

Volume 31 (2024)

Supporting information for article:

Iterative Bragg Peak Removal on X-ray Absorption Spectra with Automatic Intensity Correction

Anatoly, Ryuichi Shimogawa, Nicholas Marcella, Christopher R. O'Connor, Taek-Seung Kim, Christian Reece, Igor Lubomirsky and Anatoly I. Frenkel

Figure S1 Comparison of the deglitched spectra by IBR-AIC, and manual deglitching of the Pt/SiO₂ on Al and the transmission signals obtained from the Pt/SiO₂ pellet under different in-situ conditions: (a) 350° C at N₂, (b) 350° C at 5% H₂ in N₂, (c) ambient temperature in N₂, and (d) ambient temperature in 0.6 % CO. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹. The dashed lines are the positions of the Bragg peaks observed in the datasets.

Figure S2 Mock examples of adding artificial Bragg peaks (independent Gaussian peaks at k = 4.0 and 6.0 Å⁻¹, $\sigma = 5$ eV) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S3 Mock examples of adding artificial Bragg peaks (independent broad Gaussian peaks at k = 4.0 and 10.0 Å⁻¹, σ = 20 eV) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S4 Mock examples of adding artificial Bragg peaks (overlapping broad Gaussian peaks at k = 4.0 and 6.0 Å⁻¹, σ = 20 eV) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S5 Mock examples of adding artificial noise (Normal distribution with $\sigma = 0.001 \times \text{edge}$ step, noise to signal (N/S) ratio of 0.001) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S6 Mock examples of adding artificial noise (Normal distribution with $\sigma = 0.01 \times \text{edge step}$, noise to signal (N/S) ratio of 0.01) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S7 Mock examples of adding artificial non-linearity ($\mu = \mu + 0.0001 \times (\text{Energy} - e0)$) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S8 Mock examples of adding artificial non-linearity ($\mu = \mu + 0.001 \times (\text{Energy} - e0)$) to the fluorescence signal obtained in Pt/SiO₂ at ambient temperature under N₂. The original spectrum is denoted as ref. The data are shown in (1) energy space, (2) k^2 -weighted EXAFS spectra, and (3) Fourier transform magnitude of the k^2 -weighted EXAFS spectra. The k-range used for the Fourier transforms was from 2 Å⁻¹ to 8 Å⁻¹.

Figure S9 Comparison of the IBR-AIC data with the manually deglitched data of 30° from literature (Cohen *et al.*, 2024). The XAS in (a) energy space, (b) k^2 -weighted EXAFS spectra, and (c) Fourier transform magnitude of the k^2 -weighted EXAFS spectra.). The k-range used for the Fourier transforms was from 2 Å⁻¹ to 12 Å⁻¹.

References

Cohen, A., Li, J., Cohen, H., Kaplan-Ashiri, I., Khodorov, S., Wachtel, E., Lubomirsky, I., Frenkel, A. I. & Ehre, D. (2024). *ACS Applied Electronic Materials* DOI:10.1021/acsaelm.3c01390.