084770      

39.037060       

39.046349       

40.358879      

40.469971       

41.320000       

41.368370       

41.800320      

41.874779   

1 15.030773 15.030773 20.887634   90 90 90 2144.50 6 12 7 Tetragonal 

2 9.496901 9.496901 19.174593 90 90 90 1729.38 7 14 6 Tetragonal 

3 13.462188 9.488531 5.772748 90 90 90 737.39 20 39 4 Orthorhom

bic 

4 13.474647 11.543999 9.488491 90 90 90 1475.95 16 32 5 Orthorhom

bic 

5 7.174809 9.493328 6.809177 90 98.870 90 458.25 14 28 7 Monoclin

ic 

 

Comment:  Among all the above five solutions given in the output file, the best solution for the crystal 

system was suggested as monoclinic (result no 5) by the TREOR program, even though it has 7 

unindexed peaks. It should be noted that some of the unindexed peak in peak list do not belong to any 

impurity phase so its negligence in the peak indexing should not be ignored. The suggestion for the 

monoclinic system was perhaps based on the smallest cell volume obtained during indexing, in spite 

of the unacceptable figure of merit. However, further structural analysis using suggested parameters 

resulted in very bad match between the observed and experimental data, and it turned out to be an 

orthorhombic system. 
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S3. Basics of Artificial Neural Networks (ANNs) (Some of the text is taken from 

http://cs231n.github.io/) 

 

Artificial neural network (ANN) is a machine learning approach that models human brain and 

consists of a number of artificial neurons (an information-processing unit that is fundamental 

to the operation of a neural network) that are linked together according to a specific network 

architecture. The objective of the neural network is to transform the inputs into meaningful 

outputs. ANNs are utilized in many scientific disciplines to solve a variety of problems such 

as pattern recognition, prediction, optimization etc. 

 

Biological systems (humans/animals) are able to react adaptively to changes in their external 

and internal environment, and they use their nervous system to perform these behaviours. The 

basic computational unit of the brain is a neuron (about 86 billion neurons in human 

nervous system) are connected to synapses (1014 -1015). Each neuron receives input signals 

from its dendrites and produces output signals along its single axon. The axon eventually 

branches out and connects via synapses to dendrites of other neurons. A schematic drawing 

of a biological neuron and a common mathematical model) is shown in Figure S3. 

 

 
 

Figure S3 Schematic drawing of (a) a biological neuron and (b) a common mathematical model 

of neuron [Figures reproduced from http://cs231n.github.io/neural-networks-1/]. 

 

In the computational model of a neuron shown in Figure S3 (b), the neuron, input, output, and 

weight (w) are analogous to the cell body (also called soma), dendrite, axon and synapse 

respectively, to a biological system. The input signals that travel along the axons (e.g.  x0) 

interact multiplicatively (e.g.  w0x0) with the dendrites of the other neuron based on the 

synaptic strength at that synapse (e.g. w0). The idea is that the synaptic strengths (the 

weights w) are learnable and control the strength of influence (and its direction: excitory 

(positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic 

model, the dendrites carry the signal to the cell body where they all get summed. If the final 

sum is above a certain threshold, the neuron can fire, sending a spike along its axon and 

frequency of the firing communicates information. Similarly, the neuron computes the 

weighted sum of the input signals and compares the result with a threshold value. If the net 

input is less than the threshold, the neuron output is –1. But if the net input is greater than or 

equal to the threshold, the neuron becomes activated and its output attains a value +1. 

Commonly used activation functions in neural networks are step function, Sigmoid function, 

σ(x)=1/(1+e−x)  (it takes a real-valued number and “squashes” it into range between 0 and 1), 

tanh (it squashes a real-valued number to the range [-1, 1] ), etc. The Rectified Linear Unit 

(ReLu) has become very popular in the last few years, it computes the 

function f(x)=max(0,x). In other words, the activation is simply thresholded at zero.  
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Neural Networks are modeled as collections of neurons that are connected in an acyclic 

graph. For regular neural networks, the most common layer type is the fully-connected 

layer in which neurons between two adjacent layers are fully pair wise connected, but 

neurons within a single layer share no connections. Figure S4 shows two example of Neural 

Network topologies that use a stack of fully-connected layers.  

 

 

Figure S4 (a) A 2-layer Neural Network consisting of three inputs, one hidden layer of 4 

neurons (or units) and one output layer with 2 neurons.  

