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Appendix S1
Data Analysis

S1.1. Data acquisition

Scattered photons were recorded on an area detector perpendicular to the forward

photon beam. The detector we used was the MPCCD octal sensor, consisting of 8

application-specific integrated circuits (ASICs) which are read out simultaneously, up

to 60 Hz. The raw data

• are stored on an external user-restricted server, where they remain for one year

before being moved to tape storage.

• are accessed using in-house SACLA data conversion programs, which output the

data as user-accessible hdf5 files.

The in-house software has an option to store reconstructed images, which we employ.

The ASICs are assembled into an approximate image, and the relative gains are

adjusted. Each reconstructed MPCCD image has 2399 × 2399 pixels. The bound-

ary of each image is padded with zeros ( Fig. S1), so that the reconstructed image size

doesn’t change if the panels themselves are adjusted between experiments. Each pixel

has an integer coordinate ( px, py), which also serves as it’s array index. We denote

the measurement of each pixel during an exposure i as Icarti ( px , py) where “cart”

indicates the image is in cartesian coordinates.

S1.2. Polar interpolation of the pixel data

Our first task is performing a polar interpolation on the data

Icarti ( px , py) → Ii( pr ≡ r , pφ ≡ φ) (S1)
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for a narrow range of r ∈ [ rlow , rhigh ] which encompasses the Bragg ring q111 ( Fig.

S1). This serves to reduce the effective size of the data, which is good for an analysis

stream on a large dataset. Loading hundreds of thousands of large images in and out

of random-access memory can slow down computation significantly. In this sense, it

is better to work with a snippet of each image that we find interesting, which, in this

case, is the region near the Bragg ring. The azimuthal pixel value is given by

φ = arctan

(
py − pb
px − pa

)
(S2)

The point ( pa , pb) is where the X-ray beam axis intersects the detector. We approx-

imate that ( pa , pb) remains constant throughout the experiment. One can extrapolate

this point of intersection by using the Bragg rings themselves under the assumptions

that they are circularly symmetric about the beam axis, and that the detector is

perpendicular to the beam axis.

The radial pixel value r is related to the momentum transfer magnitude q via

r =
d

∆p
tan

(
2 arcsin

(
q λ

4π

))
(S3)

where d, ∆p, and λ are the sample-to-detector distance, square pixel length, and

photon wavelength, respectively.

With these definitions, we use an elementary floor-nearest-neighbor interpolation to

approximate the polar image:

Ii(r , φ) = Icarti (� r cos(φ) + pa�, � r sin(φ) + pb�) (S4)

where � � is the floor operation.
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S1.3. Working with a pixel mask

Throughout our entire analysis, we work with masked images. We let M(r , φ) rep-

resent the polar image mask, a binary image used to exclude the gaps and boundaries

surrounding the detector ASICS (panels). Masked pixel values are 0 and usable pixel

values are 1. Typically there is a mask M cart for the cartesian images. In this case we

would define the polar mask to be

M( r , φ) = M cart (� r cos(φ) + pa�, � r sin(φ) + pb�) (S5)

Commonly, large scale sensors like these have signal spikes near the edges, so the

ASIC edges should be included in the mask. As an example, the mean signal in a

masked polar image is defined as

Ii =

(∑
r , φ

M(r , φ) Ii(r , φ)

)
(∑
r , φ

M(r , φ)

) (S6)

For our experiment, we used a fixed mask M cart and hence M for all images, but it

can also vary throughout a given experiment.

S1.4. The radial position of the 111 Bragg ring

In this particular experiment, the sample jet was unstable. Consequently, the sample-

to-detector distance fluctuated on a shot by shot basis. In extreme cases, the viscous

lipid-cubic-phase solution would kink and clog around the syringe needle tip, causing

significant fluctuations in r∗i ( Fig. S3).

