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Figure S2 Breakdown of the flow of experimental work.
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S1. SYNTHESIS AND CHARACTERIZATION OF COMPOUNDS

S1.1. General procedure for Sonogashira cross-coupling reactions

Compounds 2, 3 and 6 were prepared by Pd’-catalysed Sonogashira coupling of 4-ethynylpyridyine

hydrochloride with the corresponding mono- or diiodo derivatives.
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1,2-Bis(4-ethynylpyridyl)acetylene (2). In oven-dried 250 mL two-neck round bottom flask equipped
with a reflux condenser and N, supply, 4-ethynylpyridyine hydrochloride (3.67 g, 17.90 mmol) and
EtsN (40.0 mL, 2 mL/mmol of 4-iodopyridine) were dissolved in 100 mL of THF/H,0 (1:1 v/v) mixture.
The contents were allowed to stir at rt for 10 min followed by addition of 4-iodopyridine (3.0 g, 21.49
mmol), Cul (0.34 g, 1.80 mmol) and Pd(PPhs)4 (1.0 g, 0.90 mmol). After this, the reaction mixture was
heated at reflux for 8 h. The progress of reaction was monitored by thin layer chromatography (TLC).
At the end of the reaction, the reaction mixture was dried in vacuo, solid residue extracted using
dichloromethane (DCM). The combined DCM extract was washed with brine solution, dried over anhyd
Na,SO,4 and concentrated in vacuo. Silica gel column chromatography was performed using 40%
CHCls/pet. ether as eluent to obtain pure product as a pale yellow solid; yield 3.75 g, 97%; mp 161—
165 °C; *H NMR (270 MHz, CDCl3) 6 7.42 (4H, d, J =5.80 Hz), 8.66 (4H, d, J = 5.80); *C NMR (67.5
MHz, CDCls) 6 93.2, 125.5, 131.9, 149.8.

A similar procedure as described above was followed to prepare compounds 3 and 6 using 0.5 equiv of
corresponding diiodoarene (4,4'-diiodobiphenyl and 1,4-diiodobenzene, respectively) with respect to

all other reactants and reagents.

4,4'-Bis(4-ethynylpyridyl)biphenyl (3): light brown solid; 94% yield; *H NMR (270 MHz, CDCls) &
7.38 (4H, d, J = 4.55 Hz), 7.63 (8H, s), 8.60 (4H, d, J = 4.55 Hz); *C NMR (67.5 MHz, CDCl5) 6 87.7,
93.6, 121.6, 125.6, 131.3, 132.4, 140.7, 149.8.
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1,4-Bis(4-pyridyl)benzene (6): yellow solid; 98% yield; *H NMR (270 MHz, CDCls) § 7.38 (4H, d, J
= 6.18 Hz), 7.56 (4H, s), 8.61 (4H, d, J = 6.18 Hz); 3C NMR (67.5 MHz, CDCls) J 89.0, 93.6, 123.1,
125.5, 131.7, 132.6, 159.0.

S1.2. General procedure for Suzuki cross-coupling reaction

Compounds 9 and 10 were synthesised by 2-fold Pd°-catalysed Suzuki coupling of 4-pyridynylboronic

acid with 1,4-dibromobenzene and 1,4-dibromodurene, respectively.

Me, Me B(OH), Pd(PPhj),
NaOH

. Me, Me __
B Br + A —— N
' ' O toluene/EtOH/H,0 \_7/ \
N (4:2:1 v/v) Me Me
Me  Me 110°C, 2d
(95%) 9

