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1. General Theory

In the dipole approximation the resonant scattering form factor can be presented in

the following expression (we direct the interested reader to references (Hill et al., 1996;

Hannon et al., 1988) for more details) as

f = (ef · ei) F (0) − i(ef × ei) ·MF (1) + (ef ·M)(ei ·M)F (2). (1)

Here ei and ef are directional vectors representing the incident and scattered polar-

isation respectively, M is the magnetic moment and the coefficients F (0), F (1) and

F (2) depend on the matrix elements involved in the resonant process. The discus-

sion of these coefficients is out of the scope of this work and not necessary for our

conclusions.

The first term is the resonant charge scattering with a polarisation dependence

that depends on the angle of the scattered beam relative to the incident beam. This

has the same polarisation dependence as the non-resonant Thompson scattering. The
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second term has a first order dependence between the projection of the polarisation

vector product and the magnetic moment. The third term is second order in magnetic

moment and therefore will be assumed to be negligible in this work.

Fig. 1. The frame of reference used for the calculations of polarisation dependent
scattering. The Greek symbols π and σ refer to polarisation that are parallel or
perpendicular to the scattering plane (plane defined by incoming and outgoing
beam) respectively. The suffixes i and f refer to the incident and scattered polari-
sation respectiely. The incident and outgoing angles are represented by θi and θf
respectively. A right-handed set with unit vectors i, j and k is shown on the right
for reference.

We will now use a simple reference frame as shown in Fig 1 based on a right-handed

set. Fig 1 shows the incident and outgoing beams. The general polarisation state of

the incoming and outgoing beams i.e. ei and ef can be separated into components

with directions relative to the scattering plane. The polarisations will from now on in

this work be represented by the Greek symbols π and σ which refer to polarisations

parallel and perpendicular to the scattering plane respectively. The suffixes i and f

refer to the incoming and outgoing beam with θ being both the incoming and outgoing
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angle. In this frame of reference the polarisations can be represented in terms of the

Cartesian unit vector system by

πi = πi sin(θi)i+ πi cos(θi)k, (2)

σi = σij, (3)

πf = −πf sin(θf )i+ πf cos(θf )k, (4)

and

σf = σf j. (5)

The second term in Equation 1 is a result of the reduction in symmetry from the

magnetic moment. The vector nature of the magnetic moment on the atoms can change

the polarisation of the outgoing wave relative to the incoming wave. The first term in

Equation 1 i.e. the charge scattering does not rotate the plane of polarisation. This

is not the case in general since resonant charge scattering can introduce symmetry

breaking because of the shapes of the intermediate state orbitals during the reso-

nant process. In this work we assume that the charge scattering does not rotate the

polarisation. The following 2x2 matrix representation where each element represents a

particular incident and outgoing polarisation will now be defined (ignoring the second

order term in magnetic moment):

f =

(
σi → σf πi → σf
σi → πf πi → πf

)
F (0) − i

(
σi → σf πi → σf
σi → πf πi → πf

)
·MF (1). (6)

Using the definitions in Equations ( 2- 5), assuming specular reflectivity (so that θi

and θf are equal to θ) the first two terms in Equation 1 become:
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f =

(
1 0
0 cos 2θ

)
F (0) − i

(
0 mi cos θ −mk sin θ

−mi cos θ −mk sin θ mj sin 2θ

)
F (1), (7)

where

M = mîi+mj ĵ+mkk̂. (8)

Equation 7 requires some explanation. The first term has only diagonal components

meaning that there is no rotation of the polarisation due to the scalar nature of the

charge scattering assumed in this work. Since the π polarisation is in the scattering

plane the πi → πf term has an angular dependence due to the angle of the detector

with respect to the incident beam. The σ term will have no such dependence as it is

perpendicular to the scattering plane and independent of the detector angle.