We will denote the {111} Bragg ring radial position in exposure i by r∗i , i.e. the radial

pixel ring corresponding to q111. Since we do not know the precise sample-to-detector

distance of each exposure i, we estimate

IUCr macros version 2.1.10: 2016/01/28



4

r∗i = argmax
[〈
Ii ( r , φ)

〉
φ

]
(S7)

where 〈. . . 〉φ denotes the discrete average over φ. Therefore, r∗i corresponds to the

angle where the radial profile of the polar image is maximum. Because gold is the only

sample component which scatters at these high angles, we assume this is a robust

approach.

S1.5. The angular intensity profile Ii(φ) along the Bragg ring

For the purpose of this paper, we found it sufficient to represent the Bragg ring

profile by

Ii(φ) = Ii(r = r∗i , φ) (S8)

We sample φ at Nφ evenly spaced points along the Bragg ring. We fix Nφ ≥ 2π rhigh

where rhigh is shown in Fig. S1. In this way we will sample azimuthally at unit pixel

precision at the highest anticipated Bragg ring position (rhigh).

S1.6. Quantifying angular anisotropies

Shadows, beam polarization, and sample inhomogeneity, are but a few sources of

systematic noise which can give rise to large angular anisotropies in Ii(φ). One can

see these by eye ( Figs. S1, S4). We have a method for overcoming these effects, which

depends on the pairing of exposures with similar anisotropies. Here we discuss the

quantification of the angular anisotropy.

In order to quantify the anisotropy, we fit 15th degree Chebyshev polynomials of

the first kind to the angular intensity profile Ii(φ). Chebyshev polynomials of the first

kind are defined by

y(φ) = c0 T0(φ) + c1 T1(φ) + · · ·+ c15 T15(φ) (S9)
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where

T0(φ) = 1

T1(φ) = x

Tn+1(φ) = 2xTn(φ)− Tn−1(φ)

The fit is a simple least squares which minimizes the residual

Ei =
∑
φ

∣∣ Ii(φ)− yi(φ)
∣∣ 2 (S10)

Note in Fig. S4 the large Bragg spots (peaks). These large signal spikes will bias

the residual Ei, hence we mask them prior to fitting the polynomial. To detect the

signal spikes we use the median outlier filter described in appendix A. We let y∗i be

the Chebyshev polynomial which minimizes the unbiased residual. Figure S4 shows

two polynomial fits, one to the raw data and another to the data without the Bragg

spots. The pairing of exposures according to their angular anisotropies is critical for

our analysis, as detailed in the following sections.

S1.7. Exposure pairing

For our reported results, we made use of the difference correlation, which involves

subtracting pairs of exposures and correlating the residuals. Our data were divided up

into 85 experimental runs, and each run represented an average of 4500 usable expo-

sures. We considered a usable exposure to be one where the X-ray shutter was open

and the X-ray laser was operating properly (occasionally the laser pulses would cease

during a run from complications upstream). We acquired roughly 3.8× 105 usable

exposures, and we did not attempt to compare each exposure with every other expo-

sure. Rather, we only compared and paired exposures that occurred during the same

experimental run.
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We began by selecting all exposures for analysis according to their total average

signal Ii as defined in equation (S6) ( Fig. S5). We ignored exposures that were

too weak (Ii < 300 counts) because it is likely that they were recorded when the

sample injector failed. Similarly, we rejected exposures that were too strong (Ii >

3000 counts), for they may include non-linear effects on the detector such as faulty

pixel responses.

After filtering based on mean intensity, exposures within a certain run were grouped

according to their respective r∗i . Each exposure i was assigned to a subgroup based

on the floored value �r∗i �, i.e. the closest integer less than r∗i (the vertical orange

lines in Fig. S3 represent the group bins). Pairs were constrained to be formed using

exposures from the same subgroup. The pairing process involved an optimization step

in which exposures were recursively compared to each other; forming subgroups for

pairing serves to reduce the required computation time.

