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Figure S.1 Extracted two-time matrices in speckle shifts in (a) ∆i
and (b) ∆ j, for applied field Epp = 3× 104 V/m and incident X-ray
intensity Itot = 5.5 × 109 cps. Shifts in pixels are proportional to
shifts in ν or δ , with one pixel in i or j corresponding to 84 or 55
µrad in ν or δ , respectively.
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1. SPECKLE MOTION SUPPLEMENTAL FIGURES

Figure S.1 shows examples of the two-time matrices of
the shifts in pixels ∆imin(t1, t2) and ∆ jmin(t1, t2) that mini-
mize the difference between speckle patterns at two times in
the field cycle. Figure S.2(a) and (b) show the values from
each row of these matrices. The curves in Fig. S.2(a) all
have similar shapes, consistent with the extracted differences
of all time pairs ∆imin(t1, t2) arising from the average time-
dependent shift ∆i(t) shown in Fig. S.2(c). The curves shown
in Fig. S.2(b) are noisier and have different shapes. Thus the
extracted pair differences in this direction are only approxi-
mately attributable to the average time-dependent shift ∆ j(t)
shown in Fig. S.2(c).

2. ESTIMATING TWO-TIME CORRELATIONS FROM
SAMPLE TILTING

We wish to estimate the two-time correlation of the speckle
pattern arising from sample tilts ∆χ(t) and ∆η(t) determined
from observed speckle motions on the detector of ∆i(t) and
∆ j(t). This is conveniently done by considering the reciprocal
space coordinates Qh = (2π/a)H, Qk = (2π/a)K, and Qℓ =
(2π/a)L, where a = 4.04 Å is the lattice constant of cubic
PMN. Sample tilts ∆η and ∆χ will produce motions at a given
point on the detector of the sample-fixed reciprocal space of

∆Qh(t) =
4π sinθ ∆η(t)

λ
=−2π psinθ ∆ j(t)

λR
, (S.1)

∆Qk(t) =
4π sinθ ∆χ(t)

λ
=

2π p∆i(t)
λR

, (S.2)

∆Qℓ(t) =
4π cosθ ∆η(t)

λ
=−2π pcosθ ∆ j

λR
. (S.3)

If the sample is illuminated with a coherent incident X-ray
beam of size b and absorption length ℓabs in symmetric reflec-
tion geometry, the ideal FWHM speckle sizes in reciprocal
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Figure S.2 (a) and (b) Estimates of speckle pattern shifts ∆i(t) and
∆ j(t) from each row of matrices in Fig. S.1. (c) Average shifts ∆i(t)
and ∆ j(t) obtained by summing columns of matrices.

space will be (Hruszkewycz et al., 2012)

ξ
id
Qh =

2π sinθ

b
, (S.4)

ξ
id
Qk =

2π

b
, (S.5)

ξ
id
Qℓ =

4π

ℓabs sinθ
. (S.6)

If we assume the same ratio between the actual and ideal ξQh
and ξQk that we use for the speckle size on the detector ξ , then
we can write the actual FWHM speckle sizes in Q and in tilt
angles as

ξQh =
4π sinθ ξη

λ
=−2π psinθ ξ

λR
, (S.7)

ξQk =
4π sinθ ξχ

λ
=

2π pξ

λR
. (S.8)

The time-dependent changes ∆Qi due to the sample rotations

give an estimated two-time correlation function of the speckle
of

C(t1, t2) ≈ β exp

(
−4ln2 ∑

m=h,k,ℓ

[
∆Qm(t1)−∆Qm(t2)

ξQm

]2
)

≈ β exp

(
−4ln2

[(
∆χ(t1)−∆χ(t2)

ξχ

)2

+

(
∆η(t1)−∆η(t2)

ξη

)2
])

,

≈ β exp

(
−4ln2

[(
∆i(t1)−∆i(t2)

ξ

)2

+

(
∆ j(t1)−∆ j(t2)

ξ

)2
])

, (S.9)

where we have introduced the coherence factor 0 ≤ β ≤ 1 to
account for incomplete coherence of the incident beam and fi-
nite detector resolution. In the second and third lines, we show
that the same result is obtained if we ratio the tilts ∆χ and ∆η

to the speckle sizes normalized to the tilt angles ξχ = 82 µrad
and ξη = 34 µrad, respectively, or if we ratio the speckle mo-
tions ∆i and ∆ j to the actual speckle size on the detector of
ξ = 1.2 pixels, neglecting the ∆Qℓ term under the assumption
that the illuminated volume is very thin in the z direction due
to a short absorption length so that ξQℓ is very large.