The second term contains one diagonal term and two off-diagonal terms. There is no

σi → σf term but there is a πi → πf term that has a sinusoidal dependence on twice

the scattering angle (c.f. the cosinusoidal dependence of the charge scattering). In

addition this depends on the magnitude of the magnetic moment (mj) perpendicular

to the scattering plane. This term corresponds to an exchange of angular momentum

perpendicular to the scattering plane caused by a combination of the π polarisation

and the difference between the directions of the incoming and outgoing wave vectors.

This dependence will be zero at 0 ◦ and the larger the difference the larger the exchange

of momentum hence the sinusoidal dependence. This dependence does not exist for

the σ polarisation as the X-ray amplitude is perpendicular to the scattering plane.

There is therefore no exchange of angular momentum so, to first order in the dipole

approximation, no dependence on the magnetic moment.

The off-diagonal terms in Equations 6 and 7 correspond to a rotation of the polar-

ization, which demonstrates the exchange of angular momentum from the moment

to that of the X-ray polarization. The σi → πf term depends on the component of
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the magnetic moment in the direction of the incident beam i.e. micosθ −mksinθ as

in circular magnetic dichroism. This compares to the πi → σf term depends on the

component of the moment in the negative to the direction of the outgoing beam i.e.

-micosθ −mksinθ . On examination of all the terms in Equation 6 it can be seen that

in an instrument that provides an X-ray beam with a well-defined polarisation and a

polarisation analyser the magnetic and charge scattering can be completely separated.

At low angles the dominant contribution to the magnetic scattering comes from the

off-diagonal terms (assuming that the πi → πf is small). In any case if the magnetic

moments are completely in the scattering plane, then there are only the two off-

diagonal terms. Since the charge scattering has no off diagonal terms in this simple

example then there can be no interference between charge and magnetic scattering

with linear polarisation.

We now make the following definitions and acknowledge that the charge scattering

and magnetic scattering factor is a complex quantity by making both F (0) and F (1)

complex,

F (0) = F
(0)
R + iF

(0)
I

F (1) = F
(1)
R + iF

(1)
I

(9)

We then define

σCR11 = F
(0)
R , (10)

πCR22 = cos(2θ)F
(0)
R , (11)

σCI11 = F
(0)
I , (12)

πCI22 = cos(2θ)F
(0)
I , (13)

IUCr macros version 2.1.10: 2016/01/28



6

σMR12 = (mi cos θ −mk sin θ)F
(1)
I , (14)

πMR21 = (−mi cos θ −mk sin θ)F
(1)
I , (15)

πMR22 = (mj sin 2θ)F
(1)
I . (16)

σMI12 = (mi cos θ −mk sin θ)F
(1)
R , (17)

πMI21 = (−mi cos θ −mk sin θ)F
(1)
R , (18)

and

πMI22 = (mj sin 2θ)F
(1)
R . (19)

This enables us to write Equation 7 as

f =

(
σCR11 0

0 πCR22

)
+ i

(
σCI11 0
0 πCI22

)
+

(
0 σMR12

πMR21 πMR22

)
− i

(
0 σMI12

πMI21 πMI22

)
.

(20)

In the above we have made both the charge scattering and magnetic form factors

complex to allow for the phase changes as the energy is adjusted in the vicinity of the

resonance. Using Equation 20 with the definitions in Equations (9 - 16) we work out

the cases for the intensity (I = f∗f) for different polarisations (circular and linear)

with the magnetisation in different directions (in the scattering plane and out-of-the

scattering plane).

