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1. Masking

Fig. S1. Masking corrupts subsequent data analysis (including machine learning meth-
ods). In this example, principal component analysis (PCA) is used to extract dom-
inant features of the input data. The top row shows how this method extracts lead-
ing terms that highlight the symmetry of the input data. The middle row demon-
strates that for masked data, every PCA component exhibits the mask. The bottom
row demonstrates that when analyzing a mixture of data (which includes different
masks), all of the masks present in the data appear in all the PCA components. In
other words, the mask corrupts the analysis.
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2. Analysis Workflow

Fig. S2. Analysis workflow for healing an x-ray scattering image. The input image
is first analyzed to determine whether the background is structured, and whether
there are any sharp ‘foreground’ features (rings, peaks, etc.). Gaps in the isotropic
background can be filled using the 1D circular average curve. Sharp foreground
features are analyzed to determine symmetry, and copied throughout the image
based on this symmetry. Similarly, purely diffuse anisotropic patterns are be copied
based on symmetry. The most complex case is where the background and foreground
are both structured (and may have different symmetries). Local structures (peaks)
are identified, allowing the background and peaks to be healed separately. As a
final step, one can extend the image by also fitting the low-q and high-q regions to
reasonable functions.
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3. Signatures

Fig. S3. Signatures used to assess the overall type of a scattering pattern. Two
normalized measures of deviation (averaged over the entire image) are computed.
λloc/χ quantifies the average angular homogeneity; λloc/χ ≈ 1 indicates a predomi-
nantly isotropic image, whereas λloc/χ < 1 implies a significant amount of the image
exhibits large angular variance (i.e. the data is anisotropic). λrel quantifies the dis-
tribution of variances. The case λrel ≈ 1 − λloc/χ implies that the distribution of
variances is skewed, which indicates that there are sharp local features (peaks) in
the data.
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Fig. S4. The existence of structured (anisotropic) peaks in an x-ray scattering image
is determined using a statistical test. Two histograms of angular variance are com-
puted: σχ (standard deviations along χ) and 〈σloc〉/σχ (ratio of average local stan-
dard deviation to the overall standard deviation for a curve). Each histogram is fit
to a Poisson function, from which we extract a corresponding estimate of central
value (λχ and λloc/χ) and standard deviation (∼

√
λ). For each histogram, a thresh-

old is selected based on the Poisson fit (green dashed lines). A q-region is flagged
as containing a structured peak when two conditions are met: σχ > λχ + aχ

√
λχ

and 〈σloc〉/σχ < λloc/χ − aloc/χ
√
λloc/χ, where aχ and aloc/χ are user-adjustable

threshold coefficients (which we typically set to 1).

4. Healing modes

The presented image healing method can fill in image regions outside of the original

detector borders (Figure S5). Symmetry analysis can be used to copy data across the

full χ range (0◦ to 360◦). Such an operation nevertheless leaves a gap at low-q (no data

measured behind beamstop) and high-q (no data measured beyond further detector

pixel). These regions can be filled by fitting the available data to physically-reasonable

functions. For instance, the low-q data can be fit with a Guinier radius-of-gyration
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(Rg) model (Hammouda, 2010):

I(q) = Ae−R
2
gq

2/3 (1)

where A is a normalization constant; or to an Ornstein-Zernike model (Kahlweit et al.,

1986; Teubner & Strey, 1987; Nellen et al., 2011):

I(q) =
A

1 + q2ξ2
(2)

where A is a normalization constant, and ξ is a correlation length; or to a Debye-

Bueche random two-phase model (Debye & Bueche, 1949; Debye et al., 1957):

I(q) =
A

(1 + (qξ)2)2
(3)

The high-q data can be fit to a Porod fractal law (Ruland, 1971; Koberstein et al.,

1980):

I(q) = Sq−(6−d) (4)

where S is a normalization constant (proportional to surface area), and d is dimen-

sionality. The variable exponent in this equation allows one to fit a variety of data phe-

nomenologically. Fitting the low-q and high-q regions allows the data to be extended

to the origin (q = 0) and beyond the image boundary. Of course, extending data well

beyond the measured data is inherently error-prone and model-dependent. Neverthe-

less, these extended images are preferable in cases where masking artifacts or image

gaps cannot be tolerated.
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Fig. S5. Image healing can be used to extend an x-ray scattering image beyond the
nominal borders of the original detector. The image is extended across all χ using
symmetry analysis. Remaining gaps at low-q and high-q are filled by fitting the
corresponding q-regions to known functions. In the example shown, the low-q data
is fit to an Ornstein-Zernike model, and the high-q to a Porod fractal law.
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Fig. S6. Examples of image healing applied to experimental data (left, original data;
center, masking; right, healed image). (a) Nanoparticle superlattices self-assembled
using DNA nanostructures. Valid areas of the image (dashed boxes) are intention-
ally added to the mask (and thereby healed), to demonstrate the capability of
the method. (b, c) Hexagonal arrangement of Au dots (fabricated using electron-
beam lithography). (d) A liquid-crystalline small-molecule forming a weakly-aligned
poly-grain phase. These examples were selected to highlight certain failure modes.
In (b) and (c), the significant amount of masking (and the symmetry of the mask)
completely obscures certain features, making a perfect reconstruction impossible.
Example (c) also highlights how the method may not identify certain sub-features
(e.g. inter-peak fringes). In (d), both the sharp structural peak, and the weaker dif-
fuse halo, are reconstructed. Nevertheless, the intermodule gaps can still be easily
seen, since the intensity (and noise) are not perfectly matched along boundaries.
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Fig. S7. Image healing can be used to fill erroneous (or ‘hot’) pixels, which may be
intrinsic to a particular detector, or be spurious counts resulting from, e.g., cosmic
rays (‘zingers’). By adding these pixels to the mask, they are healed and thus elim-
inated from the image. In the example shown, bad pixels at the boundary between
sub-modules in a Dectris Eiger 4M detector (denoted by arrows) are identified,
masked, and healed. High-intensity pixels can be automatically flagged by iden-
tifying pixels with intensity far greater than their neighbors. We use the criteria
I −m(I ∗M) > 0, where I is the image (intensities), ∗M denotes convolution with
a median filter, and m is an adjustable threshold parameter (using a sufficiently
large m will avoid erroneously flagging experimental intensity variation, while still
capturing hot pixels).
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5. Binning effects

Fig. S8. The transformation from the I(qx, qy) image to a I(q, χ) map involves remesh-
ing with a particular χ resolution. At small-q, this leads to individual experimental
pixels being stretched (interpolated) across multiple I(q, χ) bins, whereas at high-
q, this may lead to multiple experimental pixels being combined (averaged) into a
single I(q, χ) bin. While the former is computationally wasteful, the latter repre-
sents information loss. This down-sampling (reduction in resolution at high-q) can
of course affect the reconstruction quality. In the provided example, the original
data (left) is reconstructed using two candidate χ resolutions: 0.5◦ (center) and
0.1◦ (right). As can be seen, if the χ resolution is insufficient, the healing algorithm
introduces significant artifacts.
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