3. SUPPLEMENTAL RESULTS FIGURES
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Figure S.3 Maximum and minimum two-time correlation values (ac-
tual and estimated from Bragg and speckle motions) vs. (a) ap-
plied field at Itot = 5.5 × 109 cps, (b) incident X-ray intensity at
Epp = 3× 104 V/m. For estimated values, maximum contrast β is
set to unity to provide offset from actual.
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Figure S.4 Measured change in sample angles determined from
speckle and Bragg motions as a function of time during field cycle,
for different incident X-ray intensities. Peak-to-peak applied field
was Epp = 3×104 V/m.

4. MODEL FOR DYNAMIC SURFACE TILTING FROM
SMALL APPLIED FIELDS

Our hypothesis is that the sample has a steady-state elec-
tric field distribution caused by surface charging in the area of
X-ray illumination owing to ejection of photoelectrons. This
static field, combined with the small dynamic applied field, re-
sults in local deformation from the electrostrictive properties
of the sample, giving the observed Bragg peak motion and
two-time correlation functions of the speckle.

A. Surface Charging by X rays

Surface charging of insulating materials by X-ray illumi-
nation is a well-known effect in X-ray photoelectron spec-
troscopy (Moulder et al., 1992), and has been observed to
shift photoelectron energies by > 100 eV (Yasuno, 2019). In
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Figure S.5 Measured change in sample angles determined from (a)
speckle and (b) Bragg motions as a function of time during field
cycle, for carbon-coated sample. Peak-to-peak applied field was
Epp = 3.5× 104 V/m, incident X-ray intensity was Itot = 5.5× 109

cps.

particular, small X-ray beams have been shown to produce
local charging with non-uniform electric fields (Tielsch and
Fulghum, 1996), potentially inducing tilting in the material.
The first step in modeling this behavior is to calculate the
steady-state electric potential and field distributions from X-
ray-induced charging of the sample surface. For an insulating
sample, X-ray illumination can result in surface charging be-
cause photoelectrons are ejected from the surface region. We
assume that the photoelectron escape depth ℓesc is small, of
the order of 10 nm (Bras et al., 2021), and that the local free
charge density is concentrated at the surface in a layer having
a negligible thickness δ z. One can estimate the slow dynamics
and steady-state behavior of the surface charge density σ(x,y)
by writing a continuity equation for its rate of change,

dσ(x,y)
dt

=−Jout(x,y)+ Jin(x,y), (S.10)

where the electric current densities Jout and Jin are the net pho-
toelectric current density leaving the surface and the leakage
current density back to the surface, respectively. These are all
considered to be functions of the spatial coordinates x and y in
the plane of the surface.

We assume that the photoelectric current density is propor-
tional to the absorption rate of X rays in the surface region.
For simplicity we assume that each photon produces a sin-
gle photoelectron with kinetic energy sufficient to escape the
charged surface. We can write the net photoelectric current
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density as

Jout(x,y) =−eI0(x,y)
(

ℓesc

ℓabs sinθB + ℓesc

)
(S.11)

where I0(x,y) is the distribution of incident X-ray intensity
(counts per second per unit surface area), −e is the electron
charge, ℓabs is the X-ray absorption length, and θB is the inci-
dence angle of the X rays. The quantity in parentheses gives
the fraction of X rays absorbed within one photoelectron es-
cape depth of the surface. (Here we neglect both the possi-
bility of secondary electrons escaping, as well as the cutoff in
net photoelectric current that will occur if the surface potential
approaches the photoelectron energy.) We assume the leakage
current density is proportional to the potential φ(x,y,0) at the
surface z = 0,

Jin(x,y) =
−φ(x,y,0)

Rleak
, (S.12)

where Rleak is the inverse of the effective conductance per unit
area of the leakage medium, which could be the sample or the
vapor environment.

