Supplementary Material

before X-ray exposure

after X-ray exposure

Supplementary Figure S1. The plate-shaped crystal of the 132-nt 6S RNA variant before and after X-ray exposure. In the right panel, radiation damage on the crystal is clearly seen along the X-ray path.

Supplementary Figure S2. Superimpositions among the RNA duplex obtained in this study (red), the 5S rRNA domain A (blue: PDB-ID 353D) and an RNA duplex containing tandem UoU base pairs (green: PDB-ID 205D).

Supplementary Figure S3. Crystal packing interactions observed in the crystals of the 5S rRNA domain A (a) and of an RNA duplex containing tandem UoU base pairs (b). The view is down the crystallographic b axis.

Supplementary Figure S4. A ribose zipper motif, boxed in (a) and detailed views in (b), observed at the packing interface of the 5S rRNA domain A crystal (PDB-ID 353D). Hydrogen bonds involved in the motifs are represented by dashed lines with distances in \AA in panel (b).. In the original article (Betzel et al., 1994), there is no mention of protonation of cytosine residues. However, from distances and angles of hydrogen bonds observed in $\mathrm{G}=\mathrm{C}$ base pairs, it is possible that cytosine residues are protonated to form wobble-type $\mathrm{G}-\mathrm{C}^{+}$pairs in the crystal as illustrated in panel (b). The crystals were obtained at pH 6.5 .
(a)

(b)

Supplementary Figure S5. A ribose zipper motif, boxed in (a) and detailed views in (b), observed at the packing interface of the crystal of an RNA duplex containing tandem UoU base pairs (PDB-ID 205D). Hydrogen bonds involved in the motifs are represented by dashed lines with distances in \AA in panel (b).

Supplementary Table S1. Local base pair parameters of the RNA duplex obtained in this study.

Base pair	Inclination $\left(^{\circ}\right)$	$\begin{aligned} & \text { Tip } \\ & \left.\mathbf{C}^{\circ}\right) \\ & \hline \end{aligned}$	Twist ${ }^{\circ}$)	Rise (Å)	Propeller $\left(^{\circ}\right)$	Buckle (${ }^{\circ}$)	Opening ${ }^{\circ}$)	$\overline{\mathrm{C}} 1^{\prime} . . . \mathrm{C} 1$ (A)
$\mathrm{G}_{1}=\mathrm{C}_{24}$					-7	-6	-5	11.2
$\mathrm{G}_{2}=\mathrm{C}_{23}$	0	-2	33	3.1	-1	2	8	10.7
$\mathrm{G}_{3}=\mathrm{C}_{22}$	33	2	36	1.8	-7	-9	5	10.5
$\mathrm{U}_{4} \mathrm{OG}_{21}$	12	1	40	2.7	-1	0	3	10.5
$\mathrm{G}_{5} \mathrm{OU}_{20}$	40	7	23	1.2	-16	-11	6	10.2
$\mathrm{G}_{6}=\mathrm{C}_{19}$	12	-6	38	2.9	-9	-12	6	10.4
$\mathrm{U}_{7}-\mathrm{A}_{18}$	12	-3	33	2.6	-5	0	2	10.7
$\mathrm{G}_{8}=\mathrm{C}_{17}$	25	3	34	2.4	-12	4	6	10.6
$\mathrm{C}_{9}=\mathrm{G}_{16}$	21	4	34	2.7	-11	7	-3	10.6
$\mathrm{G}_{10} \mathrm{OU}_{15}$	33	-3	31	1.7	-16	-3	2	10.2
$\mathrm{G}_{11}=\mathrm{C}_{14}$	9	-1	36	3.1	-14	-11	5	10.7
$\mathrm{G}_{12}=\mathrm{C}_{13}$	15	7	35	3.1	-13	-14	7	10.5
Average	15	1	34	2.5	-9	-5	4	10.6
A-form	20	0	33	2.3	12	0	-2	10.7