(b)A 3-layer neural network consisting of three inputs, two hidden layers of 4 neurons each 

and one output layer. [Figures reproduced from http://cs231n.github.io/neural-networks-1/] 

 

 

 

S4. Detailed description of the Convolutional Neural Networks (CNNs) [Some of the text 

is taken from http://cs231n.github.io/)] 

  

Convolutional Neural Networks are very similar to an ordinary Neural Networks described in 

the previous section: they are made up of neurons that have learnable weights and biases. 

Each neuron receives some inputs, performs a dot product and optionally follows it with a 

non-linearity. The whole network still expresses a single differentiable score function: from 

the raw image pixels on one end to class scores at the other. And they still have a loss 

function (e.g. Support vector matrix (SVM)/Softmax) on the last (fully-connected) layer and 

all the tips/tricks that were developed for learning regular Neural Networks still apply. The 

only difference is that the CNN architectures make the explicit assumption that the inputs are 

images, which allows to encode certain properties into the architecture. These then make the 

forward function more efficient to implement and vastly reduce the amount of parameters in 

the network. 

As describes in the previous section that a Neural Networks receive an input (a single vector), 

and transform it through a series of hidden layers. Each hidden layer was made up of a set of 

neurons, where each neuron was fully connected to all neurons in the previous layer, and 

where neurons in a single layer function completely independently and do not share any 

connections. The last fully-connected layer is called the “output layer” and in classification 

settings it represents the class scores. Regular Neural Nets could work well with images with 

small size. For example, images with size 32x32x3 (32 wide, 32 high, 3 color channels), a 

single fully-connected neuron in a first hidden layer of a regular Neural Network would have 

32*32*3 = 3072 weights and could be manageable. However, an image with large size for 

example 200x200x3, would lead to neurons that have 200*200*3 = 120,000 weights. We 

certainly want to have several such neurons, so the parameters would add up quickly. Clearly, 

this full connectivity is wasteful and the huge number of parameters would quickly lead to 

overfitting. 
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Convolutional Neural Networks on the other hand take advantage of the fact that the input 

consists of images and they constrain the architecture in a more sensible way. In particular, 

unlike a regular Neural Network, the layers of a CNN have neurons arranged in 3 

dimensions: width, height, depth as shown in Figure S5. The word depth here refers to the 

third dimension of an activation volume, not to the depth of a full Neural Network, which can 

refer to the total number of layers in a network.  

 

 

 
Figure S5(a) A regular 3-layer Neural Network, (b) A CNN arranges its neurons in three 

dimensions (width, height, depth), as visualized in one of the layers. Every layer of a CNN 

transforms the 3D input volume  to a 3D output volume of neuron activations. In this 

example, the red input layer holds the image, so its width and height would be the dimensions 

of the image, and the depth would be 3 (Red, Green, Blue channels). [Figures reproduced from 

http://cs231n.github.io/convolutional-networks/] 

 

 

 A simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of 

activations to another through a differentiable function. Basically three main types of layers 

are used to build CNN architectures: Convolutional Layer, Pooling Layer, and Fully-

Connected Layer (exactly as seen in regular Neural Networks). All these layers are stacked 

to form a full CNN architecture. Example of CNN for classification of image of a car is 

shown Figure S6. CNNs transform the original image layer by layer from the original pixel 

values to the final class scores. The parameters in the CONV/FC layers will be trained with 

gradient descent so that the class scores that the CNN computes are consistent with the labels 

in the training set for each image. 

 

 

Example:  

A simple CNN for image classification could have the architecture [INPUT - CONV - RELU 

- POOL - FC].  

 

 INPUT [ e.g 32x32x3 image size ] will hold the raw pixel values of the image, in this case 

an image of width 32, height 32, and with three color channels R,G,B. 

 CONV layer will compute the output of neurons that are connected to local regions in the 

input, each computing a dot product between their weights and a small region they are 

connected to in the input volume. This may result in volume such as [32x32x12] if we 

decided to use 12 filters. 

 RELU layer will apply an element wise activation function, such as the max(0,x) 

thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]). 
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 POOL layer will perform a downsampling operation along the spatial dimensions (width, 

height), resulting in volume such as [16x16x12]. 

 

 FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size 

with class score.  

 

 

 
Figure S6 The initial volume stores the raw image pixels (left) and the last volume stores the 

class scores (right). Each volume of activations along the processing path is shown as a column. 

Since it's difficult to visualize 3D volumes, each volume's slices is laid out in rows. The last 

layer volume holds the scores for each class for the sorted top 5 scores [Figures reproduced 

from http://cs231n.github.io/convolutional-networks/]. 