We required that an exposure can only be used once during analysis. Each exposure

i was paired with an exposure j according to their azimuthal anisotropies, quantified

by the fitted polynomials y∗i , y∗j (azimuthal anisotropies should be similar for similar

positions r on the polar image; the subgrouping described above is advantageous in

this regard). We used the squared Euclidean distance

εi,j =
∑
φ

(
y∗i (φ)− y∗j (φ)

)2
(S11)

as a metric of comparison between two exposures. Let P represent a set of pairings

in which each exposure is paired, and no exposure is paired twice (it is understood

that if there is an odd number of exposures in a subgroup, then a single shot will

remain unpaired and thus not used in the analysis). We can define the total distance

between paired exposures as
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d =
∑
i,j∈P

εi,j (S12)

A good pairing seeks to minimize d. This is a computationally hard problem, there-

fore we approximate an optimal pairing P.

S1.8. Computing the difference intensity profile

The difference intensity profile is defined as

Ii,j(φ) = Îi(φ)− Îj(φ) (S13)

where we define the normalized angular intensity profile

Îi(φ) = Ii(φ)

( ∑
φ Mi(φ)∑

φ Mi(φ) Ii(φ)

)
(S14)

is the normalized intensity profile. We normalize prior to subtraction, otherwise the

difference profile will be offset about zero, which will bias the correlation computation.

We combine the angular profile masks (which mask detector panel gaps, moder-

ate/bright intensities, etc.) as

Mi,j(φ) = Mi(φ) Mj(φ) (S15)

S1.9. Computing the difference correlation

Now we discuss the actual correlation computation. Typically it should be straight-

forward, but we are correlating masked functions, and proper handling of the mask

is essential. For each correlation angle ∆, we must keep track of the number of non-

masked φ pairs, e.g.

Ni,j(∆) =
∑
φ

Mi,j(φ) Mi,j(φ+∆) (S16)
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The masked difference correlation for exposures i, j is then given by

Di,j(∆) =

∑
φ

I∗i,j(φ) I∗i,j(φ+∆)

Ni,j(∆)
(S17)

where we define the masked difference profile

I∗i,j(φ) ≡ Ii,j(φ)Mi,j(φ) (S18)

The computation time for computing equation (S17) scales as (Nφ)
2 where Nφ is

the number of sampled intensity values around the Bragg ring. Because Ii,j(φ) is

periodic in 2π, we can employ a discrete fast-Fourier transform in order to speed

up the computation of Di,j(∆). Let Ai,j(k) be the discrete Fourier transform of the

angular difference intensity profile

Ai,j(k) =
∑
φ

I∗i,j(φ) e
−2π ı φ k /Nφ (S19)

(where the symbol ı =
√−1). Let Bi,j(k) = |Ai,j(k)| be the complex modulus of

Ai,j(k). By the Wiener-Khinchin theorem, the difference correlation is the real-valued

inverse Fourier transform of (Bi,j(k))
2:

Di,j(∆) = R
[ 1

Nφ

∑
k

(Bi,j(k))
2 e2π ı k∆ /Nφ

]
(S20)

where R [ . . . ] ensures real-only output. Therefore, we can speed up the correlation

computation time by computing fast-Fourier transforms.

Because the average value of a difference intensity profile I∗i,j(φ) is 0, one can com-

pute the Fourier transform on the full uniform domain for φ, i.e. for

φ ∈
{
0 ,

2π

Nφ
,
4π

Nφ
, . . .

2π (Nφ − 1)

Nφ

}
(S21)
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This works because the masked values are also defined to be 0, so we are effectively

replacing the masked φ components with the average value. Otherwise, one will need

to compute and normalize by equation (S16) for each correlation, adding significant

computation time.

S1.10. Code availability

The data analysis code is freely available through GitHub. Please email the corre-

sponding author for details.