B(OH), zgg:hah

B —< >—B N _— N Y
' ' O toluene/EtOH/H,0 \ 7/ \
N

(4:2:1 v/v)
110°C, 2d
(96%) 10

1,4-Bis(4-pyridyl)durene (9). A 250 mL oven-dried two-necked round bottom flask was cooled under
N, atmosphere and charged with 1,4-dibromodurene (2.0 g, 6.85 mmol), 4-pyridinylboronic acid (2.53
g, 20.5 mmol), Pd(PPhs)4(0.39 g, 0.42 mmol), powdered NaOH (1.10 g, 27.4 mmol), 30 mL of toluene,
20 mL of EtOH and 10 mL of distilled water. The resultant reaction mixture was refluxed at 110 °C.
The contents dissolved completely to give clear yellow coloration over a period of 1.5 h. Heating was
continued at reflux under N, atmosphere for 2 d. The change in the color of reaction mixture from
yellow to dark brown indicated completion of the reaction, which was further verified by TLC.
Subsequently, the reaction mixture was cooled and extracted with CHCI; and washed with brine
solution. The organic phase was dried over anhyd Na,SO,4 and concentrated in vacuo. The pure product
was isolated by Silica gel column chromatography using CHCls/pet. ether (40%) mixture as an eluent
to afford the product 9 as a white solid in 95% yield (1.45 g, 3.02 mmol); *H NMR (CDCls, 270 MHz)
51.92 (12H, s), 7.12 (4H, d, J = 5.31 Hz), 8.69 (4H, d, J = 5.31 Hz); 3C NMR (67.5 MHz, CDCl5) &
17.9,124.7, 131.3, 139.3, 150.0.

1,4-Bis(4-pyridyl)benzene (10). A similar procedure as described for the preparation of 9 was
followed, which involves 2-fold Pd°-catalyzed Suzuki coupling of 1,4-dibromobenzene with 4-
pyridinylboronic acid leading to 1,4-bis(4-pyridyl)benzene (10); colorless solid; 96% yield; *H NMR
(CDClg, 270 MHz) 6 7.55 (4H, d, J = 5.44 Hz), 7.76 (4H, s), 8.68 (4H, d, J = 5.44 Hz); °C NMR (67.5
MHz, CDCls) 6 120.7, 137.6, 147.1, 149.3.
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S2. CRYSTAL PACKING DESCRIPTIONS

1,2-bis(4-pyridyl)acetylene (2). Compound 2 crystallises in the orthorhombic space group Fddd with
a quarter of molecule 2 comprising the asymmetric unit. The torsion angle between the two pyridyl
rings is 48.1°. The crystal structure was found to contain multiple weak C—H:--N hydrogen bonds (da-

wop = 2.47 A Dpp =3.38 A, Zs 15 = 158.6°, Table S1) as shown in Fig. S3c.
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Figure S3 (a,b) Crystal packing depicted down a- and c-axes. (¢) C—H---N interactions between the

adjacent molecules.
4,4'-bis(4-ethynylpyridyl)biphenyl (3). Compound 3 crystallises in the monaoclinic space group P2./c
with half a molecule comprising the asymmetric unit. Each molecule shows multiple C—H--*N and C—

H-Tacetylenyr interactions with neighbouring molecules (Fig. S4c).
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Figure S4 (a,b) Crystal packing diagrams of anhydrous form of 3 showing the arrangement of
molecules. (¢) The multiple C—H---N (green) and C—H:--w (yellow) interactions around each molecule

(red).

1,4-bis(4-ethynylpyridyl)benzene (6). Compound 6 crystallises in the orthorhombic space group
Pna2; with one molecule of 6 comprising the asymmetric unit. The crystal structure was found to
contain multiple weak C—H--*N and C—H--w interactions (Fig. S5b, Table S1).

(b)

Figure S5 (a) Crystal packing of anhydrous form of 6 depicted down c-axis. (b) Multiple weak C—

H---N (green) and C—H--x (yellow) interactions around each molecule (red) are shown.

1,4-bis(4-ethynylpyridyl)benzene (6-:2H.O). Compound 6-2H,0 crystallises in the monoclinic space
group P2:/c with half a molecule of 6 and one molecule of water comprising the asymmetric unit. Each
water molecule serves as a two H-bond donor for one pyridyl group and water molecule, and one H-
bond acceptor for a water molecule. The water molecules form 1D zigzag (C2) chains via O-H---O
hydrogen bonds, which run along b-axis (Fig. S6a). The aromatic nitrogen atoms interlink these C2
chains via O-H---N hydrogen bonding with the water molecules leading to formation of 2D layers.
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These 2D layers are found to stack along the c-axis as shown in Fig. S6b. The bond distances and angles

for these intermolecular interactions are given in Table S1.
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Figure S6 (a) 2D layers formed by the association of molecules of 6 with the 1D infinite zigzag chains
of water. (b) The crystal packing diagram showing the stacking of 2D layers. (c) The schematic of C2

water cluster is shown.