The final relationship between the surface charge and po-
tential is based on the Poisson equation relating surface charge
and surface potential,

σ(x,y) =−ε0 εs δ z∇
2
xyφ(x,y,0), (S.13)

where ε0 = 8.85×10−12 C V−1 m−1 is the permittivity of free
space, and εs is the effective surface dielectric constant.

We can find a solution to these equations by expressing the
surface potential φ(x,y,0) and the incident X-ray illumination
I0(x,y) as two-dimensional Fourier series,

φ(x,y,0) =
∞

∑
m=−∞

∞

∑
n=−∞

φ̂mn(0) exp(iqxmx) exp(iqyny),(S.14)

I0(x,y) =
∞

∑
m=−∞

∞

∑
n=−∞

Î0mn exp(iqxmx) exp(iqyny), (S.15)

where φ̂mn(0) and Î0mn are the Fourier coefficients for
wavenumbers qxm ≡ mπ/ax and qyn ≡ nπ/ay, and 2ax and 2ay
are the periods in the x and y directions, respectively. (To in-
sure that the periodic boundary conditions in x and y do not
affect the results, we use values of ax and ay much larger than
the illuminated area.) Since φ and I0 have real values, the
Fourier coefficients for negative m and n are the complex con-
jugates of those for positive m and n. The in-plane Laplacian
of the surface potential is given by

∇
2
xyφ(x,y,0) = (S.16)

−
∞

∑
m=−∞

∞

∑
n=−∞

(q2
xm +q2

yn) φ̂mn(0) exp(iqxmx) exp(iqyny).

Substituting Eqs. (S.11)-(S.16) into the continuity equation
(S.10) gives a simple relaxation equation for the Fourier com-
ponents of the surface potential

dφ̂mn(0)
dt

=
φ̂ ss

mn − φ̂mn(0)
τmn

, (S.17)

where the steady-state surface potential Fourier coefficients
φ̂ ss

mn are given by

φ̂
ss
mn = BÎ0mn , (S.18)

B ≡ eRleak ℓesc

ℓabs sinθB + ℓesc
, (S.19)

and the relaxation time of each Fourier coefficient is

τmn = Rleak ε0 εs δ z(q2
xm +q2

yn). (S.20)

Thus the steady-state surface potential distribution is simply
proportional to the incident X-ray intensity distribution,

φ
ss(x,y) = BI0(x,y). (S.21)

We can solve for the three-dimensional static potential and
field distributions inside the sample, assuming that the sample
is an insulator with no free charge density. We assume that the
relation between the polarization P and field E is isotropic.
Then the Maxwell equation 0 = ∇ · D = ε0∇ · E + ∇ · P is
satisfied by a field distribution with ∇ ·E = 0. This implies
that the potential φ(x,y,z) obeys Laplace’s equation, ∇2φ = 0,
with the boundary condition of a specified surface potential
φ(x,y,0). This can be solved using separation of variables
(Griffiths, 1999), assuming φ is the sum of terms obeying
Laplace’s equation that are each products of functions in the x,
y, and z directions. The three-dimensional potential that obeys
Laplace’s equation with the correct surface potential is then

φ(x,y,z) =
∞

∑
m=−∞

∞

∑
n=−∞

φ̂mn(z) exp(iqxmx) exp(iqyny), (S.22)

with z-dependent Fourier coefficients for the x and y directions

φ̂mn(z) = φ̂mn(0) exp[−(|qxm|+ |qyn|)z]. (S.23)

Here we assume that z is the depth into the sample, so that the
sample extends in the positive z direction from the surface at
z = 0.

B. Steady-State Surface Charge

For the rest of this section we will assume that the sur-
face potential has reached it steady-state value, φ(x,y,0) =
φ ss(x,y). The x, y, and z components of the electric field vec-
tor E = −∇φ can be written using expressions analogous to
Eq. (S.22), with Fourier coefficients

Êxmn(z) =−iqxm ˆφ ss
mn exp[−(|qxm|+ |qyn|)z],(S.24)

Êymn(z) =−iqyn ˆφ ss
mn exp[−(|qxm|+ |qyn|)z], (S.25)

Êzmn(z) = (S.26)
(|qxm|+ |qyn|) ˆφ ss

mn exp[−(|qxm|+ |qyn|)z].

