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Figure S1 Analysis of the image alignment results of a XANES dataset. Supplementary results of some 

particles XANES data after alignment using our proposed method. The second and third columns of 

Figure S1 show the first (low-energy projection image) and the last (high-energy projection image) of 

these particles in the XANES data, respectively, and the results of the subtraction of these two projection 

images are shown in the fourth column, and the offset of these particles can be viewed in video1. Based 

on the results of the subtraction process depicted in Figure S1, it is evident that the contours of individual 

particles present in both the first and last projection images exhibit a substantial overlap following 

alignment. Moreover, any residual discrepancies in the overlapping areas can be attributed to the 

differential characteristics between high-energy and low-energy scans, which is an inherent aspect of the 

X-ray absorption near edge structure (XANES) technique, and does not impact the alignment of the 

images. 
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S1. Training and performance 

These additional details serve as a supplement to Section 3.2, providing a comprehensive explanation of 

the training process and the impact of different training parameters on the dataset. 

Firstly, the CycleGAN, is employed as an executor for coarse segmentation of the region of interest. It 

suffices to roughly identify the area where individual particles are located. The training approach aligns 

entirely with the conventional CycleGAN with its original training method (Zhu et al., 2017). The 

performance of this network can be referenced in the mentioned literature (Zhu et al., 2017), which 

provides various cases for consideration. In this work, we annotated 286 projection images (not 

necessarily one-to-one pairs) and completed training after 500 iterations.  

Next, our primary focus is on the detailed extraction of image registration features using the Dual U-net 

model we employed. The training process, performance, and validation results for the Dual U-net are 

extensively described in the reference (Su et al., 2022), which is the basic part of our method presented in 

this paper. This model utilized a sample of a needle tip to better assess the needle offset by pixels and 

included the training process for the components of the Dual U-net and the validation results under 

different training parameters. Exemplified the training loss for each training epoch along with the 

associated valid deep learning network feature detecting performance. Corresponding validation results 

are appropriately labeled. In order to ascertain the experiment's validity, the training parameters were 

systematically tested at intervals of 100, 300, 500, 800, 1,000, 3,000, 5,000, 8,000, 10,000, 12,000, and 

15,000. 

We determined that a model with the highest number of training epochs produced feature maps most 

resembling the ground truth. Validation results showed models with over 500 epochs accurately generated 

feature maps for input projections but with introducing background noises. After 8,000 epochs, overfitting 

negatively impacted accuracy, but exhibited reduced background noise. Thus, we used two models with 

low and high training counts to form the Dual Unet model used for feature fine extraction. Compared to 

conventional template/feature alignment methods, our method reduces the alignment error rate, by an order 

of magnitude (Su et al., 2022). 

 

S2. Data Enhancement 

To improve the robustness of the proposed XANES projection image alignment method, we performed data 

enhancement on the training data, including random relative shifts of 10% to 30% horizontally and 

vertically, rotations of 2% to 30%, and the addition of 10%, 20%, and 30% random noise to the projected 

images. Moreover, we also used Cycle-GAN to artificially and randomly vary the position of cell NCM 

particles in the image, and the speed of its offset, for increasing the difficulty of non-rigid alignment. 
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