 

 

 

S5. Training methods 

Both supervised and supervised process may be adopted for the training. In the supervised 

training, both the inputs and the outputs are provided. The network then processes the inputs 

and compares its resulting outputs against the desired outputs. Errors (the difference of the 

desired output and the given output) are then propagated back through the system, causing 

the system to adjust the weights which control the network. This process occurs over and 

over as the weights are continually tweaked. The set of data which enables the training is 

called the training set. During the training of a network the same set of data is processed 

many times as the connection weights are ever refined. Whereas, in unsupervised training, the 

network is provided with inputs but not with desired outputs. The network is required to self-

organise (i.e. to teach itself) depending on some structure in the input data.This is often 

referred to as self-organization or adaption. 
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S6. Python source code for the XRD classification 

 
#import basic library 
import numpy as np 
import pandas as pd   
from random import random 
import bottleneck as bn 
import heapq 
 
#load y_label 
docX = [] 
docY = [] 
 
df_out = pd.read_csv('D://JI//newxrd//150000Y.csv',header=None) 
filename = df_out[0] 
Y_data230 = np.array(df_out[1]) - 1 
Y_data7 = np.array(df_out[2]) - 1 
Y_data101 = np.array(df_out[3]) – 1 
 
#load X_data 
for i in filename : 
    filepath = "D://JI//newxrd//fresh_random//" + str(i) + ".csv" 
    arr = pd.read_csv(filepath,header=None) 
    arr = np.array(arr) 
docX.append(arr) 
X_data = np.array(docX) 
docX = [] 
 
#randomly choose 20% test data 
tot_ix =range(len(Y_data7)) 
test_ix = np.random.choice(tot_ix, int(len(Y_data7)*0.2), replace=False)  
test_ix = np.sort(test_ix,axis=0) 
train_ix = list(set(tot_ix) - set(test_ix)) 
 
#write test data index into csv files 
test_ix = np.reshape(test_ix, test_ix.shape + (1,)) 
mat1 = test_ix 
dataframe1 = pd.DataFrame(data=mat1.astype(int)) 
dataframe1.to_csv('choose20percenttestset.csv', sep=',', header=False, 
float_format = '%.2f', index = False) 
 
#load test index and convert to hot vector 
test_index = pd.read_csv('choose20percenttestset.csv', header=None) 
test_ix = test_index[0] 
 
tot_ix = range(len(Y_data7)) 
train_ix = list(set(tot_ix) - set(test_ix)) 
test_X = X_data[test_ix] 
train_X = X_data[train_ix] 
 
test_Y7 = Y_data7[test_ix] 
train_Y7 = Y_data7[train_ix] 
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test_Y101 = Y_data101[test_ix] 
train_Y101 = Y_data101[train_ix] 
 
test_Y230 = Y_data230[test_ix] 
train_Y230 = Y_data230[train_ix] 
 
from keras.utils.np_utils import to_categorical 
 
train_Y7 = to_categorical(train_Y7, 7) 
test_Y7 = to_categorical(test_Y7, 7) 
 
train_Y101 = to_categorical(train_Y101, 101) 
test_Y101 = to_categorical(test_Y101, 101) 
 
train_Y230 = to_categorical(train_Y230, 230) 
test_Y230 = to_categorical(test_Y230, 230) 
 
#shuffle data before training 
tot_ix =range(len(train_X)) 
rand_ix = np.random.choice(tot_ix, len(train_X), replace=False)  
train_X = train_X[rand_ix] 
train_Y101 = train_Y101[rand_ix] 
train_Y7 = train_Y7[rand_ix] 
train_Y230 = train_Y230[rand_ix] 
 
#import keras library 
from keras.models import Sequential 
from keras.layers import Input, Dense, Flatten, Merge, merge 
from keras.layers import Dropout, Activation 
from keras.layers import Convolution1D, MaxPooling1D, AveragePooling1D 
from keras.layers import ZeroPadding1D 
from keras.layers.noise import GaussianNoise 
from keras.optimizers import SGD 
import keras.callbacks 
from keras.models import Model 
 
# 7 label training 
model = Sequential() 
 
model.add(Convolution1D(80, 100, subsample_length = 5, border_mode = 
'same', input_shape=(10001,1))) #add convolution layer 
model.add(Activation('relu')) #activation 
model.add(Dropout(0.3))  
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer 
 
model.add(Convolution1D(80, 50, subsample_length = 5, border_mode = 
'same')) 
model.add(Activation('relu')) 
model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
 
model.add(Convolution1D(80, 25, subsample_length = 2, border_mode = 
'same')) 
model.add(Activation('relu')) 
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model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
 
model.add(Flatten())  
model.add(Dense(700))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(70))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(7))  
model.add(Activation('softmax')) 
 