Bis(pyridin-4-ylmethylene)benzene-1,4-diamine tetrahydrate (7-4H.O). Compound 7-4H,0
crystallises in the triclinic P-1 space group with half a molecule of 7 and two molecules of water
comprising the asymmetric unit. A closer inspection of the crystal structure shows that the water
molecules form a discrete tetrameric (R4) cluster via O-H---O H-bonding. For each tetramer, two water
molecules are hydrogen bonded to two pyridyl nitrogens of 7, while the other two water molecules
hydrogen bond to the imino nitrogen atoms (Fig. S7a). As a result, 2D layers are formed (Fig. 7a). These
layers interact with the adjacent layers through multiple C-H---O H-bonds (Table S1) thereby giving
rise to an overall 3D structure, Fig. 7b.
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Figure S7 (a) 2D layers formed by O-H---O H-bonding between molecules of 7 and tetrameric water
clusters. (b) The crystal packing diagram showing the stacking of 2D layers. (c) The schematic of R4

water cluster is shown.

1,4-Bis(4-pyridyl)durene 9. Compound 9 crystallises in the orthorhombic space group Pna2; with one
molecule of 9 comprising the asymmetric unit. The two pyridyl rings are found to subtend torsion angles
of 81.7 and 89.6° with respect to the central durenyl core. Each molecule of 9 (depicted red in Fig. S8b)
is found to exhibit multiple C-H--‘N and C—H---n interactions with its neighbouring molecules. The

various bond distances and angles of these interactions are given in Table S1.
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(a)

Figure S8 (a) Crystal packing diagram of 9. (b) All the C—H:-N (green) and C—H--'n interactions

(yellow) around one of the molecules of 9 (red) are shown.

1,4-Bis(4-pyridyl)benzene dihydrate (10-2H>O). Compound 10-2H,0O crystallises in the monoclinic
space group P2i/c with half a molecule of 10 and one water molecule comprising the asymmetric unit.
Each water molecule acts as a two H-bond donor for one pyridyl group and water molecule, and one H-
bond acceptor for a water molecule. The water molecules thus form 1D zigzag (C2) chains, which run
along b-axis. These 1D chains are interlinked by molecules of 10 to form 2D sheets down b-axis.
Molecules of 10 belonging to one layer are found to display n-n stacking interactions with those of the
2D layers on either side (Table S1).
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Figure S9 (a) A 2D layer showing the 1D (C2) chains of water molecules that are interlinked by
molecules of 10. (b) The crystal packing diagram showing the stacking of these 2D layers. (¢c) The

schematic of C2 water cluster is shown.

2,4,6-Tris(imidazol-1-yl)-1,3,5-s-triazine (11-3H20). Compound 11-3H,O crystallises in the
monoclinic space group C2/c with two molecules of 11 and six water molecules comprising the
asymmetric unit. Two different water clusters (1D tapes) exist as pentagonal (T5(2)) and hexagonal
(T6(1)) rings, Fig. S10b. Two nitrogen atoms of every molecule of 11 form O—H---N hydrogen bonds
with two independent water molecules (Do-o = 2.82 t0 2.90 A). The water tapes interlink the molecules
of 11, which are in turn re-enforced by m-rm stacking (face-to-face) interactions, Fig. S10. Water
molecules in these tapes are O—H:--O hydrogen bonded (2.78-2.85 A for pentagon and 2.95-3.04 A for

hexagon).
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Figure S10 (a) Crystal packing diagram of 11-3H,0. (b) Water molecules assemble into pentameric
(T5(2)) and hexameric (T6(1)) 1D infinite tapes, which propagate along b-axis. (¢) The molecules of

11 are interlinked by these 1D water clusters.
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Table S1. The intermolecular interactions around each molecule in the crystal structures of

compounds 1-11.
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Total number
of

