

Volume 31 (2024)

Supporting information for article:

Grazing-incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO2 at the Rossendorf beamline

Volodymyr Svitlyk, Luiza Braga Ferreira dos Santos, Jonas Niessen, Sara Gilson, Julien Marquardt, Stefan Findeisen, Selina Richter, Shavkat Akhmadaliev, Nina Huittinen and Christoph Hennig

Grazing incidence synchrotron radiation diffraction studies on irradiated Ce-doped and pristine Y-stabilized ZrO₂ at the Rossendorf Beamline

Volodymyr Svitlyk^{1,2*}, Luiza Braga Ferreira dos Santos¹, Jonas Niessen³, Sara Gilson¹, Julien Marquardt⁴, Stefan Findeisen⁵, Selina Richter¹, Shavkat Akhmadaliev⁶, Nina Huittinen^{1,7}, Christoph Hennig^{1,2*}

*svitlyk@esrf.fr, hennig@esrf.fr

¹Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany

²Rossendorf Beamline (BM20), European Synchrotron Radiation Facility, Grenoble, France

³RWTH Aachen University, Institute of Mineral Engineering, Aachen, Germany

⁴Goethe-University Frankfurt, Institute of Geosciences, Frankfurt, Germany

⁵Helmholtz-Zentrum Dresden-Rossendorf, Mechanical Engineering, Dresden, Germany

⁶Helmholtz-Zentrum Dresden-Rossendorf, Ion Beam Center, Dresden, Germany

⁷Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany

Supporting information

Rietveld refinement profiles of the Ce-YSZ and YSZ samples

In the following figures experimental data are represented by red points; the calculated profile is shown as a continuous black line; the continuous blue line is the difference between the experimental data and the calculated profile; green vertical bars are the Bragg positions. We note that asymmetry in peak shape was observed to varying degrees in the experimental data for Ce-YSZ and YSZ. It likely originates from a non-perfect planarity of pressed pellets compared to the highly focused and parallel incoming beam.

Fig. 1S. Full-profile Rietveld refinement of the irradiated $Ce_{0.18}Y_{0.15}Zr_{0.67}O_{1.93} - F1$ sample in a Le Bail mode ($R_P = 6.6\%$).

Fig. 2S. Full-profile Rietveld refinement of the irradiated $Ce_{0.18}Y_{0.20}Zr_{0.62}O_{1.90} - F1$ sample in a Le Bail mode ($R_P = 8.6\%$).

Fig. 3S. Full-profile Rietveld refinement of the irradiated $Ce_{0.58}Y_{0.15}Zr_{0.27}O_{1.93} - F1$ sample in a Le Bail mode ($R_P = 9.3\%$).

Fig. 4S. Full-profile Rietveld refinement of the irradiated $Ce_{0.18}Y_{0.15}Zr_{0.67}O_{1.93} - F2$ sample in a Le Bail mode ($R_P = 7.8\%$).

Fig. 5S. Full-profile Rietveld refinement of the irradiated $Ce_{0.58}Y_{0.15}Zr_{0.27}O_{1.93} - F2$ sample in a Le Bail mode ($R_P = 5.5\%$).

Fig. 6S. Full-profile Rietveld refinement of the irradiated YSZ – F2 sample in a Le Bail mode ($R_P = 9.4\%$).

SRIM calculations illustrating penetration depth of 14 MeV Au ions into the Ce-doped YSZ and non-doped YSZ phases

Fig. 7S. SRIM calculations illustrating penetration depth of 14 MeV Au ions into the Cedoped YSZ phases: $Ce_{0.18}Y_{0.15}Zr_{0.67}O_{1.93}$ - left, $Ce_{0.18}Y_{0.20}Zr_{0.62}O_{1.90}$ - middle, and $Ce_{0.58}Y_{0.15}Zr_{0.27}O_{1.93}$ - right.

Fig. 8S. SRIM calculations illustrating penetration depth of 14 MeV Au ions into the YSZ $(Y_{0.15}Zr_{0.85}O_{1.93})$ phase