If we assume a form for the X-ray illumination I0(x,y), we
can calculate the potential and field distributions. Here we
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Table S.1 Parameter values used in calculating steady-state potential
and field due to X-ray illumination.

Itot = 5.5×109 s−1 ℓesc = 1×10−8 m
σy = 2.12×10−6 m ℓabs = 5.7×10−6 m
σx = 5.13×10−6 m θB = 24.4◦

Rleak = 1.8×102 Ω m2 φpk = 10 V

assume that the illumination is the product of Gaussian func-
tions in x and y with sigmas of σx and σy and a peak intensity
density of Ipeak,

I0(x,y) = Ipk exp
(
−x2

2σ2
x

)
exp

(
−y2

2σ2
y

)
. (S.27)

The integrated intensity in photons per second is

Itot = 2πσxσyIpk. (S.28)

The Fourier coefficients of the intensity I0(x,y) and steady-
state surface potential φ ss(x,y) are

Î0mn =
πIpkσxσy

2axay
exp(−q2

xmσ
2
x /2) exp(−q2

ynσ
2
y /2),(S.29)

φ̂
ss
mn =

πφpkσxσy

2axay
exp(−q2

xmσ
2
x /2) exp(−q2

ynσ
2
y /2),(S.30)

where φpk = BIpk is the maximum potential at the surface.
Figure S.6 shows the potential and field calculated using

the parameter values in Table S.1. For a symmetric reflec-
tion geometry, we expect the width of the beam footprint to
be longer in the scattering plane (x) than perpendicular to the
scattering plane (y) by a factor of 1/sinθB. Using the ex-
perimental beam size of 5 µm FWHM and θB = 24.4◦ gives
σy = 2.12 µm and σx = 5.13 µm. For the calculations we use
Fourier half-periods ax = 12σx and ay = 12σy and Fourier
components in the range -24 to 24 for both m and n.

While the values of Itot , σy, σx, and θB were determined in
the experiments, and the absorption length ℓabs is straightfor-
ward to calculate (Gullickson, 2010) for PMN at the photon
energy of 7.35 keV, the photoelectron escape length ℓesc is an
estimate, and nothing is known about the value of Rleak. It was
simply chosen to give a peak surface potential φpk = 10 V.

For the conditions modeled, the maximum value of the
steady-state in-plane electric field is about Ey = 2.9× 106 V
m−1. This is much higher than the maximum applied field,
and so will greatly increase the electrostrictive strain. Fur-
thermore, the peak potential φpk could be much higher than
the 10 V assumed, since the value of Rleak in Eq. (S.12) is
unknown. The potential could approach the escape voltage
of the photoelectrons. For a photon energy of 7.4 keV, the
primary absorption edge is Pb M5 at 2.5 keV, giving a pri-
mary photoelectron energy of 4.9 keV. Thus surface charging
to φpk > 1000 V is possible. Since Ey is simply proportional
to φpk, this would give Ey > 2.9×108 V m−1.
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Figure S.6 Steady-state potential φ and electric field components Ex,
Ey, and Ez at surface (right) and inside sample (left) using φpk = 10 V.

C. Time to Establish Steady-State

An estimate of the typical time needed to establish the
steady-state field can be obtained from Eq. (S.20) using
the parameters in Table S.1 by substituting in the typical
wavenumbers qxm = 2π /σx, qyn = 2π /σy. If we use the bulk
dielectric constant ε = 2.5× 104 for PMN for the surface di-
electric constant εs and a surface layer thickness δ z equal to
the photoelectron escape depth ℓesc, then the typical time con-
stant is about 4 s. Another estimate can be obtained by con-
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sidering the time it takes for the surface charge σ to reach the
saturation polarization for PMN, Psat ≈ 0.3 C m−1. Using a
maximum surface charging rate of

−Jout(0,0) =
eItot

2πσxσy

(
ℓesc

ℓabs sinθB + ℓesc

)
(S.31)

gives a charging time τsat ≡−Psat /Jout(0,0)≈ 5 s.