Type of intermolecular

Compound intermolecular  interaction das-n (A) - Da-n (A) Zan-s ()
interactions
1 8 C-H--N 2.63 3.49 153.1
2 8 C-H-N 2.47 3.38 158.6
3 8 C-H--N 2.73 341 130.1
8 C—H- Tacetylenyl 2.98 3.79 143.4
2.63 3.57 156.5
2.61 3.51 173.3
4 7 C-H--N 2.74 3.60 145.9
2.63 3.50 154.9
2.48 3.44 170.9
4 C-H-N 2.53 3.48 157.2
S 2 n-7 stacking (face-to-face) - 3.91 -
6 2 C-H--N 2.73 3.57 147.6
2 C—H- Tacetylony! 3.02 3.90 153.9
2.70 3.49 144.2
; 6 C-H-N 2.56 3.44 159.0
3 C-H: mar (edge-to-face) 2.65 3.53 159.0
1 n-7 stacking (face-to-face) - 3.65 -
8 4 C—H--- ar (edge-to-face) 2.98 3.70 129.5
2.66 3.45 140.7
4 C-H-N 2.70 3.44 134.6
9 2.65 3.59 170.1
2.87 3.79 164.2
4 C—H:*- nar (edge-to-face) 5 05 353 1210
1.99 2.87 164.3
1.99 2.84 154.9
2 O-H-N 1.99 2.83 154.5
2.01 2.87 161.5
1.84 2.74 176.2
21,0 4 O-H-0 1.85 275 174.2
A CH-N 2.67 3.57 159.7
2.69 3.60 159.7
2.46 3.40 169.9
3 -0 2.60 355 171.0
4 na-Tar Stacking (face-to- - 3.70 -
face) - 3.74 -
2.04 2.88 159.0
2 O-H-N 2.08 2.90 160.2
2 C-H-N 2.74 3.59 137.7
SH0 ) O 2.39 3.28 157.2
2.62 3.38 136.9
2 C—H-- mar (edge-to-face) 3.42 3.82 108.1
2 O-H-N 1.88 2.85 157.9
3 O-H--O 1.96 2.82 166.8
6-2H,0 2 C-H-O 244 3.38 169.9
4 TAr-Tacetylenyl Stacking - 3.44 -
2 O-H-N 2.20 3.01 158.4
7-H,0 1 C-H--O 2.48 3.31 148.0
2 C-H-N 2.70 3.56 153.5
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2.07 2.87 163.9
4 O-H-N 2.24 2.98 168.1
2.72 3.58 155.1
7-4H0 4 CH-0 2.24 2.98 168.1
2.11 2.84 153.5
4 O-H-0 1.08 2.80 167.0
2 O-H-N 1.83 2.85 160.9
2.63 3.39 137.7
6 C-H-O0 2.71 3.65 170.3
10-2H,0 2.83 3.24 106.7
3 O-H-0 1.70 2.71 174.8

6 :Ar'TEAr stacking (face-to- i 3.91 i

ace)

2.07 2.91 166.5
1.90 2.85 167.4

2 O-H-N - > :

- 2.82 -
11-3H,0 1.95 2.86 172.8
12 O-H-0 1.93 2.84 169.2

g TiarTiar Stacking (face-to- gig

face) i 381 i

Note: The centroids of the -systems were created in order to measure the bond distances and angles of the
corresponding interactions.

S3. RESULTS OF HYDRATE SCREENING EXPERIMENTS

Relative intensity/a.u.

anh. PYRAZI01 (calc.)
—slurry in H,0 2 d (exp.)
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T
20

2 theta/degrees

Figure S11 PXRD pattern for 1 after slurrying in water at rt for 2 d.
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Figure S12 PXRD patterns for 2 after slurrying in water and humidity experiments.
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Figure S13 TGA profile for 2 after slurrying in water at rt for 5 d.
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Figure S14 PXRD patterns for 3 isolated after SDG, slurrying in water and exposure to humidity.
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Figure S15 TGA profile of 3 after slurry in water at rt for 5 d.
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—— dihydrate WOVYEL (calc.)
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Figure S16 PXRD patterns for anhydrous and hydrated forms of 4. The dihydrate (4-2H,0) was

isolated from water slurry in 1 d and solvent-drop grinding (SDG) using water in 10 min.
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anh. HIQWEJ (calc.)
EtOH-H,0 50:1 (exp.)

—EtOH-HZO 10:1 (exp.)
— EtOH-HZO 2:1 (exp.)
—EtOH-HZO 1:1 (exp.)

I I ——dihydrate WOVYEL (calc.)
: N / e R R \

|

T
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J A ;’H[ Anhan A
T T T T T 1
20 30 40
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Figure S17 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 4 at rt for 2 d.
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—— dihydrate WOVYEL (calc.)
wenie T (SXD.)

