

Volume 30 (2023)

Supporting information for article:

CatMass – Software for calculating optimal sample masses for Xray absorption spectroscopy experiments involving complex sample compositions

Jorge E. Perez-Aguilar, Ash Caine, Simon R. Bare and Adam S. Hoffman

S1. Sample Building Examples

Figure S1 Examples of several complex catalysts when using the "Sample Builder" window; Left: 1 wt% Pt on Al₂O₃ (Aitbekova *et al.*, 2022); Middle: 1 wt% Ir(CO)₂ on MgO where the wt% is percent metal (Hoffman *et al.*, 2018); Right: 5 wt% Pt₃Sn nanoparticles on Al₂O₃ (Baraa Werghi *et al.*, 2023). Clicking "Update Sample" will convert these inputs into a stoichiometric composition and pass the values to the main window.

S2. Ytterbium oxide (Yb₂O₃) details

S2.1. Experimental methods

Extended X-ray absorption fine structure (EXAFS) measurements were conducted at beamline 10-2 at the Stanford Synchrotron Radiation Lightsource (SSRL). Beamline 10-2 has a 33-pole, 1.72-Tesla wiggler source and a double-crystal, liquid-nitrogen-cooled Si(111) monochromator. Step-scan spectra were collected in transmission mode with nitrogen-filled ion chambers. A Cu foil was scanned simultaneously with the sample for energy calibration.

S2.2. Choosing a reference foil for the measurement

When measuring a material that a reference foil would be difficult to obtain, e.g. Yb_2O_3 , *CatMass* can be used to visualize where standard metal foils would appear in *k*-space for reference foil selection. Using the "Sample and Dilution Definition" panel, potential elements to be used as a reference can be input as "diluents". When the plot option is selected when calculating the results, the edges of the potential references are displayed in the *k*-space plot. In the example presented in Fig. S2, when scanning the Yb L_{III}-edge either the Cu or Zn reference foils could be used as a reference for internal energy calibration.

Figure S2 *K*-space of ytterbium L_{III} edge where the K edges of copper and zinc foils appear at $k = 3.0 \text{ Å}^{-1}$ and $k = 13.6 \text{ Å}^{-1}$, respectively. Data point density during the post-edge region near the metal foil edge would need to be modified to ensure a high enough resolution to use Cu or Zn as a reference for energy calibration.

Figure S3 Example of a Yb₂O₃ pellet diluted with cellulose at a 1:16 ratio. Calculation is optimized for a pellet to be place 90° relative to beam path with a total mass of approx. 29 mg. The plotting limit is extended to display the other edges of interest (edges L_{II} and L_{I} of ytterbium as shown in the *k*-space plot). Transmission spectra should be recorded for L_{III} and L_{II} edges, and fluorescence for the L_{I} edge base on the total absorption values in the photon energy plot.

S3. Example calculation of alternative solutions when using CatMass

S3.1. Smear on tape

ŝ‡i C	atMass - XAS Sample M	ass Calculator				- 🗆 🗙
File	View					
<u>5a</u>	Sample and Dilution Definition			Edge Scan and Absorption Properties Definition	Results	Calculate Sample Mass
			Sample Builder		Diluted Sample Mass [mg]:	2.56
		Sample	Diluent	Diluted Sample Chemical Formula:	Entimated Edge Steps	
	Stoichiometry:	O65.508453Ca1.000000Ce	Chemical Formula	BCa1.000000Ce32.254226	Estimated Edge Step.	0.0095
	Mass Dilution Ratio:	#	#	Element to be Scanned:	Sample Mass [mg]:	2.56
	Reset	Calculate Diluted Sam	nple Chemical Formula	Edge to be Scanned:	Diluent Mass [mg]:	0.00
		File Path		VAC Caller	Edge Energy [eV]:	4038
	None			AND CEIS.	X-ray transmission through media	
None			Catalyst Dopy and Structure	Capillary Diameter [mm] Bed length [1 cm]: 1 Pellet Diameter [mm] 7 Other Sample Area ⊥ to Beam [cm ²]: 0.38 Catalyst Sample Absorption at E0 + 2.6 Sample at 45° Show Plot Reset		s, consider fluorescence

Figure S4 Example of 1wt%CaO/CeO₂. Calculation could not be optimized with a diluent to prepare enough sample material into a 7 mm pellet. Based on the sample mass value, smearing the sample would make the most physical sense to prepare inside a glovebox.