D. Surface Tilting due to Electrostriction

In this section we calculate the displacement field and local
tilting due to a small, uniform, dynamic applied field in the y
direction, ∆Ey, in the presence of the static field distribution
from the X-ray illumination, calculated above. The displace-
ment field is related to the total strain, which in turn is the
sum of the stress-free strain from the electrostrictive response
to the electric field, and the elastic strain that arises to make
the total strain compatible with a displacement field and to
match the stress boundary conditions. We first obtain rela-
tions for the change in the stress-free strain components as a
function of ∆Ey. We then use an ansatz to obtain the change
in the displacement field that satisfies the required strain and
stress conditions. The local tilts resulting from this chang-
ing displacement field can then be calculated. The relations
between the strain, stress, and displacement components are
linear, so the changes in these quantities due to the dynamic
applied field have the same relationships as the total quanti-
ties.

We model the PMN as a linear dielectric with electrostric-
tion. For small fields, the polarization components are propor-
tional to electric field,

P = ε0ε E, (S.32)

where ε is the relative dielectric constant. This linearity is
known to break down for fields above about 5× 105 V m−1
(Hoover et al., 1997), as the effective dielectric constant de-
creases with field and the polarization saturates and becomes
hysteretic. For simplicity, we will use the linear relationship
Eq. (S.32), and discuss the limitations of this model else-
where.

The stress-free strain components are quadratically related
to polarization by (Stephenson and Elder, 2006)

eSF
xx = Q11P2

x +Q12(P2
y +P2

z ), (S.33)

eSF
yy = Q11P2

y +Q12(P2
x +P2

z ), (S.34)

eSF
zz = Q11P2

z +Q12(P2
x +P2

y ), (S.35)

eSF
yz = Q44PyPz, (S.36)

eSF
xz = Q44PxPz, (S.37)

eSF
xy = Q44PxPy, (S.38)

where Q11, Q12, and Q44 are the electrostrictive coefficients
for a cubic material. These quadratic relations have been

found to hold even for polarization values beyond the valid-
ity of Eq. (S.32) (Li et al., 2014). Here we use the six-index
Voigt notation for the components of the strain and stress ten-
sors (Love, 1944).

For a small dynamic applied field in the y direction ∆Ey, the
change in the stress-free strain components are given by

∆eSF
xx = 2Q12 ε

2
0 ε

2Ey ∆Ey, (S.39)

∆eSF
yy = 2Q11 ε

2
0 ε

2Ey ∆Ey, (S.40)

∆eSF
zz = 2Q12 ε

2
0 ε

2Ey ∆Ey, (S.41)

∆eSF
yz = Q44 ε

2
0 ε

2Ez ∆Ey, (S.42)

∆eSF
xz = 0, (S.43)

∆eSF
xy = Q44 ε

2
0 ε

2Ex ∆Ey. (S.44)

Thus the Fourier components of these quantities are propor-
tional to those of the electric field,

ˆ∆eSF
xx mn(z) = 2Q12 ε

2
0 ε

2
∆Ey Êymn(z), (S.45)

ˆ∆eSF
yy mn(z) = 2Q11 ε

2
0 ε

2
∆Ey Êymn(z), (S.46)

ˆ∆eSF
zz mn(z) = 2Q12 ε

2
0 ε

2
∆Ey Êymn(z), (S.47)

ˆ∆eSF
yz mn(z) = Q44 ε

2
0 ε

2
∆Ey Êzmn(z), (S.48)

ˆ∆eSF
xz mn(z) = 0, (S.49)
ˆ∆eSF
xy mn(z) = Q44 ε

2
0 ε

2
∆Ey Êxmn(z). (S.50)

The total strain is the sum of the stress-free strain and
the elastic strain eT = eSF + eE. Likewise, the changes in
these quantities due to the applied field are related by ∆eT =
∆eSF +∆eE. The components of elastic strain eE

i j are linearly
related to the components of stress Xi j (Love, 1944). The same
relations apply to the changes in these quantities,

∆Xxx = c11∆eE
xx + c12(∆eE

yy +∆eE
zz), (S.51)

∆Xyy = c11∆eE
yy + c12(∆eE

xx +∆eE
zz), (S.52)

∆Xzz = c11∆eE
zz + c12(∆eE

xx +∆eE
yy), (S.53)