Appendix S2
CXS simulation

We define a solution as a set of identical, non-interacting objects (e.g. molecules) m,

each with an independent orientation ω relative to the X-ray beam axis, governed by

the object’s diffusion constant. We consider m as a collection of Na atoms each with

position vector

rmj (t) = Rm
ω (t) · rj + Tm(t) 1 ≤ j ≤ Na (S22)

where Rm
ω (t) is a rotation operator, Tm(t) is a translation operator representing

the center of mass position of m at time t, and rj is the position of the jth atom at

an arbitrarily defined initial orientation. If we freeze the solution at an instant in time

and expose it to X-ray photons of wavelength λ, then we can measure the scattering

factor function

S(q, t) =

∣∣∣∣∣∣
Nm∑
m

Na∑
j

fj(q) e
−i q·rm

j (t)

∣∣∣∣∣∣
2

(S23)

Here fj(q) is the atomic form factor of the jth atom, q represents a position in

reciprocal space (e.g. of a pixel) at scattering angle
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θ = arcsin

(
λ q

4π

)
(S24)

and the outer sum is over all Nm exposed objects. In general, S(q, t) may be written

as

S(q, t) =
Nm∑
m

|Am
ω (q, t)|2 +

∑
m �=m′

Am
ω (q, t)

(
Am′

ω (q, t)
)∗

(S25)

where

Am
ω (q, t) =

Na∑
j

fj(q)e
−i q·rm

j (t) (S26)

The strength of the interference term on the RHS of equation (S25) depends on

both the concentration of the sample and the magnitude of the momentum transfer

vector q. For large momentum transfer (wide scattering angles) and/or more dilute

samples, the factors e−iq·(Tm−Tm′
) will approach zero, and we can neglect the second

sum on the RHS such that we have

S(q, t) =
Nm∑
m

|Am
ω (q, t)|2 (S27)

=
Nm∑
m

∣∣∣∣∣∣
Na∑
j

fj(q) e
−i q·rm

j (t)

∣∣∣∣∣∣
2

(S28)

=
Nm∑
m

∣∣∣∣∣∣
Na∑
j

fj(q) e
−i q·(Rm

ω (t)·rj +Tm(t))

∣∣∣∣∣∣
2

(S29)

=
Nm∑
m

∣∣∣∣∣∣
Na∑
j

fj(q) e
−i q·Rm

ω (t)·rj

∣∣∣∣∣∣
2

(S30)

Therefore the measured scattering factor for a dilute solution is simply a super-

position of single molecule scattering factors at various orientations ω. Instead of

considering the precise time dependence of each object (molecule) in solution, how-

ever, we consider that, on average, each orientation ω is occupied by a fixed number

IUCr macros version 2.1.10: 2016/01/28



11

of molecules Nω = (Nm/
∫
dω), and that, at each instant, this number is fluctuating

by some small amount α(ω, t) (we are borrowing notation directly from the original

CXS paper by Zvi Kam in 1977). Consider the average isotropic scattering factor over

all molecules

S(q) = Nω

∫
S(q,ω)dω (S31)

where

S(q,ω) =

∣∣∣∣∣∣
Na∑
j

fj(q) e
−i q·Rω ·rj

∣∣∣∣∣∣
2

(S32)

is the scattering factor of a molecule at orientation ω. Then we can represent S(q, t)

as

S(q, t) = S(q) +

∫
S(q,ω)α(ω, t)dω (S33)

Zvi Kam’s main statement is that by measuring

〈S(q1, t)S(q2, t)〉t − S(q1)S(q2) (S34)

one would resolve a correlation function

C(q1, q2) = Nω

∫
S(q1,ω)S(q2,ω)dω (S35)

or

C(q1, q2, cosψ) ∝
∫

S(q1,ω)S(q2,ω)dω (S36)

which depends only on the single particle scattering factor. The scattering factor

in equation (S32) is what we simulate, given an arrangement of atoms. We can then

easily calculate the expected CXS signal by evaluating the integral in equation (S36).
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Appendix S3
List of supplementary figures
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Icarti ( px , py)

Ii(r , φ)