The calculation of magnetic reflectivity requires a knowledge of the values of charge

(F
(0)
R , F

(0)
I ) and magnetic (F

(1)
R and F

(1)
I ) form factors. To calculate the scattering
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factors we measured absorption and dichroism of the film in total electron yield mode

at 45◦ incident angle using both helicities of circular polarisation. The measured spec-

tra for both polarisations were averaged and then fitted to the imaginary part of

charge scattering factors in the Henke tables (HENKE et al., 1993) in the 30eV to

30keV energy range. The Kramers-Kronig relations were then used to calculate the

real part of the charge scattering factors. Similarly, the difference in imaginary scat-

tering factors (which is the imaginary part of the magnetic scattering factors) was

taken as input and the Kramers-Kronig relations were used to calculate the real part

of the magnetic scattering factors (Brück, 2009). This measurement of absorption by

total electron yield is not sensitive to the whole film and will be dominated by the

Pt capping layer. There is, however, significant sensitivity to the FeNi layer due to

the obvious presence of the Fe resonance in the data. In addition whilst the Henke

table data, which is used to provide data away from the vicinity of the resonance, do

not provide polarisation dependent intensities, at soft X-ray energies, the polarisation

dependence is negligible here (polarisation dependence only occurs on resonance). The

method will not necessarily yield accurate values for the scattering factors but give

rough estimates which can be used in our calculations as a qualitative demonstration

of the changes in reflectivity during the magnetic reversal process.
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Fig. 2. The real and imaginary parts of the structural and magnetic form factor
extracted from a reflectivity spectrum taken over both the L2 and L3 edges using
the Kramers-Kronig transformation.

1.1. Linear Polarisation

1.1.1. Case 1: Moments in the Scattering Plane By taking the relevant terms in Equa-

tion 20 and finding the intensity (I = f∗f) the results can be calculated for the general

case of linear polarised light scattered from a magnetic moment using the following

equation.

I = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + σ2

MI21

+π2
MR22 + π2

MI22

+2πCR22πMR22 − 2πCI22πMI22

(21)

If the moments are kept in the scattering plane only the off-diagonal terms which

contribute to the magnetic scattering i.e. so that terms containing the factor πMR22

and πMI22 can be set to zero. This can be further simplified. In first order electric

dipole transitions, with the moments in the scattering plane, σ polarised light will

give rise to π polarised magnetic scattering leading to the following equation.
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I = σ2
CR11 + σ

2
CI11 + π2

MR21 + π2
MI21 (22)

In the same way for π incident polarisation (where magnetically scattered light is

all in the σ channel) we obtain

I = π2
CR22 + π2

CI22 + σ2
MR12 + σ2

MI12 (23)

1.1.2. Case 2: Moments Perpendicular to the Scattering Plane If the magnetic moment

is perpendicular to the scattering plane, then only the one diagonal component is

present in the magnetic part of the equation. There is therefore no rotation of the

polarisation when the X-rays are scattered by the magnetic ion unlike the previous

case in section 1.1.1. The equation describing the intensity is now

I = π2
CR22 + π2

CI22 + π2
MR22 + π2

MI22

+2πCR22πMR22 − 2πCI22πMI22

(24)

thus demonstrating that the dependence of the scattered intensity is still quadratic

but with a linear component. The relative size of the linear and quadratic dependence

will depend on the sizes of the imaginary component and real component of the charge

scattering which in turn will depend on the energy of the incident beam.

1.2. Circular Polarisation

1.2.1. Case 3: Moment in the Scattering Plane In the case of circularly polarised X-

rays the amplitudes can be modelled as two orthogonal polarisations phase shifted by

π/2 radians. Using the expressions in Equation 2 the two helicities for the incident

beam can be represented as
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P+
i = σi + iπi

P−
i = σi − iπi

(25)

Here the results from the two helicities are distinguished using the indices + and −.

It is now important that we include the phase difference i from the incident beam with

a component in the scattering plane (π). The generalised equation (from Equation 6)

for circular polarisation, including the π/2 radians phase change, will take the form

f+ =

(
σi → σf 0

0 iπi → iπf

)
F (0) − i

(
σi → 0 iπi → iσf
σi → πf iπi → iπf

)
·MF (1)

f− =

(
σi → σf 0

0 −iπi → −iπf

)
F (0) − i

(
σi → 0 −iπi → −iσf

σi → πf −iπi → −iπf

)
·MF (1)

(26)

for the two opposite helicities respectively. The different helicities result in different

signs for the right hand terms in each matrix; these terms originate from the π incident

terms.