∆Xyz = c44∆eE
yz, (S.54)

∆Xxz = c44∆eE
xz, (S.55)

∆Xxy = c44∆eE
xy, (S.56)

and to their Fourier components,

ˆ∆Xxxmn(z) = c11
ˆ∆eE
xxmn(z)

+ c12( ˆ∆eE
yymn(z)+

ˆ∆eE
zzmn(z)), (S.57)

ˆ∆Xyymn(z) = c11
ˆ∆eE
yymn(z)

+ c12( ˆ∆eE
xxmn(z)+

ˆ∆eE
zzmn(z)), (S.58)

ˆ∆Xzzmn(z) = c11
ˆ∆eE

zzmn(z)

+ c12( ˆ∆eE
xxmn(z)+

ˆ∆eE
yymn(z)), (S.59)

ˆ∆Xyzmn(z) = c44
ˆ∆eE
yzmn(z), (S.60)

ˆ∆Xxzmn(z) = c44
ˆ∆eE
xzmn(z), (S.61)

ˆ∆Xxymn(z) = c44
ˆ∆eE
xymn(z), (S.62)
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We need total strain components that are compatible with
a displacement field, and also match the stress boundary con-
ditions at the surface. There are differential relations between
the displacement field components and the total strain compo-
nents (Love, 1944). Since these are linear, the same relations
apply between the changes in these quantities due to the ap-
plied field,

∆eT
xx =

d∆ux

dx
, (S.63)

∆eT
yy =

d∆uy

dy
, (S.64)

∆eT
zz =

d∆uz

dz
, (S.65)

∆eT
yz =

d∆uy

dz
+

d∆uz

dy
, (S.66)

∆eT
xz =

d∆ux

dz
+

d∆uz

dx
, (S.67)

∆eT
xy =

d∆ux

dy
+

d∆uy

dx
. (S.68)

Boundary conditions arise on the stress because its com-
ponents in the z direction must be zero at the surface. These
also apply to the changes in stress due to the applied field, e.g.
∆Xzz = ∆Xyz = ∆Xxz = 0 at z = 0. In addition, the displace-
ments, strains, and stresses must tend to zero at large distances
from the illuminated area.

We can use an ansatz for the displacement field change ∆u
that can be made to satisfy these conditions. We assume the
same type of in-plane Fourier series with z-dependent compo-
nents as in the solution for φ , Eq. (S.22), with

ˆ∆uxmn(z) = (S.69)

−Ax
qyn

qxm
exp

[
−q2

xm(|qxm|+ |qyn|)z
q2

yn

]
ˆφ ss

mn,

ˆ∆uymn(z) =−Ay exp[−(|qxm|+ |qyn|)z] ˆφ ss
mn, (S.70)

ˆ∆uzmn(z) = (S.71)

iAz
|qxm|+ |qyn|

qyn
exp

[
−q2

yn z
|qxm|+ |qyn|

]
ˆφ ss

mn.

where Ax, Ay, and Az are real constants that will be chosen
below to satisfy the boundary conditions. The Fourier com-
ponents of the changes in total strain can be evaluated using

Eqs. (S.63) - (S.68) to be

ˆ∆eT
xxmn(z) = (S.72)

−iAxqyn exp

[
−q2

xm(|qxm|+ |qyn|)z
q2

yn

]
ˆφ ss

mn,

ˆ∆eT
yymn(z) =−iAyqyn exp[−(|qxm|+ |qyn|)z] ˆφ ss

mn,(S.73)

ˆ∆eT
zzmn(z) =−iAzqyn exp

[
−q2

yn z
|qxm|+ |qyn|

]
ˆφ ss

mn, (S.74)

ˆ∆eT
yzmn(z) =

(
Ay[|qxm|+ |qyn|]exp[−(|qxm|+ |qyn|)z]

− Az[|qxm|+ |qyn|]exp

[
−q2

yn z
|qxm|+ |qyn|

])
ˆφ ss

mn, (S.75)

ˆ∆eT
xzmn(z) = (S.76)(

Ax
qxm(|qxm|+ |qyn|)

qyn
exp

[
−q2

xm(|qxm|+ |qyn|)z
q2

yn

]

