SUPPLEMENTARY MATERIAL

Mass-spectrometric analysis.

SDS PAGE gel bands containing the corresponding MJ1004 constructs were subjected to ingel tryptic digestion according to Shevchenko et al. (1996) with minor modifications. The gel piece was swollen in a digestion buffer containing 50 mM NH₄HCO₃ and 12.5 ng μ L⁻¹ of trypsin (Roche Diagnostics) in an ice bath. After 30 minutes the supernatant was removed and discarded, 20 μ L of 50 mM NH₄HCO₃ were added to the gel piece and the digestion allowed to proceed at 310 K overnight. Prior to MS analysis, sample was acidified by adding 5 μ L 0.5 % TFA. 0.5 µL of digested sample was directly spotted onto the MALDI target and then mixed with 0.5 μ L α -Cyano-4-hydroxycinnamic acid (CHCA) matrix solution (20 μ g μ L⁻¹ in ACN, 0.1 % TFA, 70:30, vol/vol). Peptide mass fingerprinting was performed on a Bruker Autoflex III mass spectrometer (Bruker-Daltonics, Bremen, Germany). Positively charged ions were analyzed in reflector mode, using delayed extraction. The spectra were obtained by randomly scanning the sample surface. About 600-800 spectra were averaged to improve the signal to noise ratio. Spectra were externally calibrated resulting in a mass accuracy of <50ppm when external calibration was performed and typically <20 ppm in the case for internal calibration. Protein identification was performed by searching in a non-redundant protein database (NCBI) using Mascot searching engine (http://matrixscience.com). The following parameters were used for database searches: missed cleavages 1, allowed modifications carbamidomethylation of cysteine (complete) and oxidation of methionine (partial).

Supplementary Table 1. Bateman module orientation found in dimeric assemblies of CBS

domain containing proteins for which the crystal structure is known. H.H = head-to-head; H.T

= head-to-tail.

UniProt	Organism	PDB	Bateman orientation
A9CIP4	Agrobacterium tumefaciens	3FHM	H.H
Q81MQ0	Bacillus anthracis	3LQN	H.H
O31698	Bacillus subtilis	1YAV	H.H
O34994	Bacillus subtilis	3FV6	H.H
Q7WB69	Bordetella parapertussis	3JTF	H.H
Q8KDJ9	Chlorobium tepidum	3GBY	H.H
Q183U2	Clostridium difficile	3LV9	H.T
Q8XIQ9	Clostridium perfringens	3LB2, 3L31	H.H
Q9VRD9	Drosophila melanogaster	3PC2, 3PC3, 3PC4	H.T
Q8FD73	Escherichia coli CFT073	3FNA	H.H
A6TEL6	Klebsiella pneumoniae	3K2V	H.H
A6TCM0	Klebsiella pneumoniae	3HF7	H.H
P51800	Homo sapiens	2PFI	H.H
P54619	Homo sapiens	2UV4, 2UV5, 2UV6,	H.T
	-	2UV7	
P51795	Homo sapiens	2J9L, 2JA3	
Q58622	Methanocaldococcus jannaschii	3KH5, 3LFZ	H.H
Q57564	Methanocaldococcus jannaschii	3KPB, 3KPC, 3KPD	H.H
O27659	Methanothermobacter	1PBJ	H.T
	thermautotrophicus		
O06186	Mycobacterium tuberculosis	1Y5H, 1XKF	H.H
Q82SE2	Nitrosomonas europaea	2RC3	H.H
Q04HE1	Oenococcus oeni PSU	30C0	H.H
Q87VX8	Pseudomonas syringae	3LFR	H.H
Q8ZVX8	Pyrobaculum aerophilum	2RIF, 2RIH	H.H
P54645	Rattus norvegicus	2V8Q, 2V92, 2V9J	H.H
P06782	Saccharomyces cerevisiae	2QLV	H.H
P0A2L3	Salmonella typhimurium LT2	3NQR	H.H
074536	Schizosaccharomyces pombe	2QR1, 2QRC, 2QRD,	H.H
		2QRE	
Q8EDE1	Shewanella oneidensis	3LHH	
Q8EGN5	Shewanella oneidensis	3KXR	H.H
Q9EUQ9	Streptococcus pneumoniae	3K6E	H.H
P0C0H6	Streptococcus pyogenes	1ZFJ	H.H
Q97U20	Sulfolobus solfataricus	3DDJ	H.H
Q96Y20	Sulfolobus tokodaii strain7	2EF7	H.H
Q9WZZ4	Thermotoga maritima	1VR9	H.H
Q9X033	Thermotoga maritima	1050	H.T
Q9HLD9	Thermoplasma acidophilum	1PVM, 2QH1	H.H
P21564	Torpedo marmorata	2D4Z	

Reference

Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. (1996). Anal Chem. 68, 850-858.