To work out the helicities for the outgoing beam we use Equation 20 with the

definitions given by Equation(9-14) but include the phase differences imposed by the

circularly polarised beam shown in the representation of Equation 26. They are written

out as follows:

f+ =

(
σCR11 0

0 iπCR22

)
+ i

(
σCI11 0
0 iπCI22

)
+

(
0 iσMR12

πMR21 iπMR22

)
− i

(
0 iσMI12

πMI21 iπMI22

)
f− =

(
σCR11 0

0 −iπCR22

)
+ i

(
σCI11 0
0 −iπCI22

)
+

(
0 −iσMR12

πMR21 −iπMR22

)
− i

(
0 −iσMI12

πMI21 −iπMI22

)
.

(27)

The phase difference of π/2 radians before the magnetic part of the form factor now

becomes important.
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I+ = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21 + π2
MR22 + π2

MI22

+2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21)

−2(πMR22πMI21 − πMI22πMR21)

+2(πCR22πMR22 − πCI22πMI22)

I− = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21 + π2
MR22 + π2

MI22

−2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21)

+2(πMR22πMI21 − πMI22πMR21)

+2(πCR22πMR22 − πCI22πMI22)
(28)

This is the general case for circular polarisation. This can be simplified by keeping

the moments in the scattering plane since the terms containing πMR22 and πMI22 are

zero (these terms are only finite with a moment out of the scattering plane); Equation

28 then simplifies to the following:

I+ = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21

+2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21)

I− = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21

−2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21)

(29)

The first four terms σCR11, πCR22, σCI11 and πCI22 are charge terms and do not

change with magnetic field. The next four terms σMR12, πMR21, σMI12 and πMI21 are

quadratic in magnetic moment and are independent of the helicity of the beam. The

last four terms σCR11σMI12, πCR22πMI21, σCI11σMR12 and πCI22πMR21 are linear in

magnetic moment. They are the result of interference between charge and magnetic
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scattering caused by a combination of circular polarisation and the 90◦ phase differ-

ence between the charge and magnetic form factors. The sign of these linear terms is

dependent on the helicity.

In order to remove the quadratic components it is prudent to measure the hysteresis

curves at two helicities and then take the difference. This is shown in Fig. 3. The

quadratic parts have been made more significant by making F (1) = 2F (0) to highlight

the potential problems with non-linearity.
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Fig. 3. At the top left is shown the hysteresis loop which will result in the reflectivity
changes as shown in both plots at the bottom. These plots are the results of calcu-
lations done at the resonance (707eV) done with circular polarisation at opposite
helicities (at the bottom). The calculations have been done with F (1) = 2F (0) to
add an increased quadratic component. Unlike the linear part this quadratic depen-
dence does not change sign with helicity this means that the reflectivity hysteresis
loops can be subtracted to remove this non-linear dependence which will give us
the exact form of the hysteresis loop shown on the top right.

To switch the sense of the loops, without switching helicity and without going above

a θ of 90◦ a phase is introduced. In scattering the exact phase is lost but since there

are terms linearly dependent on magnetic moment these terms could be reversed by

the effect of a phase. This can be done by introducing the phase in the Equations

28 and 29 respectively. The resulting modifications with the phase, designated as ϕ,

are shown as Equations 30 and 31. The effect of the phase has been introduced as a
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cosine which is only affecting the terms which are linear in magnetic moment. This

is justified in our qualitative model since the sign change resulting from this phase

would be lost in the quadratic terms.

I = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21 + π2
MR22 + π2

MI22

+2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21) cosϕ

−2(πMR22πMI21 − πMI22πMR21)

+2(πCR22πMR22 − πCI22πMI22) cosϕ
(30)

I = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + σ2
MR12 + π2

MR21 + σ2
MI12 + π2

MI21

+2(σCR11σMI12 − πCR22πMI21 + σCI11σMR12 − πCI22πMR21) cosϕ
(31)

Equation 30 includes all the terms including those that would be present when

there is a component of the magnetic moment out of the scattering plane πMR22 and

πMI22. This includes terms that are quadratic in magnetic moment i.e. πMR22πMI21

and πMI22πMR21. At low angles the πMR22 and πMI22 terms will be small due to their

sin(2θ) dependence. In this case equation 31 is a good approximation. It should be

further noted though that the terms ±2(πMR22πMI21 − πMI22πMR21) always equal

zero. Furthermore if the magnetic reversal process is taking place in the scattering

plane it can be assumed that, perpendicular to this plane, the net magnetic moment

is zero. This means that terms linear in πMR22 and πMI22 are also zero. Therefore

the last term in Equation 30 i.e. 2(πCR22πMR22 − πCI22πMI22) cosϕ is ignored in this

work.
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1.2.2. Case 4: Moment Perpendicular to the Scattering Plane The Equation 28 can

be simplified for having moments perpendicular to the scattering plane. Since the

off-diagonal terms σMR12, πMR21, σMI12, πMI21 only depend on the moments in the

scattering plane these can all be set to zero. In fact the only magnetic terms are the

diagonal πMR22 and πMI22, which depend only on the moments perpendicular to the

scattering plane. The Equation 28 greatly simplifies to Equation 32.

I+ = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + π2
MR22 + π2

MI22

+2(πCR22πMR22 − πCI22πMI22)

I− = σ2
CR11 + π2

CR22 + σ2
CI11 + π2

CI22 + π2
MR22 + π2

MI22

+2(πCR22πMR22 − πCI22πMI22)

(32)

The equations for both helicities are identical. Also noticeable is that Equation 32 is

identical to that of Equation 24 apart from the additional charge terms σCR11 and

σCI11 which do not change with applied field. This equation is also describing applied

fields perpendicular to the scattering plane but for linear polarisation. Since it is only

the π polarisation that is sensitive to this direction of the magnetic moment it is

only this part of the circularly polarised wave that is contributing to the exchange of

angular momentum between the incoming and outgoing beam. Since the σ polarisation

is not sensitive to this direction the helicity of the beam is irrelevant for this case.

2. Modelling the Rotation of the Moments

Most of the models in the paper only change the moment in one dimension. That

change is either parallel or perpendicular to the scattering plane. A more realistic

model would involve rotating the moments at an angle to the scattering plane. This

has been done to by having the moments rotate from 0 to 180◦ then back to 0◦.

To demonstrate this we have plotted the size of the moments projected both in the
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scattering plane and perpendicular to the scattering plane during this process in Fig.

4. The moment parallel to the scattering plane will depend on the cosine of the angle

to the scattering plane. As this angle varies from 0 to 180◦ during the switching (0

to 180◦ from 0.25 to 0.75 arbitrary units and then back from 180 to 0◦ from -0.25 to

-0.75) the projection shown in the plot shows a smooth cosine function around the

coercivities as shown on the left of Fig. 4. Plotted next to it is the projection of the

moment perpendicular to the scattering plane. This varies sinusoidally with the angle

to the scattering plane around the coercivities (-0.75 to -0.25 and 0.25 and 0.75) and

is zero at all other points.

Fig. 4. The model used to simulate the magnetic moment rotating constantly from
parallel to the scattering plane, through perpendicular then back to parallel (but
in opposite direction) i.e varies between 0◦ and 180◦. The projection of the moment
parallel to the scattering plane is shown on the left. This will depend on the cosine
of a constantly varying angle which varies around the coercivity between an apllied
field of 0.25 and 0.75 arbitrary units and between -0.25 and 00.75 arbitrary units.
On the right is shown the projection of the moment perpendicular to the scattering
plane for the same process which depends on the sine of this angle around the
coercivity.
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