− Az
qxm(|qxm|+ |qyn|)

qyn
exp

[
−q2

yn z
|qxm|+ |qyn|

])
ˆφ ss

mn,

ˆ∆eT
xymn(z) =−i

(
Ax

q2
yn

qxm
exp

[
−q2

xm(|qxm|+ |qyn|)z
q2

yn

]

+Ayqxm exp[−(|qxm|+ |qyn|)z]

)
ˆφ ss

mn. (S.77)

For the boundary conditions ∆Xzz = 0, ∆Xyz = 0, and ∆Xxz =
0 to be met at all positions (x,y) in the plane of the sur-
face, the z = 0 value of their Fourier components must be
zero for all (m,n). Substituting the Fourier components

ˆ
∆eE

i jmn
(z) = ˆ

∆eT
i jmn

(z)− ˆ
∆eSF

i j mn
(z) from Eqs. (S.24)-(S.26),

Eqs. (S.45)-(S.50) and Eqs. (S.72)-(S.77) into Eqs. (S.57)-
(S.62), the boundary conditions ˆ∆Xzzmn(0) = 0, ˆ∆Xyzmn(0) =
0, and ˆ∆Xxzmn(0) = 0, respectively, are satisfied for all (m,n)
when

c11Az + c12(Ax +Ay) = (S.78)

2ε
2
0 ε

2[c11Q12 + c12(Q11 +Q12)]∆Ey,

Ay −Az = ε
2
0 ε

2Q44 ∆Ey, (S.79)
Ax −Az = 0, (S.80)

which gives

Ax = Az = (S.81)

2ε
2
0 ε

2 c11Q12 + c12(Q11 +Q12 −Q44/2)
c11 +2c12

∆Ey,

Ay = 2ε
2
0 ε

2 × (S.82)
c11(Q12 +Q44/2)+ c12(Q11 +Q12 +Q44/2)

c11 +2c12
∆Ey.

The change in the tilt of the surface around the x axis in
response to the dynamic applied field is ∆χ = d∆uz/dy. The
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Table S.2 Symmetry of functions.

Symmetry Type
1 2 3 4

f (x,y)
x parity even odd even odd
y parity even even odd odd

type real real real real

f̂ (qx,qy)
qx parity even odd even odd
qy parity even even odd odd

type real imag imag real

Static

Scalar φ

Vector Ez Ex Ey
uz ux uy

Tensor exx, eyy, ezz exz eyz exy
Xxx, Xyy, Xzz Xxz Xyz Xxy

Dynamic
Vector ∆uy ∆uz ∆ux

∆χ ∆η

Tensor ∆eyz ∆exy ∆exx, ∆eyy, ∆ezz ∆exz
∆Xyz ∆Xxy ∆Xxx, ∆Xyy, ∆Xzz ∆Xxz

Fourier components of this quantity can be evaluated as

∆̂χmn(z) = (S.83)

−Az[|qxm|+ |qyn|]exp

[
−q2

yn z
|qxm|+ |qyn|

]
ˆφ ss

mn.

The change in the tilt ∆χ has maximum magnitude at x = y =
z = 0 which can be evaluated as

∆χ0 =−0.793
(

1
σx

+
1
σy

)
× (S.84)

2ε
2
0 ε

2
(

c11Q12 + c12(Q11 +Q12 −Q44/2)
c11 +2c12

)
∆Ey φpk.

This is linearly proportional to applied dynamic field ∆Ey and
the peak static field from the X rays, φpk, and inversely pro-
portional to the beam width σx, σy.

The predicted surface tilt around the y axis in response to
the dynamic applied field is ∆η = d∆uz/dx. This is zero at the
center x = y = 0, owing to the assumed symmetry of the static
and dynamic electric fields.