S3.2. Stacked pellets

CatMass - XAS Sample Mass Calculator			– 🗆 X	
File View				
Sample and Dilution Definition	Edge Scan and Absorption Properties Definition	<u>Results</u>	Calculate Sample Mass	
Sample Build	Diluted Sample Chemical Formula:	Diluted Sample Mass [mg]:	59.81	
Sample Diluent	g5505.401/86051.000000	Projected Estimated Edge Step:		
g5505.401786Os1.000000 Chemical Formula	Dis		0.0099	
Mass Dilution Ratio: #	Edge to be Scanned: L3	Sample Mass [mg]:	59.81	
Reset Calculate Diluted Sample Chemical Formu	XAS Cells:	Diluent Mass [mg]:	0.00	
File Path	Capillary Diameter [mm] 3	Edge Energy [eV]:	10871	
None		X-ray transmission through medi	ransmission through media	
	Bed length [1 cm]: 1	Note: Edge step at:	E0 ± 45 eV	
	Pellet Diameter [mm] 7			
	○ Other			
	Sample Area ⊥ to Beam [cm ²]: 0.38			
	Catalyst Sample Absorption at E0 + 50 eV: 1.77			
-ACCESS	Sample at 45°			
Consortium for Operando and Advanced Catalyst	Projected Sample Area to Beam [JAL	
characterization via Electronic spectroscopy and structure	Projected Catalyst Sample Absorption at E0 + 50 eV: 2.50			
	Show Plot	-		
	Reset			

Figure S5 Example of 0.1wt%OsO₂/MgO. Calculation could not be optimized to satisfy the mass requirement range of one 7 mm pellet and keep a reasonable edge step for fluorescence. However, two pellets stacked on top of each other would add up to the estimated mass needed.

S3.3. T	otal	absorptior	n measurement
---------	------	------------	---------------

<u>ت</u>	atMass - XAS Sample N	fass Calculator					- 🗆 ×	
File	File View							
Sample and Dilution Definition			Edge Scan and Absorption Prope	Edge Scan and Absorption Properties Definition		Calculate Sample Mass		
			Sample Builder	Diluted Sample Chemical Formula:	- 1000 5000100 - 1 000000	Diluted Sample Mass [mg]:	20.14	
		Sample	Diluent		e1289.593912Os1.000000	Designated Estimated Edge Steel		
	Stoichiometry:	e 1289.593912Os1.000000	Chemical Formula	Element to be Scanned:	Os	Projected Estimated Edge Step.	0.0406	
	Mass Dilution Ratio:	#	#	Edge to be Scanned:	L3 🔻	Sample Mass [mg]:	20.14	
	Reset	Calculate Diluted San	mple Chemical Formula	XAS Cells:	:	Diluent Mass [mg]:	0.00	
	File Path		Capillary Diameter [mm]	3 ~	Edge Energy [eV]:	10871		
	None			Bed length [1 cm]:	Red length [1 m]:	X-ray transmission through media		
				beatenger [2 enj.	-	Note: Edge step at:	E0 ± 43 eV	
			Pellet Diameter [mm]	7 ~				
				○ Other				
				Sample Area ⊥ to Beam [cm ²]:	0.38			
	C	ACCI		Catalyst Sample Absorption at E0 + 50 eV:	7			
Consortium for Operando and Advanced Catalyst Characterization via Electronic Spectroscopy and Structure			Sample at 45°					
			Projected Sample Area to Beam [cm ²]:	0.27		JNL		
			Projected Catalyst Sample Absorption at E0 + 50 eV:	9.90				
			Show Plot					
			Reset					
						L		

Figure S6 Example of 0.1wt%OsO₂/CeO₂. Calculation could not be optimized to satisfy the mass requirement range of one 7 mm pellet and keep a reasonable edge step for fluorescence. Increasing the sample absorption to meet the minimum requirement of packing the sample in a 7 mm pellet would be ideal. Smear on tape could yield measurable data, however the edge step is an order magnitude smaller and would require a high number of scans. Regardless, the use of a solid-state detector would be needed for the measurement and a simultaneous off axis reference foil measurement.

References

Aitbekova, A., Zhou, C., Stone, M. L., Lezama-Pacheco, J. S., Yang, A. C., Hoffman, A. S., Goodman, E. D., Huber, P., Stebbins, J. F., Bustillo, K. C., Ercius, P., Ciston, J., Bare, S. R., Plessow, P. N. & Cargnello, M. (2022). *Nat. Mater.* 21, 1290–1297.

Baraa Werghi, Amani Ebrahim, Simon Bare & Matteo Cargnello (2023). Small, 2207956.

Hoffman, A. S., Debefve, L. M., Zhang, S., Perez-Aguilar, J. E., Conley, E. T., Justl, K. R., Arslan, I., Dixon, D. A. & Gates, B. C. (2018). ACS Catal. 8, 3489–3498.