Fig. S1. A reconstructed scattering image of gold NPs, and the result of a floor-nearest-
neighbor interpolation across the q111 Bragg ring. The polar image shown has the
same resolution as the cartesian image. There appears to be a shadow on the image,
which will lead to artifactual CXS signals.
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Fig. S2. (Left) A polar image Ii(r, φ) representing a single snapshot of the gold
nanoparticles. (Right) The azimuthally-averaged intensity and a corresponding
Gaussian fit. The center of the Gaussian corresponds to the {111} Bragg ring radial
position, r∗i
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Fig. S3. A histogram of the radial pixel ring corresponding to q111. We predict that
the shape of this histogram (with the two peaks near 760 and 772) arises due to
fluctuations in the injector system leading to different sample-to-detector positions.
One way to fix this would be to use a gas focuses sample injector. Exposure pairing
was a critical part of our analysis. We only paired exposures whose r∗i were in the
same radial bin, marked here by the orange vertical lines.
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Fig. S4. In blue is the raw calculation of Ii(φ) for a single snapshot, which shows
sharp peaks indicative of larger crystallite domains. Our motivation is actually to
study less crystalline materials in the soft-matter regime, so we attempt to separate
all signal associated with these larger, more crystalline nanoparticles. The solid
yellow line is a biased polynomial fit to the raw data with the signal spikes (blue x
markers). Shown in dashed-black is the unbiased polynomial, y∗i (φ), fit to the data
without the Bragg peaks (red triangle markers).
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Fig. S5. A histogram of the mean intensity of every polar image Ii(r, φ) across all
experimental runs. Only exposures whose mean intensity was greater than 300 units
and less than 3000 units were analyzed (300 ≤ Ii ≤ 3000).
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Fig. S6. Comparing the raw correlation of the moderate intensities Cm(cosψ) to the
difference correlation of the moderate intensities Dm(cosψ). We fit 6th degree poly-
nomials (dashed yellow) to the data and subtracted them to emphasize that the raw
correlations contains signals which are certainly artifactual. These data represent
averages over tens of thousands of exposures. Expected CXS signals for gold NPs
are marked on the axis and shown with grid lines. Apparent in the figure, the dif-
ference correlation is a critical step in the analysis. Without it we would not be
able to distinguish the gold NP CXS signal from the artifactual CXS signal. Low-
frequency variation in the difference correlation (top-right) persists, and is due to
extreme detector artifacts.
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Fig. S7. A portion of the angular difference correlation. Smoothing is applied, and
then peaks are located by calculating local extrema.

Fig. S8. The symmetric difference correlation DF (cosψ) and partial Gaussian fits
G(cosψ) as defined in equation (31). The different markers (triangle, square, circle,
etc) represent different ranges over which the sum of Gaussians was fit.
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Fig. S9. (Top) The scaling and convergence of the Gaussian amplitude Aγ for the CXS
peak at cosψ = 1/3. The error bar is one standard deviation across 200 fit attempts.
(Bottom) The scaling of the CXS noise σ. The fitted curve scales as N−1/2.
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Fig. S10. Comparing CXS peak widths at cosψ = 5/9. (Top) The simulated CXS for
a gold decahedron composed of five regular tetrahedrons of side length a = 77.5 Å
(triangle marker). The FWHM, δsim, corresponds to an NP domain of size s =
34.7 Å. The dashed line is a Gaussian fit. (Bottom) The same CXS peak observed
in the moderate intensity correlation, Dm

F (ψ) (circle marker). The FWHM, δm,
corresponds to an NP domain of size s = 59.8 Å. The solid line is a Gaussian fit.
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Fig. S11. The distribution L(β) of FWHM values for the bright Bragg spots mea-
sured during a single snapshot exposure. This represents the relative number of
NP domains whose domain size corresponds to a FWHM of β. The bright Bragg
spots are a result of the large NP domains in the sample, and the average large-
domain size is the peak in this histogram, denoted by argmaxL(β). If we assume the
domains are tetrahedral, this would correspond to a domain whose side length is
46 nm. We note that these larger domains do not show significant signs of twinning
in the correlation Db

F (cosψ).
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