Table S.2 shows the symmetries of the various functions
calculated. There are four types of symmetries, determined
by the parities in the x and y directions. The parities of the
reciprocal space functions f̂ (qx,qy) are the same as those of
the real space functions f (x,y). Because the real-space func-
tions are all real, the corresponding reciprocal space func-
tions have either real or imaginary type as shown. Each of
the components of vectors or tensors has its own symmetry,
as shown. The symmetries of the dynamic function compo-
nents produced by ∆Ey differ from those of the corresponding
static function components. All of the types of strains (to-
tal, stress-free, and elastic) have the same symmetries of their
components. Only the functions that are even in both x and
y, such as ∆χ , are non-zero at the center of the illuminated
area, x = y = 0. Other functions, such as ∆eT

zz, that are zero at

Table S.3 Parameter values used in calculating stress, strain, and
displacement distributions due to dynamic field (Ahart et al., 2007;
Hoover et al., 1997; Uchino et al., 1980). Q44 was calculated from
the value of Q33 = 1.15×10−2 m4 C−2 for the (1 1 1) direction (Lee
et al., 1999), using Q44 = (3Q33 −Q11 −2Q12)/2 (Li et al., 2014).

Q11 = 2.5×10−2 m4 C−2 c11 = 1.56×1011 N m−2

Q12 =−9.6×10−3 m4 C−2 c12 = 0.76×1011 N m−2

Q44 = 1.43×10−2 m4 C−2 c44 = 0.68×1011 N m−2

ε = 2.5×104 ε0 = 8.85×10−12 C V−1 m−1

φpk = 10 V ∆Ey = 1.75×104 V m−1

the center will have minimal influence on the diffracted beam,
so for example we do not predict significant dynamic radial
motion of the Bragg peak. There should be significant static
radial motion due to eT

zz.

E. Results for PMN

We have calculated the distributions of the components of
dynamic stress, strain, and displacement and the dynamic tilt,
using the parameter values in Tables S.1 and S.3. The distri-
butions are shown in Figs. S.7 - S.11. For these parameters,
the net effective electrostrictive coefficient in Eq. (S.84) has a
value of

c11Q12 + c12(Q11 +Q12 −Q44/2)
c11 +2c12

=−2.8×10−3 m4C−2,

(S.85)
giving a peak-peak tilt of χpp =+5.2×10−5 for a peak-peak
field of Epp = 3.5× 104 V/m, which is the maximum peak-
peak amplitude of the applied field under our experimental
conditions. Because we use an inward-pointing z axis, pos-
itive ∆Ey corresponds to a tilt of the surface normal towards
+y, which is the direction of negative applied potential.

Because the stress-free strain distributions follow those of
the electric field, they are confined to the region near the il-
luminated surface. However, some of the components of to-
tal strain, stress, and displacement extend further in x, y, or
z. The region of significant tilt ∆χ is confined to the region
near the illuminated surface. The effective penetration depth
of the 7.4 keV X rays is ℓabs sinθB/2 = 1.2 × 10−6 m, ac-
counting for absorption of both the incident and exit beam.
Since this is smaller than the beam size, the illuminated vol-
ume has an average tilt similar to the maximum value. The av-
erage of the χpp distribution weighted by the effective X-ray
intensity I0(x,y)exp(−2z/ℓabs sinθB) is 1.2× 10−5 at Epp =
3.5×104 V m−1. Note that the predicted motions of the sam-
ple surface in the in-plane directions ∆ux and ∆uy are much
smaller than the illuminated area, and so would not contribute
to the speckle decorrelation.
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Figure S.7 Components of the dynamic stress-free strain tensor
∆eSF at the surface (right) and inside sample (left) at ∆Ey = 1.75×
104 V m−1 and φpk = 10 V.

Figure S.8 Components of the dynamic total strain tensor ∆eT

near the surface (right) and inside sample (left) at ∆Ey = 1.75 ×
104 V m−1 and φpk = 10 V.
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Figure S.9 Components of the dynamic stress tensor ∆X near the
surface (right) and inside sample (left) at ∆Ey = 1.75× 104 V m−1

and φpk = 10 V.

0510

Depth z ( m)

-10

-5

0

5

10

P
o
s
it
io

n
 y

 (
m

)

x = 0

-20 -10 0 10 20

Position x ( m)

(d) Projection of  u (  m) at z = 0

Figure S.10 Components of the dynamic displacement vector ∆u
at the surface (right) and inside sample (left) at ∆Ey = 1.75 ×
104 V m−1 and φpk = 10 V.

Figure S.11 Dynamic tilts ∆χ and ∆η at the surface (right) and in-
side sample (left) at ∆Ey = 1.75×104 V m−1 and φpk = 10 V.
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