———5d (exp.)

——4d (exp.)

——3d (exp.)

——2d (exp.)

—1d (exp.)

anh. HIQWEJ (calc.)
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Relative Intensity/a.u.

Figure S18 PXRD patterns showing gradual conversion of anhydrous form of 4 into hydrated form
upon exposure to 75% R.H. at 40 °C.
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Figure S19 TGA profiles for the anhydrous and hydrated forms of 4.
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hydrate RAPRUW (calc.)
SDG 10 min (exp.)

75% R.H.140 °cr7 d (exp.)
slurry HZO 1d (exp.)
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Figure S20 PXRD patterns for hydrated and anhydrous forms of 5.

—— anh. AZSTBB (calc.)
—— EtOH/H,0 (5:1) (exp.)

- EtOH/H,0 (2:1) (exp.)
—— EtOH/H,0 (1:1) (exp.)
—— EtOH/H,0 (1:2) (exp.)
—— EtOH/H,0 (1:5) (exp.)
——H,0 (exp.)

l I l — hydrate RAPRUW (calc.)

A \J “‘_ o s M=
I | S

Relative Intensity/a.u.

20
2 theta/degrees

Figure S21 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 5 at rt for 2 d.
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—— hydrate RAPRUW (calc.)
air 30 d (exp.)
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Figure S22 PXRD patterns showing the stability of hydrate form of 5 in air.
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Figure S23 TGA profiles for the anhydrous and hydrated forms of 5.
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dihydrate (calc.)

slurry H,0 1d (exp.)
~——SDG 10 min (exp.)
75% R.H./40 °CI7 d (exp.)

anh. (calc.)

4 T
10 20
2 theta/degrees

30 40

Figure S24 PXRD patterns for anhydrous and hydrated (6-2H20) forms of 6.
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%——/‘—_A__A_M_.LL_A_&_____ —— EtOH:H,0 5:1 (exp.)

anh. (calc.)

2 theta/degrees

40

Figure S25 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous

and hydrated (6-2H>0) forms of 6 at rt for 2 d.
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Figure S26 PXRD patterns showing the stability of hydrate form of 6 in air.
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Figure S27 TGA profile for hydrate of 6 (6:2H-0).
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Figure S28 PXRD patterns for anhydrous and hydrated forms of 7.
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Figure S29 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 7 at rt for 2 d.
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Figure S30 PXRD patterns showing the stability of hydrate form of 7 in air.
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Figure S31 TGA profiles for the anhydrous and hydrated (7-4H-0) forms of 7.
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Figure S32 PXRD patterns for anhydrous and hydrated forms of 8.
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Figure S33 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous

and hydrated forms of 8 at rt for 4 d.
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Figure S34 PXRD patterns showing the stability of hydrate form of 8 in air.
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Figure S35 TGA profiles for the anhydrous and hydrated forms of 8.
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Figure S36 PXRD patterns for anhydrous form of 9 on slurrying in water at rt and exposure to 75%
R.H at 40 °C.
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Figure S37 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 9 at rt for 7 d.
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Figure S38 TGA profiles for the anhydrous and hydrated forms of 9.
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Figure S39 PXRD patterns for anhydrous and hydrated (10-2H,0) forms of 10.
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Figure S40 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 10 at rt for 2 d.
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patterns showing the stability of hydrate form of 10 in air.
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Figure S42 TGA profiles for the anhydrous and hydrated (10-2H,O) forms of 10.
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Figure S43 PXRD patterns for anhydrous and hydrated (11-3H,0) forms of 11.
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Figure S44 PXRD patterns for competitive slurry experiments for 1:1 w/w mixture of anhydrous
and hydrated forms of 11 at rt for 1 d.
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Figure S45 PXRD patterns showing the stability of hydrate form of 11 in air.
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Figure S46 TGA profiles for the anhydrous and hydrated (11-3H,0) forms of 11.

Table S2. Results of Karl Fisher titration

Compound Experimental Water Content (%)  Calculated Water Content (%)
4-2H,0 19.01 18.7

28 0.11 0 (anhydrous)

3 0.44 0 (anhydrous)

9P 23.95 23.81 (pentahydrate)

After slurry in water for (a) 5 d or (b) 7 d.



