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1 Background Correction
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Figure 1: Background cuts (blue dots) and corresponding fits (red line). a) vertical cut and
fitted smooth B-spline of degree 2. b) horizontal cut and fitted polynomial of degree 4.

In order to extract the scattering of the targets only, the background B was fitted for each
measurement, assuming that the background B can be factorized to B(α f ,θ f ) = A(α f ) ·T (θ f ).
This factorization is motivated by the assumption that T (θ f ) depends mainly on the correla-
tions of the roughness of the substrate in x- and y-direction, which in small-angle approxi-
mation does not depend on α f . For the function A(α f ), a smooth B-spline approximation of
degree 2 was used to closely follow the scattering of the background around the critical angle
of total external reflection αc of the substrate (see fig. 1 a)). In order to only fit the substrate
contribution, a cut along α f was taken between the first and second grating diffraction orders.
For the function T (θ f ), a polynomial of degree 4 was fitted to a cut along θ f at α f > 0.8°, i.e.
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above the sample scattering features (see fig. 1 b)). The resulting smooth background was
subtracted from the GISAXS measurement, yielding the scattering from the target only (fig. 2).
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a) raw data, 1h exposure time
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Figure 2: GISAXS scattering of smallest target, a) raw data b) after background subtraction.
The background subtraction works well above the critical angle of the substrate αc , but fails
below αc .

2 Position of Grating Diffraction Orders in GISAXS in
Sample Coordinates

2.1 Coordinate System and Ewald Sphere

We use a coordinate system where the x-y-plane is the sample plane, with the x-axis the
intersection of the scattering plane with the sample plane and the y-axis perpendicular to the
x-axis. The z-axis is the normal of the sample plane. The k-space is the reciprocal of the real
space, with the corresponding axes in the same direction as the real axes. In this space, the
wavevectors of the incoming beam ki and the scattered beam k f are

ki = k0

 cosαi

0
−sinαi

 (1)

k f = k0

cosα f cosθ f

cosα f sinθ f

sinα f

 (2)

k0 = |ki | = |k f | =
2π

λ
(3)

with the incident angleαi , the angle between the sample plane and the scattered beamα f and
the angle between the projection of the scattered beam on the sample plane and the x-axis θ f
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as well as the incident wavelength λ.
We define the scattering vector q = k f −ki , which expressed in angle coordinates is

q = k0

cosα f cosθ f −cosαi

cosα f sinθ f

sinα f + sinαi

 , (4)

together with (3) we can write the equation for the Ewald sphere of elastic scattering

k0 = |k f | = |q +ki | (5)

⇒ k2
0 = |q +ki |2 = (qx +ki ,x )2 + (qy +ki ,y )2 + (qz +ki ,z )2

= (qx +k0 cosαi )2 +q2
y + (qz −k0 sinαi )2 . (6)

2.2 Perfectly Aligned Grating

The perfectly aligned grating has infinite grating lines parallel to the x-axis, which lie in the
sample plane and are separated by the pitch p. The reciprocal space representation of the
perfectly aligned grating comprises grating truncation rods (GTR), which are parallel to the
qz -axis in the qz -qy -plane and separated by 2π/p in qy :

qx = 0 (7)

qy = n 2π/p = k0 nλ/p (8)

with the grating diffraction order n ∈Z. The intersection of the Ewald sphere (6) with the GTR
yields

k2
0 = (0+k0 cosαi )2 + (n k0λ/p)2 + (qz −k0 sinαi )2 (9)

solving for qz

(qz −k0 sinαi )2 = k2
0(1−cos2αi )− (n k0λ/p)2

= k2
0

(
sin2αi − (nλ/p)2) (10)

⇒ qz = k0

(
sinαi ±

√
sin2αi − (nλ/p)2

)
(11)

discarding the solution with the minus as it

corresponds to reflections below the sample horizon

qz = k0

(
sinαi +

√
sin2αi − (nλ/p)2

)
. (12)

To summarize:

qgrating, aligned = k0

 0
nλ/p

sinαi +
√

sin2αi − (nλ/p)2

 . (13)
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To express the scattering in angle coordinates, we use (4), (7), (8) and (12), giving

qz : sinα f + sinαi = sinαi

(
1+

√
1−

(
nλ

p sinαi

)2
)

⇒α f = arcsin

(√
sin2αi −

(
nλ

p

)2
)

(14)

qy : cosα f sinθ f = nλ/p

⇒ sinθ f =
nλ/p

cosα f
(15)

qx : cosα f cosθ f −cosαi = 0

⇒ cosθ f =
cosαi

cosα f
(16)

qy

qx
: tanθ f =

sinθ f

cosθ f
= nλ/p

cosα f

cosα f

cosαi

⇒ θ f = arctan

(
nλ

p cosαi

)
(17)

2.3 Misaligned Grating

For the misaligned grating, the grating lines are rotated around the z-axis by ϕ, and thus the
GTRs are also rotated around the kz -axis by ϕ, giving the conditions

qx = k0 sinϕnλ/p (18)

qy = k0 cosϕnλ/p . (19)

The intersection with the Ewald sphere (6) now yields

k2
0 = (k0 sinϕnλ/p +k0 cosαi )2 + (k0 cosϕnλ/p)2 + (qz −k0 sinαi )2

= k2
0

(
(sin2ϕ+cos2ϕ)(nλ/p)2 +2sinϕcosαi nλ/p +cos2αi

)+ (qz −k0 sinαi )2 (20)

solving for qz

(qz −k0 sinαi )2 = k2
0

(
1−cos2αi − (nλ/p)2 −2sinϕcosαi nλ/p

)
= k2

0

(
sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

)
(21)

⇒ qz = k0

(
sinαi ±

√
sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

)
(22)

discarding the solution with the minus as it

corresponds to reflections below the sample horizon

qz = k0

(
sinαi +

√
sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

)
. (23)

4



To summarize:

qgrating = k0

 sinϕnλ/p
cosϕnλ/p

sinαi +
√

sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

 . (24)

To express the scattering in angle coordinates, we use (4), (18), (19) and (23), giving

qz : sinα f + sinαi = sinαi +
√

sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

⇒α f = arcsin

(√
sin2αi − (nλ/p)2 −2sinϕcosαi nλ/p

)
(25)

qy : cosα f sinθ f = cosϕnλ/p

⇒ sinθ f =
cosϕnλ/p

cosα f
(26)

qx : cosα f cosθ f −cosαi = sinϕnλ/p

⇒ cosθ f =
sinϕnλ/p +cosαi

cosα f
(27)

qy

qx
: tanθ f =

sinθ f

cosθ f
= cosϕnλ/p

cosα f

cosα f

sinϕnλ/p +cosαi

⇒ θ f = arctan

(
cosϕnλ/p

sinϕnλ/p +cosαi

)
. (28)
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