 
#Compile 
model.compile(loss='categorical_crossentropy', optimizer='Adam', 
metrics=['accuracy']) 
 
#fit 
filepath='D://JI//newxrd//xrd_model//7labelmodel.out' 
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath, 
monitor='val_loss', verbose=0, save_best_only=True, mode='auto') 
history = keras.callbacks.History() 
model.fit(train_X, train_Y7, batch_size=500, nb_epoch=5000, 
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True) 
 
# check the accuracy 
a = model.evaluate(train_X, train_Y7) 
print(a) 
a = model.evaluate(test_X, test_Y7) 
print(a) 
 
# 101 label training 
model = Sequential() 
 
model.add(Convolution1D(80, 100, subsample_length = 5, border_mode = 
'same', input_shape=(10001,1))) #add convolution layer 
model.add(Activation('relu')) #activation 
model.add(Dropout(0.3))  
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer 
 
model.add(Convolution1D(80, 50, subsample_length = 5, border_mode = 
'same')) 
model.add(Activation('relu')) 
model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
 
model.add(Convolution1D(80, 25, subsample_length = 2, border_mode = 
'same')) 
model.add(Activation('relu')) 
model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
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model.add(Flatten())  
model.add(Dense(4040))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(202))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(101))  
model.add(Activation('softmax')) 
 
 
#Compile 
model.compile(loss='categorical_crossentropy', optimizer='Adam', 
metrics=['accuracy']) 
 
#fit 
filepath='D://JI//newxrd//xrd_model//101labelmodel.out' 
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath, 
monitor='val_loss', verbose=0, save_best_only=True, mode='auto') 
history = keras.callbacks.History() 
model.fit(train_X, train_Y101, batch_size=800, nb_epoch=5000, 
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True) 
 
# check the accuracy 
a = model.evaluate(train_X, train_Y101) 
print(a) 
a = model.evaluate(test_X, test_Y101) 
print(a) 
 
 
# 230 label training 
model = Sequential() 
 
model.add(Convolution1D(80, 100, subsample_length = 5, border_mode = 
'same', input_shape=(10001,1))) #add convolution layer 
model.add(Activation('relu')) #activation 
model.add(Dropout(0.3))  
model.add(AveragePooling1D(pool_length=3, stride=2)) #pooling layer 
 
model.add(Convolution1D(80, 50, subsample_length = 5, border_mode = 
'same')) 
model.add(Activation('relu')) 
model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
 
model.add(Convolution1D(80, 25, subsample_length = 2, border_mode = 
'same')) 
model.add(Activation('relu')) 
model.add(Dropout(0.3)) 
model.add(AveragePooling1D(pool_length=3, stride=None)) 
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model.add(Flatten())  
model.add(Dense(2300))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(1150))  
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
 
model.add(Dense(230))  
model.add(Activation('softmax')) 
 
 
#Compile 
model.compile(loss='categorical_crossentropy', optimizer='Adam', 
metrics=['accuracy']) 
 
#fit 
filepath='D://JI//newxrd//xrd_model//230labelmodel.out' 
modelCheckpoint=keras.callbacks.ModelCheckpoint(filepath, 
monitor='val_loss', verbose=0, save_best_only=True, mode='auto') 
history = keras.callbacks.History() 
model.fit(train_X, train_Y230, batch_size=1000, nb_epoch=5000, 
validation_split=0.25, callbacks=[modelCheckpoint,history], shuffle=True) 
 
# check the accuracy 
a = model.evaluate(train_X, train_Y230) 
print(a) 
a = model.evaluate(test_X, test_Y230) 
print(a) 
 
#save log after training 
acc_log = history.history['acc'] 
val_acc_log = history.history['val_acc'] 
loss_log = history.history['loss'] 
val_loss_log = history.history['val_loss'] 
acc_log = np.array(acc_log) 
val_acc_log = np.array(val_acc_log) 
loss_log = np.array(loss_log) 
val_loss_log = np.array(val_loss_log) 
mat = np.vstack((loss_log, acc_log, val_loss_log, val_acc_log)) 
mat = np.transpose(mat) 
dataframe1 = pd.DataFrame(data=mat) 
dataframe1.to_csv('save_log.csv', sep=',', header=False, 
float_format='%.7f', index=False) 
 
 

The weight values for the three CNN architectures, if needed by the reader, can be provided by email 

to the corresponding author. 

 

 


